ON A SPANNED TAUTOLOGICAL BUNDLE

HARRY D'SOUZA

Abstract.

In this article we show that if X is a complex projective three dimensional cubic del Pezzo fibre space, then the spannedness of ζ^n for some n > 0, where ζ is an associated tautological bundle, implies that ζ itself is spanned by global sections.

Introduction.

In [D] we studied a class of threefolds X, whose hyperplane section S are elliptic surfaces of non-negative Kodaira dimension. These threefolds turned out to be del Pezzo fiber spaces over some smooth curve Y, belonging to the class of threefolds of Kodaira dimension $\kappa(X) = -\infty$. In this article we study a particular class of del Pezzo fiber spaces, namely the fiber space of cubic surfaces in P^3 . These surfaces have been studied extensively because of the famous 27 lines on them and their beautiful symmetries. In [D] we showed that the fiber space of cubic surfaces can be relatively embedded into a P^3 -bundle over Y. In this article we prove that, in order to show that the tautological bundle ζ of this P^3 -bundle over Y is spanned by global sections, it is sufficient to know that some high power of ζ is spanned by global sections.

Notation and background material.

- (0.0) Throughout this paper X is an irreducible complex projective threefold. X contains a very ample divisor S, an elliptic surface of non-negative Kodaira dimension. Moreover, X is a del Pezzo fibering (see 0.7) whose general fiber is a cubic surface. The fibering map is denoted by p.
- (0.1) Let L be a line bundle over X. We say that L is big if $c_1(L)^n > 0$. We say that L is nef if $c_1(L) \cdot [C] \ge 0$, for all effective curves C on X. We say that L is semi-ample if there exists an m > 0, such that Bs |mL|, the base locus of |mL|, is empty.
- (0.2) Let X, L) be a polarized manifold. A reduction of (X, L) is a polarized manifold (X', L') such that:

- a) there exists a morphism π : $X \to X'$ expressing X' as X with a finite F in X' set blown up.
- b) $L = \pi^*(L) \otimes [\pi^{-1}(F)]^{-1}$ or equivalently $K_X \otimes L^{n-1} = \pi^*(K_{X'} \otimes L'^{n-1})$
 - (0.3) We use $\pi_{(i)}$ instead of $R^i\pi_*$, for higher direct image sheaves.
- (0.4) We use the multiplicative and the additive notation interchangeably in the tensor powers of line bundles, i.e. nL is the same as $L^{\otimes n}$ (or L^n).
 - (0.5) We denote the sheaf of holomorphic functions on X, by \mathcal{O}_X or \mathcal{O} .
- (0.6) A smooth surface F is said to be a *del Pezzo surface* if $-K_F$ is ample. If F is a smooth cubic del Pezzo surface then it is well known that -kF is very ample. A quick reference for del Pezzo surfaces is [H; p. 400-401].
- (0.7) A del Pezzo fiber space consists of a smooth threefold X, a smooth curve Y and a surjective morphism $p: X \to Y$ whose *generic* fiber $p^{-1}(y) = X_y$ is a del Pezzo surface.
- (0.8) Let $p: X \to Y$ be a surjective morphism, where X is a smooth complex projective manifold and Y is a smooth curve. Let \mathcal{L} be a holomorphic line bundle on X. Suppose also that for all $y \in Y$, \mathcal{L} restricted to $p^{-1}(\Delta_y)$ is very ample, where Δ_y is a neighborhood of y, then \mathcal{L} is said to be *locally very ample* with respect to p.

Main results.

(1.0) THEOREM. Given (X, S) as in (0.0), assume moreover that X is not a holomorphic P^1 -bundle over a smooth surface \widetilde{S} with smooth S in |L| as meromorphic sections, then there exists a pair (X', S') which is a reduction of (X, S) in the sense of (0.2), where $\pi(S) = S'$ is a minimal model of S.

PROOF. See [D; (0.6)].

- (1.1) REMARKS a) We denote the del Pezzo fibering of this map, also by $p: X' \to Y$, where Y is a smooth curve. See [D; (0.7)].
- b) Also by [D; (0.7)] we see that $K_{X'} + L' = p^*(M)$ for some line bundle M on Y, with $\deg(M) > 0$.
- (1.2) THEOREM. Let (X',S') and p be as in (1.1), then there exists a morphism φ , where $\varphi \colon X' \to \mathsf{P}(p_*(-K_{X'}))$, such that φ is a relative embedding with the following commutative diagram of morphisms:

$$X' \xrightarrow{\varphi} P(p_*(-K_{X'}))$$

$$\downarrow \qquad \qquad \pi$$

where $P(p_{\star}(-K_{X'}))$ is a P^3 -bundle over Y.

Proof. See [D; (2.2.1)].

This brings us to the main result of this article.

(1.3) THEOREM. Let ζ denote the tautological bundle of $P(p_*(-K_{X'}))$. If for some n > 0, ζ^n is spanned by global ssections, then ζ itself must be spanned.

PROOF. Let F denote a general fiber of p. Since φ is an embedding on fibers, we can identify F with the image under φ , and so F is contained in the fiber, P^3 , of π , and so $\zeta^n \cong (-K_{X'\mid F})^n = (K_F)^{-n}$. Let η be the map associated with $(K_{X'})^{-n}$. Since $K_{X'}$ is not trivial, the image cannot be zero-dimensional. Now by the adjunction formula $-K_F \cong (-K_{X'} - F)_{\mid F}$, F being a fiber $F \cdot F = 0$ in X'. Hence by (0.6), $-K_{X'\mid F}$ is very ample, and so the image under η is at least two dimensional.

Claim 1: Suppose the image under η is two dimensional. The image of X' under η is a smooth cubic surface, and the general fiber of η is an elliptic curve.

Proof (of claim 1). Since by above $-K_{X'|F} \cong -K_F$ is very ample, $\eta(X')$ has to be a cubic surface, if the image is two dimensional. Moreover, if E denotes the general fiber of η then $(-nK_{X'})_{|E}$ is trivial, i.e. by adjunction, $-nK_E$ is trivial. Hence K_E itself is trivial, and so E is an elliptic curve. This proves the claim. Hence $\eta(X') = F$, where F is a smooth cubic surface.

Claim 2: $X' \cong Y \times F$.

PROOF (of claim 2). Let $q: X' \to Y \times F$, be given by $q(x) = (p(x), \eta(x))$. Since S is very ample in X, it follows by [D; (1.6.1)] that L' is locally very ample with respect to p (see (0.8)). By (1.1) (b) η is a local embedding on every fiber of p. Hence it follows that q is bijective. Moreover q is birational, since the general fibers of p are cubic surfaces; and $Y \times F$ is normal. Hence by [H; 5.1 p. 410], it follows that q^{-1} is also a bijective map. Hence q must be an isomorphism, thereby proving the claim.

Hence $-K_{X'}\cong (-K_F, -K_Y)$. Since the image under η is two-dimensional, it follows that $(-K_Y)^n$ must be trivial. Hence K_Y is trivial and Y is an elliptic curve. Hence $-K_{X'}$ is spanned. Now we repeat the argument as above for $P(p_*(-K_{X'}))$, and look at $\eta(P(p_*(-K_{X'})))$, and prove that $\eta(P(p_*(-K_{X'})))\cong P^3$, whence as in a similar situation before, $P(p_*(-K_{X'}))\cong Y\times P^3$, with Y an elliptic curve, Hence ζ must be spanned.

Since ζ is the tautological bundle associated with $P(p_*(-K_X))$, in order to show the completeness of ζ^r for $r \gg 0$, it suffices to show that $H^1(X, \mathcal{O}(-rK_X - F)) = 0$.

Assume that there exists some n > 0, such that $|-nK_X|$ is base point free. Since L is ample, then for $M \in |-nK_X|$ it follows that $L_{|M|}$ is ample. But $L \cdot M = -nK_X \cdot L$. Hence $-K_X \cdot L = -(K_X + L) \cdot L + L \cdot L$ is ample, i.e. $L_S - K_S$ is ample, where [S] = L. Now choose m > 0, such that L^m is very ample. We observe that if F denotes the general fiber of P in (0.7), then $L \cdot F = E$ is the general fiber of P in (0.7), were P is the general fiber of P in (0.7), then P is the general fiber of P in (0.7), and consider the following short exact sequence:

$$0 \to -(r+1)(K_X + L) + K_X - F \to -rK_X - F \to$$
$$[-r(r+1)K_X \cdot L - (r+1)E]_{L^{\mathscr{H}}} \to 0$$

Now by [H: III, p. 232, ex. 5.7] and a well know result of Serre (see [H: III, 5.2]) we can choose r large enough so that $H^1(\mathcal{H}, \mathcal{O}_{\mathcal{H}}(-r(r+1)K_X \cdot L - (r+1)E)) = 0$.

Hence by Serre duality and the Leray spectral sequence:

 $H^1(X, \mathcal{O}(-(r+1)(K_X+L)+K_X-F))=H^2(X, \mathcal{O}((r+1)(K_X+L)+F))=H^2(Y, (r+1)\mathcal{L}+[P]),$ where by [D; 0.10] $p^*\mathcal{L}=K_X+L$ and $p^{-1}(P)=F$. Since Y is a curve $H^2(Y, (r+1)L+[P])=0$. Hence from the associated long exact sequence to the short exact sequence, $H^1(X, \mathcal{O}(-rK_X-F))=0$.

Claim 3: Suppose the image under η is three-dimensional. Then the base curve is P^1 .

PROOF (of claim 3). Since the image under η is three-dimensional, $-K_{X'}$ is nef and big. Hence by the Kodaira-Ramanujan-Kawamata-Viehweg (KRKV) theorem [K] or [V], it follows that $H^1(X', \mathcal{O}_{X'}) = 0$. Hence by [D; (1.4.1)], and the Leray spectral sequence, it follows that $H^1(X', \mathcal{O}_{X'}) \cong H^1(Y, \mathcal{O}_Y)$. Hence $H^1(Y, \mathcal{O}_Y) = 0$, and since Y is smooth, $Y \cong P^1$. This proves the claim.

Since for a general cubic surface $F, (K_F)^{-1} \cong \mathcal{O}_{P^3}(1), \pi_*(\zeta)$ is locally free of rank 4 over P^1 , we have $\pi_*(\zeta) = \mathcal{O}(a) \oplus \mathcal{O}(b) \oplus \mathcal{O}(c) \oplus \mathcal{O}(d)$ for some a, b, c and d in Z. Hence it suffices to show that a, b, c and d are each non-negative. Using the KRKV theorem on $-2K_{X'}$, we see that $H^1(X', -K_{X'}) = 0$. Now we know that for i > 0, by a standard result, $\pi_{(i)}(\zeta) = 0$. Hence by the Leray spectral sequence $H^1(P(p_*(-K_{X'})), \zeta) \cong H^1(Y, \pi_*(\zeta) \cong H^1(X', -K_{X'}) = 0$. In particular, we get $H^1(Y, \mathcal{O}(a)) = 0$, hence $a \ge -1$ and similarly each of b, c, and d is $k \ge -1$. Similarly, on considering $-3K_{X'}$, we see that $H^1(X', -2K_{X'}) = 0$. Hence on noting that $\pi_{(i)}(\zeta^2) = 0$, we get $H^1(P(p_*(-K_{X'})), \zeta^2) \cong H^1(Y, \pi_*(\zeta^2)) \cong H^1(X', -2K_{X'}) = 0$. Hence $2a \ge -1$, or $a \ge 0$ and similarly each of b, c and d is d 0. Since $\pi_*(\zeta) = \mathcal{O}(a) \oplus \mathcal{O}(b) \oplus \mathcal{O}(c) \oplus \mathcal{O}(d)$, it follows that $\pi_*(\zeta)$ is spanned, and hence that ζ itself is spanned.

ACKNOWLEDGEMENTS. I would like to thank A. Sommese for bringing this problem to my attention, and for the many helpful discussions. I would also like to thank the referee for the many useful comments in improving the style of presentation.

REFERENCES

[D] H. D'Souza, Threefolds whose hyperplane sections are elliptic surfaces, Pac. J. Math. 134 (1988), 57–88.

- [H] R. Hartshorne, Algebraic Geometry, Springer Verlag, 1977, GTM \$52.
- [K] Y. Kawamata, A generalization of Kodaira-Rumanujam's vanishing theorem, Math. Ann. 261 (1982), 43-46.
- [V] E. Viehweg, Vanishing theorems, J. Reine Angew. Math. 335 (1982), 1-8.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MICHIGAN, FLINT FLINT, MI 48502-2186 U.S.A.