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ON A SPANNED TAUTOLOGICAL BUNDLE

HARRY D’SOUZA

Abstract.

In this article we show that if X is a complex projective three dimensional cubic del Pezzo fibre
space, then the spannedness of {" for some n > 0, where { is an associated tautological bundle, implies
that ( itself is spanned by global sections.

Introduction.

In [D] we studied a class of threefolds X, whose hyperplane section S are
elliptic surfaces of non-negative Kodaira dimension. These threefolds turned out
to be del Pezzo fiber spaces over some smooth curve Y, belonging to the class of
threefolds of Kodaira dimension k(X) = — oo. In this article we study a particu-
lar class of del Pezzo fiber spaces, namely the fiber space of cubic surfaces in P3,
These surfaces have been studied extensively because of the famous 27 lines on
them and their beautiful symmetries. In [D] we showed that the fiber space of
cubic surfaces can be relatively embedded into a P3-bundle over Y. In this article
we prove that, in order to show that the tautological bundle { of this P3-bundle
over Y is spanned by global sections, it is sufficient to know that some high power
of { is spanned by global sections.

Notation and background material.

(0.0) Throughout this paper X is an irreducible complex projective threefold.
X contains a very ample divisor S, an elliptic surface of non-negative Kodaira
dimension. Moreover, X is a del Pezzo fibering (see 0.7) whose general fiber is
a cubic surface. The fibering map is denoted by p.

(0.1) Let L be a line bundle over X. We say that L is big if c;(L)" > 0. We say
that L is nef if ¢,(L)-[C] = O, for all effective curves C on X. We say that L is
semi-ample if there exists an m > 0, such that Bs|mL|, the base locus of |mL|, is
empty.

(0.2) Let X, L) be a polarized manifold. A reduction of (X, L) is a polarized
manifold (X', L) such that:
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a) there exists a morphism n: X — X’ expressing X' as X with a finite F in X' set
blown up.
b) L=n%L)®[n YF)]~! orequivalently Ky® L' ! =a*Ky ® L")

(0.3) We use n;, instead of R'z,, for higher direct image sheaves.

(0.4) We use the multiplicative and the additive notation interchangeably in
the tensor powers of line bundles, i.e. nL is the same as L®" (or L")

(0.5) We denote the sheaf of holomorphic functions on X, by ¢ or 0.

(0.6) A smoothsurface Fissaid to be adel Pezzo surface if — Kisample. If F is
a smooth cubic del Pezzo surface then it is well known that —kF is very ample.
A quick reference for del Pezzo surfaces is [H; p. 400-401].

(0.7) A del Pezzo fiber space consists of a smooth threefold X, a smooth curve
Y and a surjective morphism p: X — Y whose generic fiber p~'(y) = X, is a del
Pezzo surface.

(0.8) Let p: X — Y be a surjective morphism, where X is a smooth complex
projective manifold and Y is a smooth curve. Let £ be a holomorphic line bundle
on X. Suppose also that for all ye Y, & restricted to p~!(4,) is very ample, where
4, is a neighborhood of y, then % is said to be locally very ample with respect to p.

Main results.

(1.0) THEOREM. Given (X ,8) as in(0.0), assume moreover that X is not a holomor-
phic P!-bundle over a smooth surface S with smooth S in |L| as meromorphic
sections, then there exists a pair (X', S') which is a reduction of (X, S) in the sense of
(0.2), where n(S) = S’ is a minimal model of S.

ProoF. See [D; (0.6)].

(1.1) REMARKS a) We denote the del Pezzo fibering of this map, also by
p: X' — Y, where Y is a smooth curve. See [D; (0.7)].

b) Also by [D; (0.7)] we see that Ky. + L' = p*(M) for some line bundle M on
Y, with deg(M) > 0.

(1.2) THEOREM. Let (X’,S’) and p be as in (1.1), then there exists a morphism ¢,
where ¢: X' — P(p,.(— Ky)), such that ¢ is arelative embedding with the following
commutative diagram of morphisms:

X' —*— P(p,(—Kx))

! /

Y

where P(p,(— Ky)) is a P>-bundle over Y.
Proor. See [D; (2.2.1)].

This brings us to the main result of this article.
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(1.3) THEOREM. Let { denote the tautological bundle of P(p,(—Kx)). If for some
n > 0, {" is spanned by global ssections, then ( itself must be spanned.

ProoF. Let F denote a general fiber of p. Since ¢ is an embedding on fibers, we
can identify F with the image under ¢, and so F is contained in the fiber, P3, of =,
andso {" = (— Ky r)" = (Kg) ™" Let n be the map associated with (K x.) ~". Since
K- is not trivial, the image cannot be zero-dimensional. Now by the adjunction
formula — Ky = (—Kx. — F),g, F being a fiber F-F = 0in X". Hence by (0.6,
— Kx|r is very ample, and so the image under 7 is at least two dimensional.

Claim 1: Suppose the image under # is two dimensional. The image of X’ under
n is a smooth cubic surface, and the general fiber of # is an elliptic curve.

PRrOOF (of claim 1). Since by above — Ky (= — KF)is very ample, n(X") has to
be a cubic surface, if the image is two dimensional. Moreover, if E denotes the
general fiber of # then (—nKy/),g is trivial, i.e. by adjunction, —nKp is trivial.
Hence Kp itself is trivial, and so E is an elliptic curve. This proves the claim.
Hence n(X’) = F, where F is a smooth cubic surface.

Claim2: X'~ Y x F.

ProoF (of claim 2). Letg: X' — Y x F, be given by g(x) = (p(x), n(x)). Since S is
very ample in X, it follows by [D; (1.6.1)] that L is locally very ample with respect
to p (see (0.8)). By (1.1) (b) n is a local embedding on every fiber of p. Hence it
follows that q is bijective. Moreover q is birational, since the general fibers of p are
cubic surfaces; and Y x F is normal. Hence by [H; 5.1 p. 410], it follows that g !
is also a bijective map. Hence g must be an isomorphism, thereby proving the
claim.

Hence — Ky =~ (— Kf, — Ky). Since the image under 7 is two-dimensional, it
follows that (— Ky)" must be trivial. Hence Ky is trivial and Y is an elliptic curve.
Hence — K- is spanned. Now we repeat the argument as above for P(p, (— Kx-)),
and look at n(P(p,(— Kx-))), and prove that #n(P(p,(— Kx-))) = P3, whence as in
asimilar situation before, P(p,(—Kx)) = Y x P* with Y anelliptic curve, Hence
{ must be spanned.

Since { is the tautological bundle associated with P(p,(— Kx)), in order to show
the completeness of {" for r > 0, it suffices to show that H'(X, O(—rKy — F)) = 0.

Assume that there exists some n > 0, such that | —nK x| is base point free. Since
L is ample, then for Me|—nKy| it follows that L;, is ample. But
L-M= —nKy-L. Hence —Kyx'L= —(Ky+ L)-L+ L-L is ample, i.e.
Lg — Kgis ample, where [S] = L. Now choose m > 0, such that L™ is very ample.
We observe that if F denotes the general fiber of p in (0.7), then L- F = E is the
general fiber of ps. Let # e|(r + 1)L|, were r > 0. Now we observe that
—(r+ 1)Ky+ L)+ Ky—F=—rKy—~F —(r+ 1)L, and consider the fol-
lowing short exact sequence:
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0> —(r+1)Ky+L) +Ky—F—> —rKy— F—
[=rr+ DKx"L—(r + 1)E]; -0

Now by [H: III, p. 232, ex. 5.7] and a well know result of Serre (see [H: III, 5.2])
we can choose r large enough so that H(#, Ox(—r(r+ DKy-L—
(r+ DE) =0.

Hence by Serre duality and the Leray spectral sequence:

HYX,O0(—(r + 1)(Kx + L) + Kx — F)) = H¥(X,0((r + 1)(Kx + L) + F)) =
H*Y,(r + 1) + [P]), where by [D; 0.10] p*¥ = Ky + L and p~(P) = F.
Since Y is a curve HX(Y,(r + 1)L+ [P]) = 0. Hence from the associated long
exact sequence to the short exact sequence, H'(X,0(—rKy — F)) = 0.

Claim 3: Suppose the image under 7 is three-dimensional. Then the base curve
is PL.

PROOF (of claim 3). Since the image under 7 is three-dimensional, — K - is nef
and big. Hence by the Kodaira-Ramanujan-Kawamata-Viehweg (KRKYV) the-
orem [K] or [V], it follows that H'(X', O.) = 0. Hence by [D; (1.4.1)], and the
Leray spectral sequence, it follows that H(X',0x) = H(Y,0,). Hence
HY(Y,0y) = 0, and since Y is smooth, Y = P!. This proves the claim.

Since for a general cubic surface F, (K) ™! = Ops(1), n,({) is locally free of rank
4 over P!, we have n,({) = O(a) ® O(b) ® O(c) ® O(d) for some a, b, c and d in Z.
Hence it suffices to show that a, b, ¢ and d are each non-negative. Using the
KRKYV theorem on —2K ., we see that H(X’, —Kx.) = 0. Now we know that
for i > 0, by a standard result, 7;({) = 0. Hence by the Leray spectral sequence
HY(P(p,(—Kx)){) = H'(Y,n,({) = H'(X', —Kx) = 0. In particular, we get
H'(Y,0(a)) = 0, hence a = — 1 and similarly each of b,c,and dis = — 1. Similar-
ly, on considering — 3Ky, we see that H'(X’, —2Ky.) = 0. Hence on noting that
16({%) = 0, we get H'(P(p,(—Kx)),{?) = HA(Ym,((%) = H(X', —2Ky) = 0.
Hence 2a = —1, or a 20 and similarly each of b, ¢ and d is = 0. Since
T.(0) = O(a) ® O(b) ® O(c) ® O(d), it follows that 7,({) is spanned, and hence
that ( itself is spanned.
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