MATH. SCAND. 67 (1990), 15-22

4-CRITICAL 4-VALENT PLANAR GRAPHS
CONSTRUCTED WITH CROWNS

G. KOESTER

Abstract.

A construction of arbitrarily large 4-critical 4-valent planar graphs with aid of socalled “crowns” is
given which also proves a conjecture of B. Griinbaum. Furthermore some coloring properties of the
aid graphs are derived

Introduction.

All graphs considered are finite, connected, planar, undirected, and have no
loops. A vertex is r-valent if it is incident with r edges. A graph is r-valent if each of
its vertices is r-valent. A (vertex) coloring is an integer valued function on the
vertices of a graph. It is a proper coloring if adjacent vertices have different colors
(values). A graph G has the chromatic number x(G) = k if there is a proper
coloring of G with k different colors (a k-coloring) but none with fewer colors. G is
k-critical if (G) = k and x(G’) < k for every proper subgraph G’ of G.

4-critical 4-valent graphs were known in the past only for the nonplanar case
[1]. G. A. Dirac and T. Gallai even conjectured [1] that every 4-critical planar
graph contains 3-valent vertices. But the author found in 1984 [3] a 4-critical
4-valent planar graph G* (see Fig. 1). In this paper a construction is given which
generates infinite families of 4-critical 4-valent planar graphs and which is based
on G* and on some symmetric planar graphs here called “crowns”. This also
proves a recent conjecture of B. Griinbaum [4] that there exist arbitrarily large
4-critical 4-valent planar graphs. Some lemmas concerning crown colorings
support the proofs of the results.

In the sequel, vertex indices shall be taken modulo s (s integer, s > 1;
Xs+1 = X;, €tc.). An edge joining two vertices x;, x, is denoted (x,,x,), ¢(x)
denotes the color of x. In a colored vertex sequence an r-block is a maximal
subsequence of r consecutive vertices of the same color (» > 1). Each graph G is
assumed to be properly embedded in an infinite plane with a given outside region
(G is said to be plane). G° arises from G by removal of the edges which bound the
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outside region of G. Let G have an outside region such that its boundary contains
vertices, some of which are labelled. Then [G] denotes the graph which arises
from G by joining consecutive labelled vertices by new edges, drawn along the
boundary of the outside region of G (if we label all vertices which bound the
outside region of G then G = [G°]).

The operation of “crowning”.

DEFINITION 1. An s-crown C; is a plane graph, the vertex-set V(C;) of which is
the disjoint union of the following subsets: O = {o;} (outside vertices), I = {i;}
(inside vertices), M = {m;} (midside vertices). o; is adjacent to m;,, mj,; i; to
mj_q,2, Mjg; Mjy 10 Mj_y 5, Mja, i}, 05; Mjz 1O My, Mjsq 1, Bjey, 0 (= 1,...,5
k = 1,2; Fig. 2 shows Cs as an example).

DEFINITION 2. LET Ag be an s-gon (with vertices ay, ..., a, in cyclic order) that
bounds the outside region of plane graph G. The plane graph given by

1) F=GoC,

arises from G° and [C,] (where oy,...,0, in C, are labelled) by identifying the

boundaries of

— aclosed disc containing G°, such that its boundary contains only the vertices
dai,...,a, from G°

— [C,] minus an open disc from its inside region (the one having iy, ..., i on its
boundary), such that the boundary of what remains contains only vertices
i1,...,is from [Cs]

in such a way that g; is identified with i; (j = 1,...,s). F shall be called an

s-crowning of G. If G is 4-valent then so is F. An n-fold s-crowning

F=(..(GoCy)oC,)...)oC;
shall be abbreviated by
) F=GoC..

REMARK 1. Let L, be a 4-valent plane graph, the vertex-set V(L,) of which is the
disjoint union of the following subsets: U = {u;} (inside vertices) and A = {a;}
(outside vertices). u; is adjacent to u;_y, Uj+ 1, @j—1, 4j; @; 10 @j_y, Aj4 1, Ujy Ujy
(=1,...,s for s = 5see Fig. 3). Then G* (from Fig. 1) is a 2-fold 5-crowning of
Ls:

3) G* = Lso C2.
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a,

Figure 3. The graph L,.

The results.

PROPOSITION.

(a) Let G be a 4-critical plane graph bounded on the outside by a triangle. Then
(4) F = G [e] C3
is also 4-critical.

(b) Let
5 F® = LoCk

Then F® is 4-critical for k > 1 (for L, see Remark 1 and Fig. 3).

REMARK 2. With a suitable embedding in the plane, repeated 3-crowning of
the graph G* (Fig. 1) generates an infinite family of 4-critical 4-valent plane
graphs. Similarly, F& with k > 1 is another such family, and its smallest member
is also G*.

Lemmas and proofs.

Let c(I) be a given k-coloring (k < 4) of the inside vertices of C,. Then ¢(C, I)
denotes a 3-coloring of C; which extends c(I). The existence of some ¢(C, I) which
extends any c(I) is established in Lemma 2. Let ¢(A), ¢(B) be k-colorings of vertex
sequences A = {ay,...,a,}, B = {by,...,b,} resp. c(A), c(B) are said to be isoch-
romal if they can be made to coincide by an index translation (reflexion) or a color
permutation or a combination of both transitions. A coloring of an edge se-
quence 4 = {a,,...,a,} is denoted (c(a,),. .., c(a,)).
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REMARK 3. For any 3-coloring of C, and for any je{1,...,s}:
if c(i;) = c(ij+) = c then

6) co;) =c.

LEMMA 1. (color invariance).

(a) At every 3-coloring of C, using colors 1,2 & 3, the numbers of inside and
outside vertices colored with j (j = 1,2, 3) are equal.

(b) Ifc(l) is an inside coloring of C, using at most two colors then for each ¢(C, I)
one of the following holds

() c(0;) = cliy) for j=1,...,s or
() c(0)) =clij+;) for j=1,...,s.

Proor. Let I;, M;, O; be the subsets of inside, midside, and outside vertices
resp. which are colored by j (j = 1,2,3). Then |I}| + |[M;| = |0j| + |[M;| = s, and
hence

®) ;| =104,

which proves (a).
In case (b) let c(I) have colors 1, 2 (1). Then all m;; or all mj, (j = 1,...,5) must
have color 3, and from this follows (7”) or (7’) resp.

If ¢(A) is a k-coloring of a vertex sequence A so that the number of vertices
colored byj(jel,...,k}) is greater than the number of the remaining vertices of
A then ¢(A) shall be called a dominant coloring. Then A contains at least one
block. From Lemma 1 follows immediately:

COROLLARY. If c(I) is a dominant k-coloring of the inside vertices of C, (k < 4)
then each ¢(C, I) restricts to a dominant outside k-coloring c(0O).

LEMMA 2. Let c(I) be a k-coloring (k < 4) of the inside vertices of C,.

(a) For every c(I) there exists some c(C, I).

(b) IfI has no block then there is a c(C, I)whichrestricts to an outside k-coloring
¢(0), and ¢(0) is isochromal with c(I).

Proor. We introduce a “diagonal coloring” of C, (which forces a ¢(C, I)) by the
following (r integer > 0;j = 1,...,s): If

© o) # clij+1) = ... = clij+,) F clijer+1) then c(0j+,) = clm;z) = c(i)).

(6) and (9) cause a unique outside coloring ¢(0). It remains to determine the
midside coloring c¢(M). In the antiblock case (r = 1) the 4 neighbours of m;,; ;
are colored with exactly 2 different colors and therefore c(m;. , ) is uniquely
determined. In the block case (r > 1) c(0;+,) determines the colors of m;,,, ,,
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M;jiyq,2,...,Mj., ; Which must be different from the block color. In the blockfree
case (b) clearly (9) gives on outside coloring ¢(0Q) which is isochromal with c(I).

LeMMA 3. Let G be a plane graph and F = Go C,. If G(G°) has chromatic
number 3 then so has F (F°).

ProoF. If G has chromatic number 3 then so has F° because of the existence
ofa ¢(C, I) for every 3-coloring ¢(I) of the inside vertices of C;(Lemma 2 (a)). From
Lemma 2 (b) follows that F has chromatic number at most 3 if G has. Clearly
F has chromatic number at lest 3, since it contains triangles.

PrOOF OF THE PROPOSITION. For the k-criticality of a graph H it is sufficient that
(10) x(H) =k (H is k-chromatic), and
(11) YH—e)=k—1

holds for each edge e of H. A path P in a k-chromatic graph H shall be called
a critical path, it for some coloring of the graph H — P using k — 1 colors, there
are two colors ¢y, ¢, so that ¢(c,) does not occur among the neighbours outside
P of all (all interior) vertices of P. For each edge e of a critical path P of H holds
(11). In the following let k = 4.

(a) Let H = F (F from (4)). Since G in (4) is 4-critical, any 3-coloring of G°
restricts to a dominant coloring of the outside vertices a,, a,, a; of G (isochromal
with(1,1,2)). Letc(a,) = 1,c(a;) = 1,and c(as;) = 2. From Lemma 1 (b) follow for
op,myinC3(j=1,2,3;k=1,2)

(12) c(01) =clo3) =1,cl03) =2 or
(13) c(0y) = c(03) = 1, c(0;) = 2,

which gives (10). If (12) holds then we have c(M) = (2,3;2,3;1,3) as midside
coloring ((13) forces an analogous midside coloring). From Lemma 2 (b) follows
(11)if e is an edge of G°. From the above follows (11) for e (0, 0,). Moreover, the
vertex sequence {0y, 05, M5, M3y, M3, iy} forms a critical path P of F. From the
symmetry of C now follows (11) for each edge e of F and hence the 4-criticality of
F in (4).

(b) From Lemma 3 follows that each (F®)° (s > 1, k = 0) is 3-colorable.
Each 3-coloring of L3 restricts to a dominant coloring of A isochromal with
(1,1,1,2,3). For H = F® follows (10) from the Corollary. The proof of the
4-criticality proceeds by induction. We start with G* = F{?) which is shown to be
4-critical by [3]. Assume F¢ ~ ! is 4-critical for some k > 2. From the 4-criticality
and from Lemma 1 (color invariance) follows that there are 3-colorings of
(F$~ )% which restrict to outside colorings isochromal with (1, 1,2,1,3). Such
a 3-coloring we extend to a 3-coloring of (F&)°:
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(1,1,2,1,3) inside of Cs,
(3,2; 3,15 3,2; 3,2; 1,2) midside of Cs,
(1,2,1,1,3) outside of Cs.

The vertices 04, 03, M3y, My5, My, iy, form a critical path P’ of F¥. From the
symmetry of F¥ and from the 4-criticality of F% ~ ! follows (11) for each edge e of
F,

Concluding remarks.

1. Without detailed proofs we state that:

(14) - F¥) =4 for s=2,4,5 and k>=0,
(15) XF¥) =3 for s=3,5>5 and k>0.

(14) follows from the above Lemmas and the Corollary. To show (195) it is
sufficient to establish 3-colorings of F{!’ for s = 3and s > 5. From Lemma 3 then
follows (15) for k > 1.

2. Neither F{® nor F{ is 4-critical for any k. The first contains double-edges
and the second cannot be 4-critical because every 3-coloring of (F{)° restricts to
an outside 2-coloring with 2 2-blocks or to a 1-coloring (Lemma 2).

3. An old conjecture of H. Grotzsch ws stated by H. Sachs as follows: “Let
G be a finite 4-regular plane graph generated by a set of simple closed curves
(= Jordan curves)(i.e., every vertex of G is an intersection point of exactly two of
the generating curves of G (which are not allowed to touch)). H. Grotzsch
conjectured that y(G) = 3.” The author found two counterexamples, namely the
graph F{" which was published in 1984 [2] and the graph F{*) = G* [3]. Itis easy
to verify that F®~3 for s > 2 is of the Grotzschian type, but there are no more
4-chromatic graphs among them because of statement (15).
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