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DISTRIBUTION DIFFERENTIAL EQUATIONS.
REGULARIZATION AND BENDING OF A ROD

JAN PERSSON

1. Introduction.

In this note we extend the results of Persson [6], [7], on the Cauchy problem
for linear distribution differential equations. Our new existence and uniqueness
theorem, Theorem 1.8 below, shows that the earlier distinction between equa-
tions of odd and even order has been artificial. Furthermore some new cases with
lower regularity of the right member are included. However we only treat cases
where at least the solutions themselves are pointwise defined. If the coefficients of
alinear meaure differential equation are regularized one sometimes finds that the
limit of the solutions of the regularized problem is a solution of the unregularized
problem as in Persson [4]. This is not always the case Persson [6]. However
Theorem 1.9 below shows that if there is no point mass in the coefficient before
u”"~Y no anomaly appears. We also treat a boundary value problem for a dis-
tribution differential equation which is not a measure differential equation. This
corresponds to the bending of a clamped rod with point moments acting at the
rod.

Just to keep the note self-contained we repeat the definitions and propositions
of [7].

DEFINITION 1.1: If g is a complex Borel measure on R then g is said to be in 2°.
Ifgis a complex valued Borel measurable function on R then g is said to be in #°.
We agree that two function in #° are different if they are different at at least one
point. Let D be distribution differentiation and let D~ 'g denote a primitive
distribution of g € 2'(R). If D’g e #° for some integer j then g is said to be in 2.
Outside distribution theory we agree that all functions in 2* are right continuous
and that all functions of #/, j > 1, are continuous. In the same way if Dig € #° for
some integer j then g is said to be in %’. Outside distribution theory we agree that
all functions in 4, j > 0, are continuous. Further if f € #’ then we fix a certain
g€ A° such that Df = g. When we write f €4’ then we mean the pair (f,g). By
convention we mean (f,f) when fe®°. Let f, e #' with D¥f; = g,. Let j > 0.
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Then f = f, in #if (f, g) = (f1,9,) pointwise. If j < Othen f =f, in B/ if f = f,
in 2'(R) and g — g, is a polynomial of at most order —1 — j.
We define multiplication of elements in %’ by elements in 24,

DEFINITION 1.2: Let j be an integer, let ae 2~/ and let f € /. We choose be #°
and ge #° such that D’b = a and Df = g. If j 2 0 then the distribution fa at
¢ e 2(R) is defined as

(1.1) {fa,9) = (- l)ij"(g¢)db-
If j < O then
(1.2) {fa, ) =(— l)jfgd(D"(dM))-

Definition 1.2 gives

PROPOSITION 1.3. Let j be an integer. If j = O then 2~/ is a B’ module. If j > 0
then 87 is a #’ module.

ReMARK. We regard the modules of Proposition 1.3 as two-sided to make the
bookkeeping easier. We also notice that one has #/ 7! < &/ if for fe 2/~ ! one
agrees that in (f, g)e #’, D’f = ge P!, i.e. gis unique and right continuous. In the
same way for (f,g)e %, j > 0, g is unique in in 2°, g is unique modulo a poly-
nomial of at most order —j — 1ifj < 0. Thus we get #/ = % for allj. Proposition
1.3 shows that /isa 2~ /* ! module,j < 0,and that 2 /*!is a #/ module,j > 0.
We shall not use the spaces %’ in the formulation of the theorems below. Still we
keep them in the propositions since one can make Theorem 1.8 a little more
general as is done in the corresponding theorems of [7] and [8].

PROPOSITION 1.4. Let j > O be an integer, let ac P/, f B’ and let be #° be
such that D’b = a. Then

(1.3) D fa)= D" (fD'b) = fD'~'b — D~ Y(Df)D’ " 'b) + constant.

PROPOSITION 1.5. Let j > 0 be an integer, let ac P, fe B~/ and let g € B° be
such that Dig = f. Then
(1.4) D Yaf) = D" Y(aD’g) = aD’~'g — D~ Y(Da)D’ " 'g) + constant.
These propositions are proved in [7] and the proofs are not repeated here.
Induction then gives as in [7].
PROPOSITION 1.6. Let j, b, and f be as in Proposition 1.4. Then
j

(1.5) D(fD'b) = }, (-—D"(DD""((D"f)b) +p

k=0



DISTRIBUTION DIFFERENTIAL EQUATIONS. REGULARIZATION . .. 293

where p is a polynomial of at most degree j — 1.

PROPOSITION 1.7. Let j, a and g be as in Proposition 1.5. Then
. j j
(L6) D~¥aDlg) = ¥ (1) (i) D~*gD*a) + p,
k=0

where p is a polynomial of at most degree j — 1.

We want to solve the Cauchy problem with initial values given at x = 0 for the
equation

(1.7) u™ +a, "V 4+ 4 aqu=f

Ifge #*, k 2 0, then we agree to define D™ in D™ 'g as

0

J= fifxgo and —j:— Iifx<0.

o+ (0,x] xt (x,0]

THEOREM 1.8. Let m and n be integers such that 0 <m <n. Let
d = max(0,n — 2m). Let a;e 2 ™,0 < j < d,let aje P"*i""*1 d < j < n,and let
feP™™ Let

(1.8) an-1({x}) + —1, xeR, if m=0.

Choose bje #° such that D™b;=a;, 0 <j<dand D" ™ " 'b;=a,d<j<n
Choose g € #° such that D™g = f. Then to each choice of ¢ = (cy,...,c,) € C" there
is a unique ue 2"~ ™ fulfilling

-1 m .
19 u+Y ¥ (—1)k<k)DM‘"‘*((DI+"u)b,~)

j=0k=0

n-m—1ln-m-—j—1 —_ I .
+ z Z (___l)k<n mk J 1>D—m—j—k—l((DJ+ku)bj)
j=d k=0
n-1 m+j+1-n -
j (_1)k<m +J B n+ 1>Dm+j+l—2n—k((Dkaj)Dn—m—1u)

n—1
=D"""g+ Y cx*/k.
k=0 .

As to the proof one applies D" "™~ ! to both sides of (1.9). Then one solves the
resulting equation as an integral equation in v = D""™'u. It is just a slight
modification of the proof in Persson [7], [8]. We do not repeat it here. One
Notices that uin (1.9) solves (1.7) in 2'. Further the affine solution space of (1.7) is
invariant under the choice of the measures b ;and g, Persson [9], since the proofin
[9] also applies to the slightly more general situation of Theorem 1.8.
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Lete > 0,0eC3,9 20,/ = 1,0(x) =0,x < —1,x > 0, p(x, ) = £~ *p(x/e).
Let

(1.10) b(x,e) = J(p(x — y,8)db(y), be#°.

THEOREM 1.9. Let the hypothesis be that of Theorem 1.8 except that we require
(1.11) a,—1({x}) =0, xeR.

Ifthe b;, D*a;, and g of (1.9) are regularized with ¢(x, €) as in (1.10) then the solution
u(x,€) of the regularized version of (1.9) exists and is unique. Further
D*u(x,e) - D*u(x), e =+ 0,0 £ k £ n — m — 1, and the convergence is uniform on
compact setsfor0 <k <n—m— 1.

The proof of Theorem 1.9 is given in Section 2. One may notice that a special
case of Theorem 1.9 is treated in Persson [4]. In Section 3 we construct Green’s
function for the boundary value problem mentioned at the beginning of the
introduction. Here many problems are left open as for example eigenfunction
expansions of Green’s function. See also Persson [4] and [5].

After the completion of this note I got the article J. Liggza [2] from its author.
In [2] I found many valuable references which I have ignored till now above all
Pfaff [10], [11] and [12]. In [10] Pfaff treats the effects of regularization of the
Sturm-Liouville problem for measure differential equations which later on is
donein greater detail in Persson [4]. In[11] and [12] one uses L” theory to define
multiplication of distributions. See also Fisher [1]. In [12] one also finds the
definition of multiplication expressed in Prop. 1.6 and Prop. 1.7 when %’ is
replaced by #/*!,i.e. the multiplication used in Theorem 1.8. The results of [11]
and [12] cover a part of Theorem 1.8 and vice versa. See also Liggza [2, Chap.
1 and Chap. 5]. As to further information on distribution differential equations
see Persson [7], [8], [9].

2. Proof of Theorem 1.9.

We notice that the case m = 0 s already proved in Persson [6]. So we assume
that m > 0. In this case (1.11) is automatically fulfilled. We start by letting

n—1
2.1 w=u~— Y cx*kl.
k=0

Let p(x) = Y 128 cyx*/k!. Let v = D" "™ 'w.Since u = w + p = D"*' "y + p,
(22) Di+ku = Dj+k—n+m+lv + Dj”‘p.
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We differentiate (1.9) n — m — 1 times and get

d-1 m

23) v+ z Z( 1)k< )D—k 1((D)+k+l+m "l))b)

j=0k=0

n-m-1n-m—j—1 —_m—i—
+ Z (_- l)k (n m-—j 1)l)n—Zm—j—Z—k((l)j+k+1+m--nv)bj)

j=d k

N .nil m-H'il-n(_lr(m +] + 1-— n>Dj_"_k((Dkaj)U)

j=n—m k
d-1 m
=D"'g— Z“Zo(—l)"( )D"""((D“"P)bj)

n—-m—1n-m—-j—1

Z kZO (*1)k(n_mk—]— 1>Dn—2m-—j—k—2((Dj+kp)bj)

j=d

n-1 m+j-n+1 . 1 .
-Yr X (—1)*('" o )D’“""‘((D"a,-)D"‘"'“p).
j=n—-m k=0 k
We regularize the measures b, 0<j<n-—m—1, the coefficients a;,
n—m £ j £ n— 1and the measure g chosen to represent D"~ "f asis donein (1.10)

with b. We rewrite (2.3) as the equation
(2.4) v+ Lw+ Lyy=D"'g— LMD" ™ !p)

where

(25) le_ Z kg < )D—k l((D1+k+l "”’v)b,)

i=0

n-m—1n-m—-1-j

+ Z Z (_1y(n—m,—(—j-' 1>D,.—zm—j—2—k((Dm+j+1—nv)bj)
m=d k=0

n—2 j+m+1-n i -
+ z j kgo (— l)k(] +14+m n) Dj—n—-k((Dkaj)v)

j=n—-m k

+ i (=1 <'Z)D—""‘((D"an—1)v),

and
d-1 .

(2.6) Ly =Y D™ YD***™ "v)b)) + D™ (ay-10).
j=0

The regularized version of (2.4) is written as
@.7) o(x,8) + Ly(e)o(x,8) + L(e)olx,¢) =
D™'g(x,e) — Ly()D" ™" "'p — L,(eD" """ 'p.
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We shall prove that 1(x, ¢),0 < ¢ < 1, is equibounded on compact sets. We solve
(2.7) by successive approximations. Let L = L; + L, and let I(¢) = L,(¢) + L,(e).
We define

@8) vo(%,€) = (D™ 'g)(x.¢) + L&D " 'p,
and let
29) vje1(%,8) = —Lewyx8)  j=0,12,...

+ |x|>
j=0k=0

* ,idlzl(" e )(l flb \(s,8)ds

L j+nim—n(,+1+m )(UlD"a, (5,6)ds
k=0

j=n-m

We shall use exponential majorization adjusted to the operator L(g). We let
d-1 m m "
(2.10) Y(x,o= Y 3. (k)(’ Jlb,-l (s,€)ds
0

+ i)
i)

We choose an arbitrary fixed number a and assert that
(2.11) lvj(x, &)l £ C279e®™9, |x| < a, i=01,...,

for a certain constant C. Let C = sup|vq(x, &), |x| £ a. Then (2.11) is true forj = 0
and each ¢ > 0. We now assume that (2.11) is true for such a C and a certain j,
Then we notice that (2.10) and (2.11) show that

D™ vj(x,e)ll < C27/ D™ (Y'e™) < C271 (e — 1) < C27 Ve,
and that
(2.12) D ~Hv;(x, e)l| < C2‘j§2"("", k=12,....
It also follows from (2.10) that
ID™((Ibjl (x, &) + D)e*™)| <27 e < (Ibj|(x,€) + 1),
and
|D~Y(|D*a;| (x, &) + 1)e?¥| < 27e*¥ < (ID*ay|(x,¢) + 1)e**.

Together with (2.9) and (2.11) these observations give
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d—1 m
213)  ojea(x,e) < cz‘f'( Yy (',':) ID~*=4(b,] (x, &) + 1)e*¥)]

j=0k=0
n—m-—
+ X
d k=0

n—1 j+1+m-n /- _
£ Yy (’*”,;'" ")ID""‘"‘((ID"ajI(x,eHl)e“)l

j=n-m-1 k=0

1n-m—-1-j

<n T 1 _j) D" 2727 ([by] (x, €) + De?¥)]

S C27 D7 Yet) S C27I e,

So (2.11) is true for all j. It follows that v(x,¢) = Z,‘?“:Ovj(x, €) converges
uniformly on |x| £ a to a solution of (2.7). Let w(x,g) = D™ "~ '(x,¢) and let
u(x, ) = w(x,€) + Y n s cxx*/k! Then u(x, €) solves the regularized version of (1.2).
It is obvious from the definition of y(x, €) in (2.10) that we can replace the last
member of (2.13) with a new bigger function  independent of &. The same applies
to the constant C. With the new C and ¢ in the last member of (2.13) we let

b = max(y(a), y(—a)).
If follows that
[v(x, &)] < 2Ce?®, X <a,0<e< 1.
By that we have proved

LEMMA 2.1. Let u(x, ) solve the regularized problem (1.9). Then the functions
D*u(x, €),0 £ k < n — m, are equibounded on compect sets, 0 < ¢ < 1.

We start by assuming that there are no point masses in the measures defining
L=1L, + L,. Let
2.14) v(x)+ Lv=D"'g + L(D""™ 'p).
Then

(2.15) v(x, 8) — v(x) + L(v(x, &) — v(x))
= D™ !(g(x,e) — g) + (L — L(e)w(x, ) + (L — LEND"™™*p).

Since there are no point masses it follows from Lemma 2.1 that the right hand
side of (2.15) goes uniformly to zero on compact sets. It then follows from (2.15)
and the proof of Theorem 1.8, see the corresponding proof in [7], that
x, &) — v(x) tends to zero uniformly on compact sets. By that we have proved
Theorem 1.9 in this special case.

Let there be point masses at x = c, ¢ > 0, and nowhere else. For —a £ x <,
x, &) — 1(x), pointwise when & — 0. That means that

(2.16) D~ "v(x,e) » D" "v(x), r > 0, uniformly in —a = x S c.
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We also notice that D ~"v(x), r > 0, is continuous. Then we notice from (2.5) that
LI(E)U(C, 8) g le(c)9 & 0,

since there is no point mass in x < ¢, and since there are at least two integrations
in each term of L, and L,(¢). It also follows that L,(e)u(x,&) = Lit(x), € =0,
uniformlyin —a < x < c.

We then see that

(2.17) vx, ) — ”x) + La(e)(v(x, &) — v(x))
= (L,(e) — Ly)u(x) + Lyv(x) — L,(e)v(x, €)
+ D™ (g(x,&) — g) + (L — LE)D" ™" 'p).
In (2.17) we have already noticed that
L,v(x) — Ly(e)v(x,€) = 0, and (L — L(g))(D" ™ 'p) > 0,e— 0.

We notice that a,_, € 2™, m > 0. Then (2.6), (2.16) and the remark after (2.16)
show that

(L2(e) — L2)v(x) — 0, and L,(e)(v(x, &) — v(x)) - 0.

Since D~ }(g(x, &) — g) = 0 pointwise in —a < x £ ¢, ¢ — 0, it follows from (2.17)
that v(x, £) — v(x) = 0, ¢ = 0, pointwise in —a < x < c. Then we redefine D! as
integration from c. We get new Cauchy data for x = c. If we use the Cauchy data
for the unregularized problem as Cauchy data for the regularized problems we
commit an error tending to zero for ¢ — 0. The first part of the proof translated to
= ¢ then gives that v(x, &) = v(x), ¢ = 0, uniformly on compact sets in x = c.
The case with point masses at a finite number of points can be proved by
repeating the procedure above a finite number of times. The case with ¢ < 0 adds
no extra difficulty. The general case is proved in such a way that one removes all
but a finite number of point masses from the measures in (2.3). One applies the
result above for these modified equations. Then one lets the total of the absolute
values of the removed masses tend to zero. Comparison between the modified
equations and the unmodified ones completes the proof of Theorem 1.9.

3. Bending of a rod.

Look at a rod clamped at x = 0 and x = 1. Let u be the deviation of its elastic
line when moments and forces are acting on the rod. We get the problem

(3.1) u® —ku" + (qu) +pu=f+g
(3.2) u(0) = 0, w'(0) = 0, u(1) = 0, w(1) = 0.

Here f and u are densities of forces and g and n are densities of moments. If we
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allow point moments and point forces then (3.1) is turned into a distribution
differential equation. The case n = 0 and g = 0 turns (3.1)+3.2) into a problem
for a measure differential equation partly treated already in Persson [5]. One
cannot use [5] to get eigenfunction expansions of Green’s function here since
(3.1)43.2) is not selfadjoint in general. Here we simply assume that (3.1)~3.2)
always has a unique solution.

In Theorem 1.8 we choose n = 4 and m = 2. Then age 2, a, € #°. Since the
right member of (3.1) is in 2! we can apply Theorem 1.8 to (3.1). We choose
P = (cf,...,c{) such that ¢{>, =1 and ¢’ =0, k+j— 1. Then we let
f =g =0. The solution of (3.1) with these Cauchy data is called u;. These
solutions form a fundamental set of solutions of (3.1) when f =g = 0. The
Wronskian W of these solutions is is in 2° only and not apriori pointwise
defined. Let uj(x, ¢) be the solution of the regularized version of (3.1) with the
Cauchy data ¢ at x = 0 and with f = g = 0. Let W(e) be the corresponding
Wronskian. Now W(e) = 1 for all x if ¢ > 0. Therefore we construct the formal
Green’s function for (3.1)«3.2) from the fundamental set chosen above. See [3,
pp. 34-37]. Then we construct the real Green’s function for the regularized
problem, G(x, t, &), with the corresponding fundamental set for small e.

We know from Theorem 1.8 that u;e#® and from Theorem 1.9 that
uf(x, e) > u(x) pointwise and boundedly, 0<x <1, 0Sk=<2 1Zj<4
That means that G(x, t, ¢) = G(x, t) pointwise and boundedly when ¢ — 0.

Let v(x) be the solution of (3.1) with zero initial data at x = 0. Let v(x, ¢) be the
solution of the regularized problem with zero initial data at x = 0. It follows from
Theorem 1.9 that 1(x, &) = v(x), ¢ —» 0, and so do the corresponding Cauchy data
at x = 1. It follows that the boundary values d(e) of v(x, ¢) tend to the boundary
values d of v(x). Let w(x) = u(x) — v(x) and let w(x, &) = u(x, &) — v(x, €). It follows
from the hypothesis that for small ¢ there is an invertible matrix U(e) giving the
connection between the Cauchy data at x = 0 and the boundary values of any
solution of the homogeneous regularized version of (3.1). Let U be the corre-
sponding matrix for the original (3.1). From dY(g) = U(e)c? it follows that
U(e) » U, e — 0. Let c(e) be the Cauchy data of w(x, ) and let ¢ be the Cauchy data
of w(x) at x = 0. Then c(¢) = —U " Y(e)d(e) = —U 'd = ¢, € » 0. Then a very
slight modification of the proof of Theorem 1.9 shows that w(x, &) = w(x), ¢ = 0.
That means that u(x,e)— u(x), ¢—0. If we now take the limit of
ulx, &) = [§ G(x,t,€)(f(t) + g'(¢)) dt one realizes that G(x, t) is the Green’s function
of (3.1)+3.2) as long as f + g is a function. A closer look at the adjoint problem
shows that G(x, -) e #* locally. But letting it zero outside 0 < t < 1 itisin #° and
can be used as a testfunction on 2~ 2. This is the maximum irregularity admitted
by Theorem 1.8 for the right member of (3.1).
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