ON A SPANNED TAUTOLOGICAL BUNDLE

HARRY D'SOUZA

Abstract.

In this article we show that if X is a complex projective three dimensional cubic del Pezzo fibre space, then the spannedness of ζ^n for some $n > 0$, where ζ is an associated tautological bundle, implies that ζ itself is spanned by global sections.

Introduction.

In [D] we studied a class of threefolds X, whose hyperplane section S are elliptic surfaces of non-negative Kodaira dimension. These threefolds turned out to be del Pezzo fiber spaces over some smooth curve Y, belonging to the class of threefolds of Kodaira dimension $\kappa(X) = -\infty$. In this article we study a particular class of del Pezzo fiber spaces, namely the fiber space of cubic surfaces in \mathbb{P}^3. These surfaces have been studied extensively because of the famous 27 lines on them and their beautiful symmetries. In [D] we showed that the fiber space of cubic surfaces can be relatively embedded into a \mathbb{P}^3-bundle over Y. In this article we prove that, in order to show that the tautological bundle ζ of this \mathbb{P}^3-bundle over Y is spanned by global sections, it is sufficient to know that some high power of ζ is spanned by global sections.

Notation and background material.

(0.0) Throughout this paper X is an irreducible complex projective threefold. X contains a very ample divisor S, an elliptic surface of non-negative Kodaira dimension. Moreover, X is a del Pezzo fibering (see 0.7) whose general fiber is a cubic surface. The fibering map is denoted by p.

(0.1) Let L be a line bundle over X. We say that L is big if $c_1(L)^n > 0$. We say that L is nef if $c_1(L) \cdot [C] \geq 0$, for all effective curves C on X. We say that L is semi-ample if there exists an $m > 0$, such that $Bs|mL|$, the base locus of $|mL|$, is empty.

(0.2) Let X, L be a polarized manifold. A reduction of (X, L) is a polarized manifold (X', L') such that:

Received March 28, 1988; in revised form August 3, 1989.
a) there exists a morphism \(\pi: X \to X' \) expressing \(X' \) as \(X \) with a finite \(F \) in \(X' \) set blown up.

b) \(L = \pi^*(L) \otimes [\pi^{-1}(F)]^{-1} \) or equivalently \(K_X \otimes L^{n-1} = \pi^*(K_{X'} \otimes L'^{n-1}) \)

(0.3) We use \(\pi_{(0)} \) instead of \(R^i\pi_* \), for higher direct image sheaves.

(0.4) We use the multiplicative and the additive notation interchangeably in the tensor powers of line bundles, i.e. \(nL \) is the same as \(L^{\otimes n} \) (or \(L^n \)).

(0.5) We denote the sheaf of holomorphic functions on \(X \), by \(O_X \) or \(O \).

(0.6) A smooth surface \(F \) is said to be a del Pezzo surface if \(-K_F \) is ample. If \(F \) is a smooth cubic del Pezzo surface then it is well known that \(-kF \) is very ample.

A quick reference for del Pezzo surfaces is [H; p. 400–401].

(0.7) A del Pezzo fiber space consists of a smooth threefold \(X \), a smooth curve \(Y \) and a surjective morphism \(p: X \to Y \) whose generic fiber \(p^{-1}(y) = X_y \) is a del Pezzo surface.

(0.8) Let \(p: X \to Y \) be a surjective morphism, where \(X \) is a smooth complex projective manifold and \(Y \) is a smooth curve. Let \(L \) be a holomorphic line bundle on \(X \). Suppose also that for all \(y \in Y \), \(L \) restricted to \(p^{-1}(\Delta_y) \) is very ample, where \(\Delta_y \) is a neighborhood of \(y \), then \(L \) is said to be locally very ample with respect to \(p \).

Main results.

(1.0) **Theorem.** Given \((X, S)\) as in (0.0), assume moreover that \(X \) is not a holomorphic \(P^1 \)-bundle over a smooth surface \(\tilde{S} \) with smooth \(S \) in \(|L|\) as meromorphic sections, then there exists a pair \((X', S')\) which is a reduction of \((X, S)\) in the sense of (0.2), where \(\pi(S) = S' \) is a minimal model of \(S \).

Proof. See [D; (0.6)].

(1.1) **Remarks**

a) We denote the del Pezzo fibering of this map, also by \(p: X' \to Y \), where \(Y \) is a smooth curve. See [D; (0.7)].

b) Also by [D; (0.7)] we see that \(K_{X'} + L' = p^*(M) \) for some line bundle \(M \) on \(Y \), with \(\deg(M) > 0 \).

(1.2) **Theorem.** Let \((X', S')\) and \(p \) be as in (1.1), then there exists a morphism \(\varphi \), where \(\varphi: X' \to P(p_*(-K_{X'})) \), such that \(\varphi \) is a relative embedding with the following commutative diagram of morphisms:

\[
\begin{array}{ccc}
X' & \xrightarrow{\varphi} & P(p_*(-K_{X'})) \\
\downarrow & & \downarrow \pi \\
Y & & \\
\end{array}
\]

where \(P(p_*(-K_{X'})) \) is a \(P^3 \)-bundle over \(Y \).

Proof. See [D; (2.2.1)].

This brings us to the main result of this article.
(1.3) **Theorem.** Let ζ denote the tautological bundle of $P(p_*(-K_X))$. If for some $n > 0$, ζ^n is spanned by global sections, then ζ itself must be spanned.

Proof. Let F denote a general fiber of p. Since φ is an embedding on fibers, we can identify F with the image under φ, and so F is contained in the fiber, P^3, of π, and so $\zeta^n \cong ((-K_{X'}/F))^n = (K_F)^{-n}$. Let η be the map associated with $(K_X)^{-n}$. Since $K_{X'}$ is not trivial, the image cannot be zero-dimensional. Now by the adjunction formula $-K_F \cong ((-K_{X'} - F)_{|F}$, F being a fiber $F \cdot F = 0$ in X'. Hence by (0.6), $-K_{X'}/F$ is very ample, and so the image under η is at least two dimensional.

Claim 1: Suppose the image under η is two dimensional. The image of X' under η is a smooth cubic surface, and the general fiber of η is an elliptic curve.

Proof (of claim 1). Since by above $-K_{X'}/F (\cong -K_F)$ is very ample, $\eta(X')$ has to be a cubic surface, if the image is two dimensional. Moreover, if E denotes the general fiber of η then $(-nK_{X'})_{|E}$ is trivial, i.e. by adjunction, $-nK_E$ is trivial. Hence K_E itself is trivial, and so E is an elliptic curve. This proves the claim. Hence $\eta(X') = F$, where F is a smooth cubic surface.

Claim 2: $X' \cong Y \times F$.

Proof (of claim 2). Let $q: X' \to Y \times F$, be given by $q(x) = (p(x), \eta(x))$. Since S is very ample in X, it follows by [D; (1.6.1)] that L' is locally very ample with respect to p (see (0.8)). By (1.1) (b) η is a local embedding on every fiber of p. Hence it follows that q is bijective. Moreover q is birational, since the general fibers of p are cubic surfaces; and $Y \times F$ is normal. Hence by [H; 5.1 p. 410], it follows that q^{-1} is also a bijective map. Hence q must be an isomorphism, thereby proving the claim.

Hence $-K_{X'} \cong (-K_F, -K_Y)$. Since the image under η is two-dimensional, it follows that $(-K_Y)^n$ must be trivial. Hence K_Y is trivial and Y is an elliptic curve. Hence $-K_{X'}$ is spanned. Now we repeat the argument as above for $P(p_*(-K_X))$, and look at $\eta(P(p_*(-K_{X'})))$, and prove that $\eta(P(p_*(-K_{X'}))) \cong P^3$, whence as in a similar situation before, $P(p_*(-K_{X'})) \cong Y \times P^3$, with Y an elliptic curve, Hence ζ must be spanned.

Since ζ is the tautological bundle associated with $P(p_*(-K_X))$, in order to show the completeness of ζ for $r \gg 0$, it suffices to show that $H^1(X, \mathcal{O}(-rK_X - F)) = 0$.

Assume that there exists some $n > 0$, such that $| -nK_X |$ is base point free. Since L is ample, then for $M \in | -nK_X |$ it follows that $L_{|M}$ is ample. But $L \cdot M = -nK_X \cdot L$. Hence $-K_X \cdot L = -(K_X + L) \cdot L + L \cdot L$ is ample, i.e. $L_{|S} - K_S$ is ample, where $[S] = L$. Now choose $m > 0$, such that L^n is very ample.

We observe that if F denotes the general fiber of p in (0.7), then $L \cdot F = E$ is the general fiber of p_S. Let $\mathcal{M} \in |(r + 1)L|$, were $r \gg 0$. Now we observe that $-(r + 1)(K_X + L) + K_X - F = -rK_X - F - (r + 1)L$, and consider the following short exact sequence:
$0 \to -(r + 1)(K_X + L) + K_X - F \to -rK_X - F \to$
\[\left[-r(r + 1)K_X \cdot L - (r + 1)E \right]_r \to 0\]

Now by [H: III, p. 232, ex. 5.7] and a well known result of Serre (see [H: III, 5.2])
we can choose r large enough so that $H^1(\mathcal{H}, \mathcal{O}_{\mathcal{H}}(-r(r + 1)K_X \cdot L - (r + 1)E)) = 0$.

Hence by Serre duality and the Leray spectral sequence:

\[H^1(X, \mathcal{O}(-(r + 1)(K_X + L) + K_X - F)) = H^2(X, \mathcal{O}((r + 1)(K_X + L) + F)) = H^2(Y, (r + 1)L + [P]),\]
where by [D; 0.10] $p^*L = K_X + L$ and $p^{-1}(P) = F$.
Since Y is a curve $H^2(Y, (r + 1)L + [P]) = 0$. Hence from the associated long exact sequence to the short exact sequence, $H^1(X, \mathcal{O}(-rK_X - F)) = 0$.

Claim 3: Suppose the image under η is three-dimensional. Then the base curve is P^1.

Proof (of claim 3). Since the image under η is three-dimensional, $-K_X$ is nef and big. Hence by the Kodaira-Ramanujan-Kawamata-Viehweg (KRKV) theorem [K] or [V], it follows that $H^1(X', \mathcal{O}_{X'}) = 0$. Hence by [D; (1.4.1)], and the Leray spectral sequence, it follows that $H^1(X', \mathcal{O}_{X'}) \cong H^1(Y, \mathcal{O}_Y)$. Hence $H^1(Y, \mathcal{O}_Y) = 0$, and since Y is smooth, $Y \cong P^1$. This proves the claim.

Since for a general cubic surface $F, (K_F)^{-1} \cong \mathcal{O}_F(1), \pi_*(\zeta)$ is locally free of rank 4 over P^1, we have $\pi_*(\zeta) = \mathcal{O}(a) \oplus \mathcal{O}(b) \oplus \mathcal{O}(c) \oplus \mathcal{O}(d)$ for some a, b, c and d in \mathbb{Z}. Hence it suffices to show that a, b, c and d are each non-negative. Using the KRKV theorem on $-2K_X$, we see that $H^1(X', -K_X) = 0$. Now we know that for $i > 0$, by a standard result, $\pi(i)(\zeta) = 0$. Hence by the Leray spectral sequence $H^1(\mathcal{P}(\pi_*(-K_X)), \zeta) \cong H^1(Y, \pi_*(\zeta)) \cong H^1(X', -K_X) = 0$. In particular, we get $H^1(Y, \mathcal{O}(a)) = 0$, hence $a \geq -1$ and similarly each of $b, c,$ and d is ≥ -1. Similarly, on considering $-3K_X$, we see that $H^1(X', -2K_X) = 0$. Hence on noting that $\pi(i)(\zeta^2) = 0$, we get $H^1(\mathcal{P}(\pi_*(-K_X)), \zeta^2) \cong H^1(Y, \pi_*(\zeta^2)) \cong H^1(X', -2K_X) = 0$. Hence $2a \geq -1$, or $a \geq 0$ and similarly each of b, c and d is ≥ 0. Since $\pi_*(\zeta) = \mathcal{O}(a) \oplus \mathcal{O}(b) \oplus \mathcal{O}(c) \oplus \mathcal{O}(d)$, it follows that $\pi_*(\zeta)$ is spanned, and hence that ζ itself is spanned.

Acknowledgements. I would like to thank A. Sommese for bringing this problem to my attention, and for the many helpful discussions. I would also like to thank the referee for the many useful comments in improving the style of presentation.

References

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF MICHIGAN, FLINT
FLINT, MI 48502-2186
U.S.A.