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CANCELLATION OF ABELIAN GROUPS OF FINITE RANK
MODULO ELEMENTARY EQUIVALENCE

FRANCIS OGER

Introduction.

Following R. Hirshon, we say that a group 4 may be cancelled in direct
products if, for any groups G, H, A x G= A x H implies G = H. Results,
examples and references concerning the cancellation properties of groups can be
found in [5] and other papers of R. Hirshon. Finite groups and many other
familiar groups may be cancelled. On the other hand, [5] gives some examples of
non abelian groups G, H which satisfy Z x G = Z x H without being isomor-
phic.

According to [7],if G and H are groups suchthatZ x G =~ Z x H, then G and
H are elementarily equivalent. By [9], the converse is true for finitely generated
finite-by-nilpotent groups. On the other hand, [8, Proposition, p. 1042] gives an
example of two polycyclic abelian-by finite groups G, H which are elementarily
equivalent while Z x G and Z x H are not isomorphic. According to [4], the
result from [ 7] remains true if we replace Z by any subgroup of Q" for an integer
neN.

In the present paper, we give conditions on the abelian groups 4, B which
imply that, for any groups G, H,if A x G and B x H are isomorphic, then G and
H are elementary equivalent. In particular, we prove the following result:

Let 4 be an abelian group such that, for each prime number p and for each
subgroup S of 4, S/pS is finite. If G and H are groupssuchthat 4 x Gand 4 x H
are isomorphic, then G and H are elementarily equivalent.

The condition on A is satisfied by any abelian group which is an homomorphic
image of a subroup of Q" for an integer ne N. In particular, our result generalizes
[7] and [4] (see Examples 2 and 3 below). On the other hand, we have
M x {1} > M x M for each group M, while {1} and M are elementarily
equivalent if and only if M is trivial.

——
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6 FRANCIS OGER

Definitions and main theorem.

For eachinteger n = 1, we consider Z(n) = Z/nZ. For each prime number p, we
denote by 2, the p-adic completion of Z and we write Z(p®) = {a/p*|a€Z and
keN}/Z

If S is a subset of a group M, we denote by (S) the subgroup of M which is
generated by S. If G is a subgroup of a group M, we say that a subgroup 4 of M is
a supplementary of Gin M if wehave AN G = {1},[4,G] = {1} and (4,G) = M.
Similarly, if R is a ring and if G is a submodule of an R-module M, we say that
a submodule A of M is a supplementary of G in M if we have A~ G = {0} and
A+G=M.

Now, let us consider an abelian group M with additive notation. We denote by
t(M) the torsion subgroup of M and d(M) the subgroup which consists of the
elements which are divisible by each integer k = 1. For each prime number p, we
write M[p] = {xe M| px = 0}; we denote by t,(M) the subgroup which consists
of the elements x e M which satisfy p*x = 0 for an integer k = 1 and d,(M) the
subgroup which consists of the elements which are divisible by each integer
k which is not divisible by p.

For each prime number p and for each integer k, we consider the following
invariants, according to the notations of [2]:

Tf (p; M) = inf dim (p"M/p"* ! M) if finite, co otherwise;

heN
D(p; M) = inf dim ((p"M)[p)) if finite, oo otherwise;

heN

U(p, k; M) = dim ((p* M)[p))/((p** ! M)[p))) if finite, co otherwise.

For each prime number p, dim (p* M/p** ! M) and dim ((p* M)[ p]) are monotoni-
cally decreasing functions of h. The invariants Tf (p; M), D(p; M) and U (p, k; M)
are first-order definable.

Now, we investigate the abelian groups M which satisfy the following prop-
erty:

(P) For each subgroup S of M and for each prime number p, S/pS is finite.
This condition is equivalent to saying that the torsion-free rank ro(M) and all the
p-torsion ranks r,(M) are finite, or equivalently, that the injective hull of M has
only finitely many copies of Q and of Z(p®) for each prime number p (the
torsion-free rank and the p-torsion ranks are defined in [3, § 16]; the injective hull
is defined in [3,§24]). Finite direct products, subgroups and homomorphic
images of abelian groups which satisfy (P) also satisfy (P).

If M satisfies (P), then, for each subgroup S of M and for each integer n = 1,
§/nS is finite. The invariants Tf(p; M), D(p;M) and U (p, k; M) are finite, as well as
dim(M[p]) = D(p; M) + + U(p, k; M). The subgroup d(M) is divisible: for each

keN
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x €d(M) and for each integer n 2 1, there are finitely many elements ye M such
that ny = x; as x is divisible by nk! for each integer k, one of these elements is
divisible by k! for infinitely many integers k and therefore belongs to d(M). We
can show in a similar way that nd (M) = d (M) for each prime number p and for
each integer n which is not divisible by p. The divisible torsion-free group
d(M)/(d(M) n t(M)) is isomorphic to the additive structure of a vector space over
Q. We denote by Q(M) the finite dimension of this vector space. The invariant
Q is not first-order definable.

We consider the following relation between abelian groups which satisfy (P):

(R) A and B are elementarily equivalent and satisfy Q(4) = Q(B).
It follows from [2, Theorem 2.2 and Theorem 2.6] that 4 and B satisfy (R) if and
only if they satisfy Q(A4) = Q(B), Tf(p; A) = Tf(p; B), D(p; A) = D(p; B) and
U(p. k; A) = U(p, k; B) for each prime number p and for each integer ke N.

Now, we state the main theorem:

THEOREM. Let A,B be abelian groups such that, for each prime number p and for
each subgroup S of A (respectively B), S/pS is finite. Let us suppose that A and B are
elementarily equivalent and that the divisible torsion-free groups d(A)/(d(A) N t(A))
and d(B)/(d(B) n t(B)) have the same dimension over Q. If G and H are groups such
that A x G and B x H are isomorphic, then G and H are elementarily equivalent.

REMARK 1. We do not suppose that G and H are abelian.

REMARK 2. We must suppose that 4 and B satisfy (R) and not only that they
are elementarily equivalent. For instance, A = Qand B = Q x Q are elementar-
ily equivalent by [2, Theorem 2.6] and do not satisfy Q(A4) = Q(B); we have
AxG=BxHfor G=Q and H = {1}, but G and H are not elementarily
equivalent.

ExampLE 1. In[6], B. Jonsson gives an example of a sdbgroup A of Qand two
nonisomorphic subgroups G, H of Q% such that 4 x G =~ A x H.

ExaMPLE 2. If G and H are abelian groups, then Z x G = Z x H implies
G =~ H. On the other hand, [5] gives some examples of nonisomorphic finitely
generated nilpotent groups G, H which satisfy Z x G @ Z x H. By [7],if G and
H are groups such that Z x G = Z x H, then G and H are elementarily equival-
ent. This result is generalized by the theorem above.

EXAMPLE 3. If M is a homomorphic image of a subgroup of Q" for an integer
ne N, then M satisfies (P). In order to prove this result, it suffices to show that
Q satisfies (P). As a matter of fact, for each subgroup S of Q and for each prime
number p, we have |S/pS| £ p since any finitely generated subgroup of § is
generated by one element. ‘

So, the theorem above can be applied for A, B homomorphic images of
subgroups of Q". In particular, it generalizes [4].



8 FRANCIS OGER

ExaMPLE 4. The abelian group M = @ Z(p)? is not a homomorphic image
pprime

of a subgroup of Q" for an integer ne N. Anyhow, M satisfies (P) since we have
S= @ (SnZ(py)for each subgroup S of M.

pprime

Proof of the theorem.

If I(M) is any of the invariants U(p, k; M), Tf(p; M), D(p; M) and Q(M) defined
above, then we have I(M x N) = I(M) + I(N) for any abelian groups M, N
which satisfy (P). Moreover, I(A4) and I(B) are finite since 4 and B satisfy (P) and
we have I(4) = I(B) since A and B satisfy (R). If G and H are abelian and satisfy
(P),itfollows that I(G) = I(M) — I(A) = I(M) — I(B) = I(H). So, G and H satisfy
(R) if they satisfy (P). This particular case of the theorem will be used in the proof
of lemma 1 below.

We shall prove the following result, which is clearly equivalent to our theorem:

If M is a group, if 4,B,G,H are subgroups of M, if A and B are abelian and
satisfy (P) and (R),if M = {4,G) =(B,H) andif AnG=[4,G] =BnH=
[B,H] = {1}, then G and H are elementarily equivalent.

We write S = {4, B); in S, A is a supplementary of S n G and B is a supple-
mentary of S N H; however, we must not suppose that S~ G and S~ H have
a common supplementary in S, or that S n G n H has supplementaries in SN G
and S N H,or,even, that S N G N H is a pure subgroup of S; on the other hand, we
have the following result:

LEMMA 1. SN G and S n H satisfy (P) and (R); moreover, (S N G)/(S n G n H)
and (S n H)/(S n G N H) satisfy (P) and (R).

ProoF. The groups S N G and S n H satisfy (P) since they are respectively
isomorphic to B/(A n B) and A/(A n B). The groups (S n G)/(S ~ G~ H) and
(S n H)/(S n G N H) also satisfy (P) since they are images of SN G and SN H
respectively.

The groups S N G and S N H satisfy (R) since their supplementaries A, B satisfy
(R). Let us consider T =<{SN G,Sn H); T n Aand T N Bsatisfy (R) since, in T,
T n A is a supplementary of S " G and T n B is a supplementary of S N H. The
groups (S N G)/(S n G H) and (S n H)/(S N G n H) satisfy (R) since they are
respectively isomorphicto TSN H)~ TnBand TSN G) = Tn A.

We are going to prove that, for each countably incomplete ultrafilter U, we
have GY = HY; G and H will be elementarily equivalent according to [1, Corol-
lary 4.1.10].

By [1, Theorem 6.1.1], if U is a countably incomplete ultrafilter and if K is
a structure associated with a countable language, then KV is w,-saturated. In
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particular, if K is an abelian group which satisfies (P), it follows from [2, Theorem
1.11] that we have the following decomposition of KY:

(D) KV~ [ l‘[ <2‘£l(p:l() @( ® Z(pn)Uw,n—l:K)))] @( ® Z(poo)D(p;K)) @ Q®
pprime nz1 pprime
with 6 = 0 if K is finite and § = w, if K is infinite. As a matter of fact, if K is
infinite, we have 6 = |KY| = |NY|.
In order to prove the last point, we consider, for each countably incomplete
ultrafilter U over a set I, a sequence (A4,),.n Of pairwise disjoint subsets of I which
do not belong to U and such that ( ) 4, = I. As K isa group of unbounded order,

neN

there exists, for each integer n > 1, an element x, € K such that kx, % O for each
ke{l,...,(n!)3}. Wedefine an injection from [0, 1[ = R to d(KY)/(d(KY) n t(KY))
as follows: For each ue[0, 1[, we consider the sequence of integers (u,),.n such
thatu, < n'u < u, + 1 for each integer n, and the element y(u) e GY which admits
the system of representatives (y;(u));; in G' with y;(u) = u, n! x, for eachne N and
eachie A,; the element y(u)is divisible in KU since, for each integer n, the elements

yi(w) for ie | ) A, are divisible by n!. For any elements u % v in [0, 1[, we have
mzn

n! (yi(u) — yi(v)) £ 0 for each integer n such that n! |u — v| =2 1 and for each
ie | ) A,;itfollows that y(u) — y(v) does not belong to t(KY). Consequently, we

have |d(KY)/(d(KY) N t(KY))| = 22, which implies 6 = 2, and therefore 6 = |KY|
since KV satisfies (D) with

[ I (ZI“W") @< ® Z‘(pn)uu:.n—l;x)))] @< ® Z(peo)b(pzx))
pprime n21 pprime

It follows that, if U is a countably incomplete ultrafilter and if K, L are abelian
groups which satisfy (P) and (R), then KV and IV are isomorphic.

2%

It suffices to show that GV N (4Y, B> and HY n (A", BU) have a common
supplementary R in {A4Y, BV); then, R is also a supplementary of GV and HY in
MV and we have GY =~ MY/R = H".

Wewrite S’ = SY=(A4Y,BY),4'= A"Y,B' =BY,G' =(GnS)’ =G"n(4Y,BY)
andH = (Hn SV = HYn (A", BY)>. In §', A’ is a supplementary of G’ and B' is
a supplementary of H'. According to lemma 1 and the definition of U, A’ is
isomorphic to B’, G’ is isomorphic to H' and G'/(G' n H’') is isomorphic to
H'/(G' n H'). We must show that G’ and H’ have a common supplementary in §'.

From now on, we only have to consider subgroups of the abelian group §'. So,
we use the additive notation instead of the multiplicative notation. We write
S, =td(S") = t(S)nd(S')and S, = d(S’); wedefine similarly A,, 4,in 4', B, B,
in B, G,,G,in G’ and H,, H, in H'.
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We have d(S') n A’ = d(A’) since A’ has a supplementary in §'. Clearly, we also
have t(S') N A" = t(A’). It follows that we have S, " 4’ = A, and S, N A" = A,.
Similar equalities hold for B', G' and H'.

According to [3, Theorem 21.2], S, has a supplementary in S, and S, has
asupplementary in §’. In the three following sections, we are going to show that:

1) G, and H, have a common supplementary in S ;
2) {G,,8,>/S, and {H,,S,)/S; have a common supplementary in S,/S;;
3) <G, S,)/S, and (H', S,)/S, have a common supplementary in S'/S,.

This result implies that G' and H' have a common supplementary in S’
according to the following lemma:

LEMMA 2. Let S be a group, let G, H be subgroups of S and let M be a subgroup of
S which has a supplementary in S. If G n M and H n M have a common supplement-
aryin M and if {G,M)/M and (H, M )/M have a common supplementary in S/M,
then G and H have a common supplementary in S.

PROOFOF LEMMA 2. Let N be a supplementary of M in S, let A be a supplement-
ary of G M and H n M in M and let B be a supplementary of (G, M)/M and
(H,M)/M in S/M; let us denote by C the subgroup of N which consists of the
representatives of elements of Bin N.

As the subgroup A is a supplementary of G » M in M, it is also a supplement-
ary of Gin (G, M). Moreover, Cis a supplementary of (G, M) in S. So, {4,C) is
asupplementary of Gin S. We prove in a similar way that {4, C) is a supplement-
ary of Hin S.

Gy and Hy have a common supplementary in S;.

We see from the decomposition (D) that S, is isomorphicto @ Z(p®)P#S.
pprime
So, G, and H, have a common supplementary in §; according to the second of

the two following lemmas:

LEMMA 3. Let K be a field, let S be a vector space over K and let G, H be two
subspaces of S. If G/(G n H) and H/(G n H) are isomorphic, and in particular if
G and H have the same finite dimension over K, then G and H have a common
supplementary in S.

PRrROOF. Let M and N be supplementaries of G N H in G and H respectively; let
f be an isomorphism from M to N. Then 4 = {x + f(x)|xe M} is a common
supplementary of G and Hin G + H. If Bis a supplementary of G + H in S, then
A + Bis a common supplementary of G and H in S.

LEMMA 4. Let S be a torsion group such that, for each prime number p,
{x€eS|px = 0} is finite. Let G,H be isomorphic subgroups of S which have supple-
mentaries in S. Then G and H have a common supplementary in S.
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ProOF. We have S= @ t,5), G= @ t,G), H= @ t,(H) and, for
each prime number p, t,(§;r\ G =1,(G) ar:c‘l, t,(S)nH = t,,(l;-;). So, it suffices to
show that, for each prime number p, t,(G) and t,(H), which are isomorphic and
have supplementaries in t,(S), have a common supplementary in t,(S). Conse-
quently, we can suppose for the remainder of the proof that S is a p-torsion group
for a prime number p.

For each integer i, we write S(i) = {xe p'S|px = 0}, G(i) = {xep'G|px = 0}
and H(i) = {xe p'H| px = 0}; we have S(i) » G = G(i) and S(i) n H = H(i) since
G and H have supplementaries in S. We have S(j) = S(i) for any integers i < j. As
S(0) = {x€S|px = 0} is finite, there exists an integer n such that S(n) = () S().

ieN

G(n) and H(n) are isomorphic since G and H are isomorphic. So, according to
lemma 3, G(n) and H(n) have a common supplementary in S(n). We consider
a basis B of this supplementary. We define by induction on k = 1 a set B(k) which
consists of elements of S which are divisible by p’ for each integer i 2 1 as follows:
we write B(1) = B; for each integer k = 1 and for each x € B(k), there are finitely
many elements yeS such that py = x; one of these elements is necessarily
divisible by p' for each integer i = 1 since x is divisible by p* for each integeri = 1;
we define B(k + 1) from B(k) by choosing for each x € B(k) an element y € S which
is divisible by p’ for each integer i = 1 and satisfies py = x.

For each integer ie {1,...,n}, G(i — 1)/G(i) and H(i — 1)/H(i) are isomorphic
since G and H are isomorphic. So, according to lemma 3, G(i — 1)/G(i) and
H(i — 1)/H(i) have a common supplementary in S(i — 1)/S(i). We denote by C(i)
a system of representatives in S(i — 1) of the elements of a basis of this supple-
mentary. We choose for each x e C(i) an element y € S such that p' ~!y = x and we
denote by D(i) the set which consists of these elements y.

We are going to prove that the subgroup K of S which is generated by

( U B(k)) v < U D(i)) is a supplementary of G and H in S. As a matter of fact,
k>1 1<isn

we shall only give the proof for G, because the other proof is similar.
It follows from the definition of K that, for each integer ie N, K(i) =

{xep'K|px = 0} is a supplementary of G(i) in S(i) generated by B U (U C(i)).
j>i

We show by induction oni > 1 that K; = {xe K| p'x = 0} is a supplementary
of G;={xeG|p'x =0} in S; = {xeS|p'x = 0}. This result is clear for i =1
since we have K, = K(0), G, = G(0) and H, = H(0). Now, we suppose that it is
true for some integer i = 1 and we prove that it is also true for i + 1. For each
X€8;.1,as p'xis an element of S(i) = {G(i), K(i)), there are two elements ye G; , ,
and zeK;,, such that p'x = p'y + p'z. The element u = x — (y + z), which
satisfies p'u = 0, belongs to S; = {G;, K;> and x belongs to {G;,,K;+,>. For
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eachxeG;,; N K;,,,asp'xbelongsto G; n K; = G(0) n K(0), we have p'x = 0
and x belongs to G; N K; = {0}.

{G,,8,)/S; and {H,,S,)/S have a common supplementary in S,/S.
We see from the decomposition (D) that S, is isomorphic to

( @® Z(p°°)"“’;s’>@0“” with 6 = 0 if S is finite and 6 = |KY| = |NY| if S is
pprime
infinite. So, S,/S, isisomorphic to the additive structure of a vector space over Q.

The subgroups <{G,, S,)/S, and {(H,,S,)/S, are subspaces of S,/S; since they
have supplementaries. So, (G,,S,>/S, n {H,,S,)/S, isalso a subspace of S,/S;.
According to lemma 3, in order to prove that {G,,S,)/S; and <{H,,S,)/S;
have a common supplementary in S,/S,, it suffices to show that the groups
(G2, 81/81)G2,81>/81 n{H3,8,)/S,) and
(KH3,81)/81)/({G,,8:>/S; n{H,,S,)/S,) are isomorphic. As a matter of fact,
we are going to prove that these groups are respectively isomorphic to
d(G'(G' n H))/t(d(G'/(G' n H"))) and d(H'/(G' n H"))/t(d(H'/(G" n H"))), which
implies that they are isomorphic since G'/(G' n H') and H'/(G' n H') are isomor-
phic.
We prove this result only for ((G,,S;>/S,)/({G,,S1)/S; n {(H,,8;)/S,) since
the proof for ((H,,S,>/8,)/({G2,8,)/S; n {H,,S:)/S,) is similar. We have

(G2, 81>/8S)/KG2,81>/81 N {H3,8,>/81) = (G2, 81)/G2,81) N {H3,8:))
= {{G3,81),{H3,81))/<{H,, 81> = {G3,{H3,8,)>/{H;,8;)
= G2/(G; N <{H3,81)) = d(G)/(d(G') N {d(H'), t(d(S")))).

We denote by f the canonical surjection from G’ to G'/(G' n H') and we show that
f induces an isomorphism from d(G’)/(d(G') n <d(H'), t(d(S")))) to
d(G'/(G' " H'))/t(d(G’'(G" ~ H"))).

First, we prove that f(d(G')) =d(G'/(G'nH')). If w is an element of
d(G'/(G’' n H')) and if x is a representative of w in G, then, for each integern = 1,
there are two elements y, ze G’ such that nz = yand x — ye G’ n H'. So, the set
which consists of the formulas ¢,(u) = (x — ue G’ » H') A (Av)(u = nv)for ne N*
is consistent, and therefore satisfied, in the w,-saturated structure (G',G' n H') =
(GNnS,GNnHANS)V. If ye G satisfies ¢, for each ne N*, then we have yed(G')
and f(y) = w.

Now, it suffices to prove that

d(G) n f (GG n H) = d(G') n d(H'), t(d(S))).

We observe that f(d(G’) n <d(H’),t(d(S’)))) is contained in t(d(G'/(G' ~ H')))
since, for each x e (d(H'), t(d(S'))), there exists an integer k = 1 such that kx
belongs to d(H’), which implies kf(x) = f(kx) = 0.
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Then, we show that an element xed(G’) such that f(x)et(d(G'/(G' n H')))
necessarily belongs to (d(H'),t(d(S"))). If k = 1 is an integer such that kf(x) = 0,
then kx belongs to G'» H'. As x is divisible in G', kx is divisible in §’, and
therefore divisible in H' since H' has a supplementary in §’. In H’, there are only
finitely many elements y which satisfy ky = kx, and one of these elements is
necessarily divisible. So, there exists an element y ed(H') such that kx = ky. The
element x — y, which satisfies k(x — y) = 0, belongs to t(d(S’)) since x and
y respectively belong to d(G’) and d(H’).

{G',8,>/S, and (H',S,)/S, have a common supplementary in S'/S,.

According to (D) we have §'/S, =~ [] <2;“”‘S’ @ ( @ Z(pnveer- “S’>>, and

pprime nz1

therefore S'/S, = [] d,(S'/S,); this property is also true for G'/G,, H'/H,,
A'/A, and B'/B,. Ii\[;loreover, we have d,(5'/S,;) N (G'/G;) = d,(G'/G.) for each
prime number p since G'/G, has a supplementary in S'/S,; similar equalities hold
for H'/H,, A’/A, and B'/B,. So, in order to prove that G'/G, and H'/H, have
acommon supplementaryin §'/S,, it suffices to show that, for each prime number
p, d,(G'/G,) and d,(H'/H,), which respectively are supplementaries of d,(A’/A4;)
and d,(B'/B,) in d,(S'/S,), have a common supplementary in d,(S'/S,).

For each prime number p, t(d,(S'/S.)) has a supplementary ind,(S'/S ;) accord-
ing to (D). Moreover, we have t(d,(S'/S,)) N d,(G'/G,) = t(d,(G'/G,)) and similar
equalities hold for H'/H,, A'/A, and B'/B,. So, by lemma 2, in order to prove that
d,(G'/G;)and d,(H'/H,) have a common supplementary in d,(S'/S ), it suffices to
show that:

1) t(d,(G'/G,)) and t(d,(H'/H,)) have a common supplementary in t(d,(S'/S,));

2) d,(G'/G,)/t(d,(G'/G,)) and d,(H'/H,)/t(d,(H'/H,)) have a common supple-
mentary in d,(S'/S;)/t(d,(S'/S>)).

As G’ and H' are isomorphic, t(d,(G'/G,)) and t(d,(H'/H,)) are isomorphic.

Moreover, t(d,(5'/S;) = ® Z(p")V®"~ S is a finite p-torsion group since
nz1

Y. U(p,n — 1;8) is finite. So, 1) follows from lemma 4.

n21

We have d,(S'/S,)/t(d,(S'/S2)) = 2;“";5’. The subgroups d,(G'/G,)/t(d(G'/G,))
and d,(H'/H,)/t(d,(H'/H;)) are closed for the p-adic topology since they have
supplementaries in d,(S'/S,)/t(d,(S'/S)). They are isomorphic since G’ and H' are
isomorphic. So, 2) is a consequence of the following lemma:

LEMMA 5. Let S be a free 2,-module of finite dimension and let G,H be two
isomorphic submodules which have supplementaries in S. Then G and H have
a common supplementary in S.
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PROOF. 2, is a principal ideal domain. The invertible elements of 2, are the
elements which are not divisible by p. The ideals of 2,, are the subgroups p* 2, for
keN*.

According to lemma 3, G/pG and H/pH have a common supplementary M in
S/pS. We consider a basis {x,...,x,} of M and, for eachie {1,...,m}, a repre-
sentative y; of x; in S. We denote by N the submodule of S which is generated by
{y1,...,Ym}. We are going to prove that N is a supplementary of G in S. We can
show in a similar way that N is a supplementary of H.

In order to prove that NnG={0}, we consider an element
y=a;y; +... + Gpnym With a,...,a,€Z,, which belongs to G, we denote by
k the largest integer such that ay,.. . ., a,, belong to p*2, and we write a; = p*b; for
eachie{l,...,m}. As the element y = p* (b,y, + ... + b,,y,,) belongs to G, the
element b,y, + ... + b,y also belongs to G, whence a contradiction since at
least one of the elements b,,...,b, does not belong to p 2,,,

In order to prove that S is generated by G and N, it suffices to show that S is
generated by G, N and p*S for each integer k = 1. We consider the smallest
integer k 2 1 such that S is not generated by G, N and p*S. For each ye S, there
exist elementsue G,ve Nand ze Ssuch that y = u + v + p*~!z;according to the
definition of N there are also elements w'e€G, v eN and z'eS such that
z=u +v + pz; it follows that y = (u + p* ') + (v + p* "' v') + p*z’ with
u+p- 'ueGand v+ p* v’ eN, contrary to the definition of k.
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