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ON COMPLEX INTERPOLATION WITH AN
ANALYTIC FUNCTIONAL

M. J. CARRO and JOAN CERDA

Abstract.

We consider the variant of the Calderon complex interpolation method associated to an analytic
functional.
Some examples related to the domain of positive operators and I? spaces are given.

§1. Introduction.

Given an interpolation pair (4, 4;) of complex Banach spaces, the Calderon
method (see [1]) [Ao, A; ]¢ has been extended (see [5] and [6]) to define the
interpolation space [ 4y, A; ] associated to an analytic functional, R € 5#'(£2), on
the strip Q = {0 < Rez < 1}. As in the case of distributions, R acts on vector
valued functions f € #(Q2; Ay + A,), and R(f) can be considered instead of the
evaluation f(6). That is,

[Ao, A1]r = {R(f); f € F (Ao, A}, with [Ibll = inf{|| f|l5; f € F,R(f) = b}.

We say that an analytic functional T onan openset G = Cis of finite support, if
T admits a representation of the type

(1) T=3 S 4,000,
j=01=0

and {zo, z,,...,2,} is said to be the support of T.

We have studied the complex interpolation when R is of this type in [2] and
[3]. Now, the aim is to identify some interpolation spaces when the analytic
functional is not of finite support and to get some consequences of this identifica-
tion.

We include the extension of the above method to complex interpolation
families (c.i.f.) in the sense of [4]:

Let D denote the disc {|z| < 1} and I'its boundary, and let { B(y),ye I'} beac.if.
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on I' with the containing complex Banach space ¥” and with £ as log-intersec-
tion space. The Banach space B[z] = {f(z);fe#} with the norm
Ibll; = inf {|| fll #;f(z) = b}, for every ze D, is defined in [4]. Here # = #(B(:), I
is a Banach space of ¥-valued analytic functions f on D with a.e. non-tangential
boundary values f(y) = ¥~lim._,, f(£), which can be described as the completion
of the space

™M=z

¥={g=

J

@j()bj;b;eB, pje N*(D),esssup lg(y)ll, < + o},

1 yel

with the norm || f|| & = ess sup || f(D)Il,-
vel
If T is an analytic functional on D, we define, for the c.i.f. { B(y)}, the space
B[T] = {T(f);, fe #}, with |bliiry = inf{l| flls; f € #, T(f) = b}.

B[T] is a Banach space and the following theorem, which is an extension of
a similar result derived in [4] for B[z] (T = &(2)), is easily proved.

THEOREM 1. Let {A(y)} and {B(y)} be two c.i.f. on I', with the containing spaces
% and ¥, and the log-intersection spaces </ and B, respectively.
Let L:% — ¥ be alinear bounded operator and suppose that L{&/) = 0,1 B(y)
with
|Lall, < M(y)lal, ae.yerl,

where log M(y) is integrable. Then L: A{GT] — B[ T] continuously with norm £1,
for

G(z) = exp ( f — log M(y) de(v))

r
and H.(y) = (1/2n)(e" + z/e"" — z) the Herglotz kernel.
Let a: I' — [0, 1] be a measurable function and consider the c.i.f.
{A(Y) = [AOs Al]a(y);y € r}

Define the analytic funtional S on Q by S(¢) = T(¢ ow), where w(z) =
®(2) + id(z), and a(z) is the Poisson integral of a. It is known (see [4]) that, if
T= 6(20)’

2 [4o,A,]s = A[T].

For any FeF(Ay, Ay), FoweF(A(),T) and |Fowl| s < |[F| s imply the fol-
lowing,
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PROPOSITION 2. [Ay, Ay]s is continuously embedded in A[T].

The converse is not always true. In fact, it may happen that S = 0and T + 0.
However we have proved in [2] that, if T is of the type (1) and under some natural
conditions, the equivalence (2) is true.

In the general case, we have not found conditions for this equivalence to hold.

Let E be a complex Banach space. In the sequel A(2; E) will denote the space of
the E-valued analytic functions F € s#(Q; E) which are continuous and bounded
on the closed strip.

§2. Complex Powers of Linear Operators.

Let L: D(L) — A be a positive linear operator densely defined in a Banach space
Aand such that | [¥|| £ M foreach t € R, where I2 is the complex power of L. This
condition can be relaxed to ||[¥*|| < M for all —¢ <t < ¢ (see [7]).

Let S be an analytic functional on the band 2 and 0 < &, < 1. Throughout this
paper C:D — Q will be a fixed conformal map with C(0) =

Define T(¢) = S(¢ o C™!), an analytic functional on D.

For any F € #(Q2) we have
@ (n)
0= 100 = 5 F2O"0 10
n=0 .
and, if «} is the coefficient of F Y(&,) in (F o C)™(0),
[oo] T z'l n A
sk = 3 D5 o pog,)
n=0 M j=o
with absolute convergence. Thus, if we call
m+j
AS,C;j s(c- eyt —_—L—rr,
.G = ¥ S(CTHOM )l
we have
T("
S(F) = ZZ ”"W@h

<] © T(zm+]) m+_, _
§&0m+r CE

- io AGS, C; )F9(Eo).
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Let us consider a e D(I?). The function F(§) = I5a: Q — A is analytic in Q and

FO)=2 J(logt + —g—z@l) XL + tI) 3adt,

0
where C(a) = 2/I'(1 + a)['(2 — a) (see [7]).
It is natural to denote (log L)a = F'(0), and (log Ly’a = F*(0). log L and

(log L)? will be the closure of these operators. Then, a straightforward calculation
proves the following

LeEMMA 3. If ¢,(&) = (€ — &y)"/m), then

SLtogy) = 3 (’" o ) A(S, Cim + p)(—log L.

p=0

ProoF From the above remarks we have

S og) = 3 A(S, Ci)L 0 ) 9(Eo) =

i

A(S, CJ)( ) ( p)(U““)‘ oo ”’(60))

i r=0

o 3o

A(S, C])( J )(logL)f""'=

j

i ( )A(S C;m + p)(—log L)’
Let

E = {(An)m = D(L*); 39 € A(82; D(L)), 9™(8o) = A, ImeN}

with the norm [[(An)mllz = @]l
Consider the operator ¢f : E — A defined by

(PL((Am)m) = Z S(L_¢+¢o ¢m)Am:

and its range R[¢f].

PROPOSITION 4. The space [ A, D(L)]; is equivalent to the space R[¢}] with the
norm

lxllr = lnf{"(Am)m"E, ¢i((Am)m) = X}.

ProOF Let xe R[¢5] and (Ay)m€ E with x = ¢5((Am)m)- Let ¢ € A(2; D(L*))
such that ¢p™(¢,) = 4,, for each me N. A straightward calculation proves that
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@L(Am)m) = S(L™¢709). But L™¢*feg(¢) is in #(4, D(L)) and
IL7¢* (@)l s < @l

(where X < Y means that X < CY for a certain constant C).

Thus, x = ¢} (Am)m) €[4, D(L)]s and | xlls < (@]l = [{(Ammlle-

Conversely, let xe[4, D(L)]s and F € #(A, D(L)) with S(F) = x. By expresing
F(&) = L™¢*%° L% [*F(¢) and, using the previous lemma, one can easily obtain
x = S(F) = ¢}(Amm) With (Am = (L™%° LF()™(¢o))m Hence, xeR[f].
Moreover,

Xz £ W(Ammlle = IL7% L F&)llo = sup IL™% L F(&)l psoy < I Fll g a, pewy-
&eR

ExaMPLE 1. Define L:D(L) - I? by L(f) =% (1 + |x|)Z(f) for each
fe#(R™ and & the Fourier transform. It is known that D(L) = HZ(R") and
|IL#| < 1 for all teR. Thus,

[L*(R"), H(R"]s = R[e1],

where “=" means equality of spaces with equivalence of norms.
Let Pe A(2; C) such that u[S, P](x) = S(P(1 + |x|*)~%)~! belongs to &'(R"),
and

HySP® = {fe 2 (R");, # ~ ' u[S, P1)# (f)e L'(R")},
with thenorm | f |, = ||# ~ ! u[S, P)(x)# f||., the corresponding Sobolev space.
PROPOSITION 5. H45FI® js continuously embedded in [L*(R"™), H}(R™]s.

PrROOF Let f € HY5-FI®) and (¢,), = S(R") such that f = H4S-PI9 _ lim, ¢,
Consider ¥, = P(&)F ~* u[S, P1(x)(1 + |x|?) % #(¢,). It is easy to prove that

S(L5*%%) =9, VneN,
and that L™ ¢*% ¥, e #(L?, H2) with
L7450 Wl 2, 1) < N1 @ull-
Therefore
l@nlliL2crm, H2Rms <€ 11 Pall

and (¢,), is a Cauchy sequence in [L*(R"), HZ(R")];.
Clearly f = lim, ¢, in [L*(R"), HZ(R")]s, and the proof is ended.

PROPOSITION 6. Let &* = max(1/&o, 1/(1 — &;)). Assume that there exists
Pe A(2;C) and (a,), = R™ such that
(@) 1S(€ = &o)(1 + ) 79) < aIS(P(1 + [x|?)~%)| for each g€ N, and
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9

(b) k=3 a,(&*) < + o, then

q=0
[L*(R"), H3(R™]s = H4S-P1),
ProoF If fe[L*(R"), H(R"]s, there exists ¢ € A(2; H3*°) such that

(q)
f= ZS(L*““(: ¢,y Lo (5")

We know that ¢ can be taken as L™ L*F({), with F in #(L?, H?) such that
S(F) = f. Every F e #(L* H2) can be approximated by functions H =" ¢;b
(pje A(2; C), bje H}) and H, #(R") being dense in HZ, by functions G = ) (p,a,

(pje A(2;C) and a;e #(R").Thus, let G, = Z ;b (¢} A(Q; C) and b e #(R")
j=
a sequence which approximates F.

Note that ¢,(&) = L °4G,(&) = F ~1(1 + |x]?) ¢ ¥ % F G,(¢) takes its values
in y(Rn)’ and "‘Pn”A(!),H%‘fo < ”Gn”f
Consider, for each neN,

Z S(L-—¢+§D(€ é )q) (pn )(60)

q=

= (pn (50)

S(F M+ xR F(E = L))

q

=Y FHS(1 + [x|?)"¢Ho(E — E)NF

8 ng

F wf.”’(éo)
q'

Then,
- q)
f‘lﬂ[s,P](X)fﬁ = Z F - y[S P](X)S((l + lez) ¢+§o(£ £ )q) q(fO).
=0
and
Ng" LULS, PIx)S((1 + [x12)~4E — &)1 + |x|?)eF T2~ oY (fo) 2 <
- o g P2 (&0) ?(Co) ‘
<, || F UL+ IxP)oF q! UM @ laze <

< a,(¢*) |9l -

From (b), we have |# ~!u[S, PYX)# fll2 < | @ullo- SO, (fu)n is a Cauchy
sequence in H4S:PY®) Finally, it is clear that f e HYSP™ and || f|l, < | Flls.

REMARK (1) IfS = 8(&,), the previous hypotheses are satisfied for P = 1. Thus,
[L(R", H3(R")]s = HESP,
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with p[S, P](x) = (1 + |x|*)*. That s,
[L*(R"), H3 (R")]s = H§®P™ = H3%(R"),

as proved in [7] (2.4.2., Rem. 2).
(2) If S = (&), we must take P = exp (&, — &) and thus,

(1 + Ix?)
1 +1log(l + |x%)’

uLS, P](x) =

as proved in [3].
(3) Let S be the analytic functional on Q defined by

1
S(o) = 51;[(0(6)(6 — &)t exp(—(¢ — £o)™ e,
z

with X a simple rectifiable close curve in 2 with &, in its interior. One can prove

that the hypotheses are satisfied for P = 1. Thus H% is equivalent to [L*(R"),
H2}(R"]s where

g © log(l + |x|»)"

9 = (01 + by = (1B RET

n=0

-1
> (1 + [x?).

(4) For each 0 < ¢ < 4, the analytic functional

$+e
1
S(p) = N J o(x) dx
&€
4-e
satisfies the hypotheses for P = 1,(we can choose &, = 1/2). So, [L?(R"), H3(R")]s
is equivalent to H4 where
1
p=o-(+ (L + X2 = (1 + 1x1%) 79~ log (1 + x)?).
ExampLE II. The following proposition, in the case S = §(f) and P = 1, gives
the well-known interpolation result with change of measures
(L, P(w")]s = LP(wP)
and, in the case S = §'(d) and P = exp (0 — ¢&),

P(wP)]s = —“—Vf—“— p
(L7, LP(wP)]s = Lp(<1 + |log WI) )

PROPOSITION 7. Let w be a positive measurable function on a space X such that
w(x) = m >0 for every xeX, and Pe A(R;C) with S(Pw™%) ¥ 0. Under the
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hypotheses (a) and (b) of proposition 6,
[, P(w”)]s = LP(IS(Pw™¢)| 7).
Proof Define L: D(L) — Lf by L(f) = w/. It is known that D(L) = [P(w?) and
I = w.
Let f € L(IS(Pw™%)| ) and consider (4,)m = (P™(Eo)f(S(Pw ™47 %)~ 1), Itis
clear that (4,,). € E and @5 ((Am)m) = f- So, f e [I*, [P(wP)]s and
1S e, Loowrns € (Ammlle = IPSSPw )" o S NPl | f ILogsew-)-#)-

Conversely, assume that f € R[¢3] and let ¢ € A(2; [P(w*°P)) such that

(q)
f= 3 Switen — gy L) (5"’

q=0

Then,

L)
(Jror smres) =,

and, from the hypotheses, it follows that || f || Logsew-2)-7 < 101l -

|

Ms

IS =E = Eo1” e,
IS(Pw P

i ()
qY

P 1
dx)

When w is a Muckenhoupt weight, we can apply this result to the cases (3) and
(4) of the above remark.

0

R™

COROLLARY 8. If w = m > Ois a weight in the Muckenhoupt class A, then the
Jollowing functions are also in A,

(@) Q.((logwy)/(n! nt) ™t wé with 0 < &, < 1.

(b) (12e)w* logw(w® — w9}, for each0 < e < %.
§3. On LP spaces.

Let ¢(x, t) be a function such that ¢(x,, t) is an increasing function of te R* and
#(xo,0) = 0, for each x, € M. Denote by ¢(X) the Frechet lattice of the measur-
able functions g on M such that there exist A > 0 and fe X with || ]|y < 1 and

® g S A, Af)  ae. xeM,
with the F-norm
lgllpxy = inf {4 > 0; A satisfies (3)}.
We say that f is equivalent to g when
af)sg®)=bf(® (a,b>0)

Let po>p, =1 and w, and w, two positive measurable functions on
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a measure space X. If S is an analytic functional on Q, let us consider
(4) (bs(X, t) = Is(wo(x)(c— l)lpowl(x)(—é/m)t(l -é)/po+€/m)|,

and assume that it is equivalent to an increasing function.
For instance, in the case

(1/2)+e

1
S(rp)——zg f ¢(x) dx,
(1/2)—¢

and wy = w, = 1, it is easily checked that ¢5 is equivalent to

tl/Pot(I/m—l/Po)((l/Z)—e)(l + |10g tl)—l t<1

¢s(t) = {tllpot(llm—l/po)((1/2)+e)(1 + [logt)~? t>1
and, if ¢(t) = @5 1(t), then ¢s(L') is the Orlicz space
(5) Lig) = {f meas; f(1 + llog f)1 151 €L, (1 + llog £y 1, € L)
with
(6) ay = 1/po + (1/p1 — 1/po)(1/2) — ¢) and
ay = 1/po + (1/p1 — 1/po)((1/2) + ¢)
PROPOSITION 9. ¢g(L') is continuously embedded in [LP°(wq), LP*(Wy)]s.
PROOF. Let fe¢g(L!) and let he L' and A > 0 such that
If(x) S Ags(x,A|h(x))  ae.xeX.
We have ¢s(x, 4 |h(x)]) = |S(F)| with
F(&,-) = w = DIpoyy=8ps | 1p|(1=OIpo+8ip1 () € FF(LPo(w,), L7 (W,)).
Thus, fe[L°(wg), LP*(w,)]s and

A A<
1S Nizrowor osowims = A IFlls = {,12 A1

so the proof is ended.

We don’t know whether the reverse is true in general. However we have proved
in [2] that, if S is of the type (1), then the equivalence holds.

The next proposition shows this equivalence for a class of functionals S, that
includes example (4) of the above remark.

ProposiTION 10. If

1

S(o) = JM9)¢(0) d  VoeH(Q),

0
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where p is a positive measurable function with compact suport in [0, 1], then
[LPo(wo), L' (wy)]s = ¢s(L').

ProoF. From proposition 9, it only remains to prove that [ LP°(w,), LP*(w,)]sis
embedded in ¢s(L'). Let fe[LFo(wy), [P (wy)]s and Fe % with S(F) = f. It is
known (see [1]) that if 0 < 6 < 1,

IF(6,x)] < go(x)" ~°g.(x)’,
with
O .
gix) = e IFG + it,x)| p6,00dt  (j=0,1).
R

As pj(0,t) < exp(—nt)/sinnffor j = 0, 1, and p has compact support, we have

1 1
IS(F)(x)| < J WO)|F(6, x)|df < JH(B)GO(X)I_OGI(X)O do,
0 0

where

G(x) = J]F(j +it,x)|exp(—nt)dteP(w;)  (j = 0,1).
R

Consider K(x) = sup(G(x)*/w;)e L'. Then
1
IS(F)(x)| < J K(x)! =0/t OP1yo(x)° = POy, (x) =07t 1(0) dO = s(x, K(x)).
(4]

Therefore the proof is ended.

If ¢5 is the function defined in (4) for wo = w, = 1, we have, as a trivial
consequence of the interpolation, that for each K € ¢s(L'), the convolution
operator

K*: L' - dg(L)
is bounded.

Thus, with the notation of (5) and (6), it is clear that, for every a; < a < a,, the
convolution operator

x|~ %*: L' - L(¢)
is bounded.
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REMARK ON COMPLEX INTERPOLATION FAMILIES. As a trivial consequence of
propositions 2 and 9, we have that if p(y) = 1 is a measurable function on I', and
S and T are as in proposition 2, then

COROLLARY 11. If ¢(t) = |S(t°), ¢(L') is continuously embedded in [LPO][T].

Finally, let us consider a family of measurable functions u(y,x) on I' x X such
that

1
—1lo ,X)dy < + o0 ae xeX.
o) g u(y, x) dy
r

Assume that the family {L*?(u(y)); yeI'} is a c.i.f. It is known (see [7]) that
" = ¢, (L'), where

u(y)

Q,(x,t) = uly,x)” 1/p(y)¢1/p()

Consider the function @,(x,t) = u(z, x)~ VP@ ¥ with

u(z, x) = exp (p(Z) f 1/p(y) log u(y, x) de(v))
r

Define ¢@r(x,t) = |T(u(z, x) " *@t*@)| and assume that it is equivalent to an in-
creasing function, that we shall continue denoting by ¢ 1. Under these conditions
and with an argument completely similar to the one of proposition 9, we have

PROPOSITION 12. The space @1(L') is continuously embedded in [IPO(u(-))]1[T].
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