MATH. SCAND. 66 (1990), 307-319

LEADING TERMS IN THE HEAT INVARIANTS
FOR THE LAPLACIANS OF THE DE RHAM,
SIGNATURE, AND SPIN COMPLEXES

THOMAS P. BRANSON, PETER B. GILKEY and BENT @RSTED

Abstract.

Let D be a vector bundle-valued differential operator with positive definite leading symbol on
a compact, Riemannian manifold. Asymptotic expansions of the kernel function and L? trace of the
heat operator e™'P, t > 0, naturally lead to sequences of homogeneous local and global scalar
invariants a,(x, D), a,(D) = j a,(x, D),ne N. Within each homogeneity class of local invariants, there is
a filtration by degree; the lowest-degree terms in a,(x,D) are linear, those in a,(D) quadratic.
Information about such leading terms has been crucial in the work of Osgood, Phillips, and Sarnak, of
Brooks, Chang, Perry, and Yang, and of Melrose on compactness problems for isospectral sets of
metrics and domains, modulo gauge equivalence, in dimensions two and three. We specialize our
earlier general results to give the leading terms in the heat invariants produced by the Laplacians of
the de Rham, signature, and spin complexes. A main technical point is a calculation of fiber traces of
quadratic expressions built from iterated covariant derivatives of the Weitzenbock operator.

1. Introduction.

Let (M, g) be a compact, m-dimensional Riemannian manifold without bound-
ary. Let R, p, and t be the Riemann, Ricci, and scalar curvatures, normalized so
that on the standard sphere, p = (m — 1)g and © = m(m — 1). Let (V,V) be
a vector bundle with connection, of fiber dimension y, and let By v, = — V'V, be
the Bochner Laplacian. Here and below, all indices are raised and lowered using
the metric tensor and its inverse g~ ! = (g%), and we sum over repeated indices.
We shall sometimes suppress the dependence of the Bochner Laplacian on V, or
on (¥, V), and just write B, or B. We denote by Q = (£;;) the curvature two-form
of V.

Let D be a differential operator of the form B — &, where & is a C* section of
End V. The heat operator e~*°, t > 0 is of trace class and has smooth kernel
H(t, x, y). The diagonal values of H admit an asymptotic expansion
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(1.1) H(t,x,x) ~ (4nt)"™2 Y e,(x,D)t", |0,
n=0

where the e,(x, D) are local endomorphism-valued invariants of D. The e,(x, D)
are built universally and polynomially from g and its inverse g~ ! = (g"), and
from covariant derivatives of R, 2, and & using only tensor product and contrac-
tion; see [9, Sec. 1] and [10, § 1] for details. Covariant differentiation of tensor
quantities is effected using the Levi-Civita connection. The factor (4n)~™?2 is
chosen so that eq(x, D) will be the identity endomorphism on V.

As a consequence of (1.1), the fiber and L? traces of the heat kernel admit
asymptotic expansions

tracey _H(t, x,x) ~ (4nt)™™2 Y a,(x, D)t",
n=0

Trpze™? = IH(t, X, X) ~ (4nt)™™2 Y a,(D)", t]0,
n=0
M

where
a,(x, D) = tracey _e,(x,D), a,(D)= j a,(x, D).
M

In particular, the a,(D) are spectral invariants of D.

Of course, similar things can be said of a much larger class of elliptic differential
or pseudo-differential operators, but there is a particularly nice invariant theory
for operators of the form B — &. By [9, Sec. 1], there exist polynomial express-
ions for the e,(x,D) and a,(x,D) in the ingredients listed above which are
independent of all data: M, g, V, &, and in fact of m and u. (In the case of e,(x, D),
these are noncommutative polynomials.) These expressions are homogeneous:
let Q be a section of a vector bundle W which is an invariant monomial expression
in g, g~ !, and covariant derivatives of (R, Q, &), of degree (kg, ko, kg) in (R, 2, 6).
Suppose that ky explicit covariant derivatives appear in Q. For ne N, we say that
QeZ(W)if

Z(kx+kg+k5)+kv=N

Here of course, an occurrence of p or 7 is counted as an occurrence of R. We then
close Zy(W) under addition to make it a space of polynomials. The homogeneity
properties enjoyed by the heat invariants are

en(x’ D) € g2n(End V), an(x’ D) E?h(Ao)’
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where A° is the trivial scalar bundele. In general, we shall denote the p-form
bundle by AP.

There is a filtration of each #y(W) by degree. We say that a polynomial is in
Py, if it can be written as a sum of monomials with kg + kq + kg = ¢, or
equivalently, ky < N — 2¢. Py ,(W) consists of quadratic and higher-degree
polynomials, Zy 3(W) of cubic and higher, and so on. We have

?N=9N,l Q‘WN,ZQ"'Q'@N,[NIZI; yN,(=0,f>[N/2].

An expression which a priori appears only to be in, say, % ,, may actually be in
a more elite space like %_3; for example,
ViVig- Q,; =3[V, V116 - Q;; = 3[QV,6]- Qi€ Ps 3 (End V).

When m is even, characteristic classes like the Pfaffian, the Hirzebruch poly-
nomial (for oriented M), and the A-polynomial (for oriented M with spin
structure) live in the most elite class of m-homogeneous scalar polynomials, viz.
P m2(A°). In the case of the Hirzebruch and 4 polynomials, the orientation
enters the local invariant theory through Q. In general, all of the Zy(W) depend
implicitly on the original bundle Vthrough Q and &.

Within 2y(A°), one can form the class Dy = 6%y _ 1(A') of exact divergences;
these, of course, are the terms that universally integrate to zero. Here and below,
0 is the formal adjoint of the exterior derivative 4. Note that o
Py—1.4AY) = Py (A°). Dy is filtered by the Dy , = Dy N Py AA°), and if N is
even, 9y y;» = 0. Our interest here is in the linear terms of the local endomor-
phism-valued and scalar heat invariants, and in the quadratic terms of the
integrated scalar heat invariants; that is, the cosets

e,,(x, D) + ?Zn.Z (Eﬂd V)’ an(x7 D) + '@2".2(/10)9 an(xv D) + @2n + ?2'“3(/10).

By the Bianchi identities for R and Q, #,, (End V)/#,,, , (End V) is two-dimen-
sional, and is spanned by the classes of (A" 1)l and B4, & In particular,
Pon, 1(A°%) = Dy, | + Py, 2(A°). It was proved in [9, Theorem 4.1] that

(1.2) 7 te,(x, D) = moasy, y@nav) — 20(4" )1 — 420 + 1)B"'€ n2 1,
where here and below,

(=1
= en+ )

It was proved in [11] that

(1.3)¢;"1a,(x, D) = moa(@y, + 2y, sca0y tracey, {(n — n — 1|V* 2221 + 2|V""?p* 1
+4Q2n + 1)(n — YV~ 22 V" 728 4+ 22n + YV T2QT-VIT2Q,
+42n + 1)(2n — V" 28 V" 28}, n23;
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see also [3] for a more functional proof. In particular, c; *a,(D) is given, up to
cubic and higher-degree terms, by the integral of the expression on the right. If we
add the fiber traces of the terms on the right in (1.2) to the expression on the right
in (1.3), we can replace “mod 2,, + %, 3(4°%” with “mod 2,,, ; + 2, 3(4°)".
The quadratic terms in a,(x, D) are qualitatively different, involving the full
Riemann tensor R: by, e.g., [8, p. 610],

(1.4) 180e,(x,D) = —30(3Atl + B&) + 90(3t1 + &) + (IRI* — |p|»)] + 15Q7Q;;.

The main purpose of this paper is to survey the implications of formulas (1.2) and
(1.3) in the case of the differential form Laplacians, including the Laplacians of
the signature complex in the even-dimensional, oriented case. We also give the
corresponding leading terms for the Laplacians of the spin complex. Leading
term analysis differs from more traditional work on the heat invariants in that it
attempts to provide partial information on all of the heat invariants (calculate
“some of the terms all of the time”) rather than total information on the first few
invariants (“all of the terms some of the time”).

At one time, it was hoped that one could “hear” the geometry of a compact,
Riemannian manifold (M, g); that is, that the spectrum of the ordinary Laplacian
A on functions would completely determine the isometry type of (M, g). Numer-
ous counterexamples to this and weaker conjectures are now known. But
recently, attention has turned to conjectures asserting that 4-isospectral sets of
metrics, modulo gauge equivalence (diffeomorphism) should be small; more
precisely, that they should be compact in the C* topology. Osgood, Phillips, and
Sarnak [14] proved that this is the case in dimension m = 2; their proof uses the
leading terms in the heat invariants in a crucial way. The idea is to set up an
inductive scheme to get higher and higher Sobolev estimates on the metric. The
variation across conformal classes is controlled using the nonlocal functional
determinant; this also provides an initial Sobolev estimate. The higher estimates
are obtained using the fact that the integrated heat invariants are isospectral
invariants. At the nth stage, the leading (quadratic) term in a,(A) controls the
highest-order derivative; the remaining terms involve lower derivatives which
have been controlled at a previous stage.

In higher dimensions, the moduli space of conformal structures is not nearly so
well understood. However, working in dimension m = 3, Brooks, Chang, Perry,
and Yang [4-7] were able to show that an isospectral family of metrics contained
within a conformal class is compact modulo gauge equivalence. Their methods
also give a similar two-dimensional result without using the functional determi-
nant. Melrose [13] has extended the Osgood-Phillips-Sarnak methods to
boundary value problems.

There are, of course, many more natural operators D besides the scalar
Laplacian with the right ellipticity properties to produce heat invariants, and to
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make elementary sense of the isospectrality question. We hope that our calcula-
tion of the leading terms for the Laplacians of the classical (real) complexes will
eventually be of use in the study of isospectrality questions, and more broadly, in
the study of the topology and geometry of moduli spaces of metrics.

2. The Levi-Civita curvature and the Weitzenbick operator on differential forms.

Let 4, = dd + dd be the p-form Laplacian, and let 1; and & be interior and
exterior multiplication by elements of some local frame {X;} and dual coframe
{n'}. Let ue C*(AP). By the classical formulas

P
(d“)io...i, = Z,O(“ Vw5, Ou), i, = “Vjujiz...i,,

and the Ricci identity

2.1 [Vi,Vlu = —R;e'uu,

the Weitzenbdick operator is

2.2) —8,=4,— Byp = 4, — V*V = —R'} ey e,

Note that (2.1) is a formula for the curvature of the Levi-Civita connection on A?.
When applied in A2, (2.1) also serves to fix our convention on the placement of
indices in R. With this convention, p;; = R*ik,. It is clear from these formulas that
we shall have to compute with expressions ¢'1;. . . &1, of various lengths. By the
identity

(2.3) ue + ey = 6/,

all such expressions can be written in terms of the

(2.4 AN TR T

Because of the identities

2.5) e = —de, 1= —u1,

it is easy to take the fiber trace of (2.4):

(2.6) trace pe’ .80 ...y = (’; : :) 6;,...0
where

1if (j,...,j,) is an even permutation of (iy,...,i,),
0, ;7' = {1 —1if(jy,...,j,) is an odd permutation of (iy,..., i),
0 otherwise
={Xi, Ao AXi AL AT
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The binomial coefficients are set equal to zero if the entries are outside the usual
range:

<I:)=OifP¢{0""’N}'

If T is any 2r-tensor, we shall denote the operator
T'ljl:::lrjrgjl . s’rlir. ol

by T. Note that T is itself a tensor quantity; specifically, a C® section of
A? ® (AP)*, and is independent of any choice of frame.
3. Leading termsin the heat invariants for the Laplacians of the de Rham complex.

To calculate the linear terms in e,(x, 4,), we just need to calculate B"~'8,
modulo quadratic terms. For n = 1 there is nothing to do but put things in the
normal form (2.4):

—(g)p = pilslt,- + Rijklglsjlkli = ﬁ - R‘
Note that this gives

m-—2
3.1 —trace,rd, = <p 1 )r.

Now exterior and interior multiplication are natural operations of tensors on
tensors; that is, ¢ and 1 are parallel sections of AP*! ® (A?)*® TM and
AP~ 1 ® (AP)* ® T*M respectively. Thus

—B"18, = (= 1)(VY, ... V1V, Rifeuen, n2 L.

By the Bianchi identity R; s + Rijiajx + Rijaki = 0 and the curvature symmetry
Rijkl = Rkh‘j’
Rijkllaa = _Rijlal’m _ Rijaklla
o, , — Rija)™ + R
= o™ — ol — P+ P
where indices after the bar indicate covariant differentiations. By the contracted
Bianchi identity p;;' = 37, (2.3), and (2.5), this gives

R} ey = mody.,zzpkjuiﬁlaj'k'i — Pyae.
Thus
‘B"_lffp gmodo,,,,2(1=.muw)2(B"_ZVVP)N + (B"—1P)~, nz2.

In view of (1.2), we have proved:
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PROPOSITION 3.1.

Cy 'en(X, 4p) = mod 2, ,(End )
= 2n(4"" I + 42n + D{2(B""*VVp)~ +(B" 'p)~}, nz=2,
exx,4,) =% —p + R

In particular,

(3.2) ¢, 'a,(x,4,) gm‘,dgz”'zuo,{-—Zn (’:) +4(2n + 1)<:l B f)} A", on21.

Note that our formula for a,(x, 4,)is invariant under p - m — p,asitshould be
because of the Hodge * operator. Orientability is not an issue; the a,(x, 4,) are
locally determined, and one can always pick a local orientation to define *. In the
cases n = 1,2,(3.2) agrees with Patodi’s formula in [15, Proposition 2.1]. (Note
that Patodi uses the opposite sign convention for A4).

We now turn to the calculation of the quadratic terms. Since covariant
differentiation commutes with the fiber trace, (3.1) gives

m—2

—traceA5V”‘21-V"‘2¢£p=(p 1)|V"‘21:|2, nx2

Thus it remains only to compute the pure bundle curvature and Weitzenbdck
terms in (1.3). We shall suppress the dependence of the bundle curvature and
Weitzenbock operator on p and denote them just by 2 and — &. By the above
identities and the naturality of ¢ and 1,

trace ;o V"~ 2QY - V"7 2Q;; = (V"7 2RU)(V" T 2R%,;)) trace 42 1’1,
= — ('" - 2) IV""2R]%, nz2.
p—1
This is also invariant under p - m — p. Modulo higher-degree terms and diver-
gences, the Bianchi identity simplifies this expression when n 2 3:
B3)  IV'TIRP Zmea@y+ 20 paoy V202 = VP2, n 23,

(See [3, Remark 1.4].)

Finally, consider the pure Weitzenbock term. We shall first do the computa-
tion in the case n = 2, then indicate how things change for n 2 3. By (2.2), the
Curvature symmetries R;j; = Ruij = — Riju, (2.3), the possibility of commuting
Operators under the trace, and (2.6), we get

(3'4) tl‘ace,,56 ‘8 = R",,‘dRijkltrace,,:e‘icsbiaslikeii;

= - R“,,‘.,Rij",trace,,z lc8d8blaellk6‘ili
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= R",,‘,,R"j",trace,,y 18dla€b6'lkb‘il,'lc
= R“b‘.,R"j",traceA:* 1(6;‘ - l,,ed ﬁbel(ékj - eilk)lilc
= pyphitrace p+ &% 1. + R’ Mtrace 4o+ 1% 11,
x
ac i d.bl
+ R 4p'itrace 4p+26%"¢'1;1,1,
x

+ R% 4R} ytrace o+ 267 e/ 141,10,

. i(m—=2 . m—3 ;
= Pbpx(p _ I)Bci“ + prijkl<p _ 2>0cikb“

(m—=73 . (m—4 .
+ Rabcdpll < p— 1 )eacidbl + Rabcdejkl ( p— 2 )eacikdb“-

The first term on the right in (3.4) reduces to (’:: f)(—lpl2 + 72), and the

. . -2
second and third combine to make <r: 1)(2 |p|> — 12). By the curvature
symmetries above and the Bianchi identity R;j; + Ruyj + Ruj = 0, the fourth
—4
term reduces to (':_ 2)(—4|p|2 + 172 4+ |R|?). The total is

(3.5)  trace,sé & = (': i 12) ol + (:::;)(—-Mplz + 12 + |RP).

To calculate trace,»V"~2&-V"~2& for n 2 3, we just need to place a V"~ %in
front of each curvature quantity in the above calculation; this gives us an
analogue of (3.5). Weakening the equality to congruence modulo
Dy + Pan, 3(A°) results in a considerable simplification via (3.3):

m-—2

trace,,zV""z(S"V"‘zé" ;mod(92"+92n'3(,10»(p _ I)IV"—ZPIZ, n 2. 3.

Substituting into (1.3) and (1.4), we have:

PROPOSITION 3.2.
- 1 ~
Cn ' An(X, Ap) = mod(@,+ 30, 3(4%)

-l o

+2(™ v aan+ nen-3(™ " A\ wr2pp, nzs,
p p—1
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ISOaz(x, Ap) = mod 2,
S{m m—2 m—4
{5(11) B 30(p ~ 1) * 90(1’ - 2)}12
m m-—2 m-—4
. - 90 — 360 2
(36) +{ (p)+ (p—l) (p—2)}lpl
+ {("’) - 15("’ - 2) i 90('" - 4)}IRI2.
p p—1 p—2

In particular, the a,(4,) for n = 2 are given by the integrals of the expressions on
the right (times c, and 180 respectively), modulo cubic and higher-degree terms.

REMARK 3.3. In addition to checking invariance under p - m — p, which we
have immediately because all our coefficients are linear combinations of the
-2

<"; rr) , we can check Propositions 3.1 and 3.2 against the local
Chern-Gauss-Bonnet, or “Fantastic Cancellation” Theorem [16], [10, Theorem
2.4.8]. This asserts that

n =0, m> 2n,

Y (= DPay(x,4,) = @n)"*Pff, m = 2n,

p=0 €D,,, m < 2n,

where in even dimensions m, Pffe &, ,,/,(A°) is the Pfafffian. The consequence for
the linear terms is that

1 é n é m/2 = Z ('_ l)pan(x’ Ap) ;monZ,‘_z(Ao)
p=0

T, m=2 n=1,
0 otherwise.
For the quadratic terms, we must have
m 1.2 2 1 2 —_
2 —2|pl* + 3R>, m=4, n=2,
nz2= —1)Pa,(x,4,) = 2 .
,,;o( Vn(3% A5) = mod 3+ 230,24 0 otherwise,

where we have substituted the formulas for the Pfaffians in dimensions two and

four. But since
i oy m—2r _ 1, m=2r,
p;)( D ( p—r 0 otherwise,
these are exactly the results we get from (3.2) and Proposition 3.2. We can also
check (3.6) against [15, Proposition 2.1]. Note that 9, is just R4.
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4. Leading terms in the heat invariants for the Laplacians of the signature
complex.

Consider now the more specialized category of compact, oriented Riemannian
manifolds. The Hodge *-operator on p-forms has ** = (—1)P™~P) 50 one can
split the bundles A” @ A™?(p + m/2) and A™? (meven) into =+ 1 eigenbundles of
v= (\/——1)"""””’*, called (A7 @ A™?), and A™>. When med4Z*, A" are the
bundles of self-dual and anti-self-dual middle-forms. The splittings determined
by vare equivariant for the structure group SO (m), and since A? = o, A™ Pisan
irreducible SO(m)-bundle for m % 2p, we must have (47 @ A™ " P); =gsomA* in
this case. Since the bundle curvatures and Weitzenbock operators can be written
purely in terms of R and the representations to which the A” are associated, the
heat invariants of the form Laplacians depend only on the SO (m)-isometry types
of the bundles involves. Thus the operator (4, ® 4,,-,);: on (47D A™7%),
produces the same heat invariants as the operator 4, on A” when m # 2p.

The situation is potentially more interesting in the middle order for even m,
where the local form of the Hirzebruch Signature Theorem [10, Theorem 3.1.1]
says that

=0,m>2norme2(2N + 1),
an(x’(Am/2)+) - an(xy(Am/Z)—) { = (47':)"'/2Lm, m= 2n64z+’
€ 9,, otherwise.

Here L,, € #,, 2(A°) is the Hirzebruch polynomial. This implies that the quad-
ratic, non-divergence terms in a,(x, D) will be evenly split between a,(x, 4,/2)+)
and a,(x,(4.2)-) unless m = 4, where we have a formula for the Hirzebruch
polynomial:

= 1 2 2
L= g7 (C.P = IC-P),

where C, are the self-dual and anti-self-dual parts of the Weyl conformal
curvature tensor C. Combining this information with Propositions 3.1 and 3.2,
we can conclude:

PROPOSITION 4.1. If m & 2p, then
an(x9 (Ap @ Am - p) :t) = an(x’ Ap);

in particular, the leading terms are as given in (3.2) and Proposition 3.2. If
me2(2N + 1) or 2n <medZ*,

an(X, (Amy2) £) = 30n(X, Apmy2);

in particular, the leading terms are half those given in (3.2) and Proposition 3.2. If
m=4,

(4.1)120a,(x, (4;)+) = 847 + 15t — 62|p|* + 22|R? + 20(C . |* — |C_]?).
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The proposition does not give the linear terms in the case 2n > m = 2pedZ™.
The expression on the right in (4.1) is given in terms of six local scalar invariants,
only five of which are linearly independent. (4.1) is most intelligible when written
in terms of the representatives t, b = p — 1g/4, C,, and C_ of the four
SO(4)-irreducible summands of the bundle of curvature tensors in dimension
four. One easily computes that |p|* = |b|?> + 412, |R|> = |C|* + 2|b|?> + i12, s0
that

720a,(x, (42)+) = 4841 + 1912 — 108|b|2 + 252|C, |2 + 12|C5[2, m=4.

5. Leading terms in the heat invariants for the Laplacians of the spin complex.

We now specialize further to the category of compact, oriented Riemannian
manifolds with a spin structure. Let  be the full spinor bundle of fiber dimension
p = 2"21 If mis even, there is a Spin(m)-equivalent splitting £ = £, @ Z_ into
bundles of positive and negative spinors. These are the + 1 eigenbundles of the
bundle map & = (\/——l)""""'”/zy1 ...7™ where y is the fundamental section of
TM ® End Z (or spinrepresentation), normalized so that y'y/ + iy’ = —2g" and
the local indices are taken in an orthonormal frame, and in an order consistent
with the orientation. X carries a natural connection V, determined by the
condition that Vy = 0. The Dirac operator P = 'V, carries C*(Z) to itself, and
carries C*(X ;) to C®(Z ;) for even m. We denote by P, the restriction of P to
C2(Z.).

With our normalizations, the curvature operator of X is

Qij = "%Rkuﬂ’k}’l,

by,e.g., [12,1.2.7]. Tha analogue of the Weitzenbock formula in this setting is the
Lichnerowicz formula, which says that P? = V*V + t/4 = B; v, + 7/4. By [2,
pPp. 98, 99] and analogous calculations with V"~ operating on each curvature
quantity,

trace; V" ~2QY- V" "2Q,; = — %lV""RIZ, nz2.
These considerations, (3.3), and (1.4) immediately give us the leading terms in the

heat invariants for P2:

PropoSsITION 5.1.
- ~ -1
Cn len(x’ Pz) =mod92,.,z(End£)(An T)I’ n g 1a

¢y 1272, (x, P?) = poa sy, ,und" TN 2 1,
-1~ - - =212
Cn 2 mlnan(xs Pz) gmod(gzn*'!?zn,a(/io))%n IV" 2Tl2 - (2n - I)IV" pl , h2 3’

180-23~m2lg (x, P?) = 1247 + 5t% — 8|p|> — TIRI%.
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When m is even, the local form of the index theorem for the spin complex [10,
Theorem 3.4.4] says that

=0,m> 2n,
a,(x,P_P,) — a,(x,P,P_) = (4n)"?4,,m = 2n,
€ 9,, otherwise.

Here 4,,€ P, m2(A%) is the A-polynomial. This implies that all leading terms are
evenly split between positive and negative spinors except when m = 4, where, by
e.g. [1,6.72], A, = L,/16:

PROPOSITION 5.2. Suppose that m is even. Then
¢, ten(x, Ps Py) gmodgz,.‘z(EndZt)(A"_11)12‘1’ nzl

The leading terms in a,(x, P; P.) are half those given in Proposition 5.1 unless
m = 4 and n = 2. In this case,

1440a,(x, Pz P.) = 244t + 1012 — 16|p|*> — 14|R|* £ 15(C . |* — |C_-]?)
=244t + 112 — 44b)* + |C4|* — 29|C+|%
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