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ON THE NUMBER OF SEMIGROUPS OF
NATURAL NUMBERS

JORGEN BACKELIN

Introduction.

This paper consists of two parts. In part I two problems concerning subsemi-
groups S of N are treated:
- How many § with a given Frobenius number g (or a given conductor
¢ =g + 1) are there?
- How many maximal S with a given Frobenius number g are there?
(For g odd, the maximal semigroups are precisely he symmetric semigroups.)
The first question was raised by H. S. Wilf in [3]. The second question is
considered in [2, proposition 5], where it is proved that (for g odd)

# symmetric S > 21¢/8],

The answers given in the theorem below are, roughly: C-292 and C’- 29/,
respectively, where C and C’' vary within finite bounds. For the answer of the
second question it was necessary to investigate a question of some interest in
itself, namely:
~ How many subsets X of {1,2,...,n}, such that there are at most q different

sums of pairs of elements from X, are there?

We did not find any treatment of this question in the literature. A sufficiently
good answer for our applications is given as a “main lemma”. Part II of this paper
is devoted to the proof of that lemma. (It is quite independent of part I.)
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L. Semigroups.

1.0. TERMINOLOGY. In this part, mainly the terminology of [2] is adopted:

N denotes the set of natural numbers (including 0).

A semigroup S will always denote a submonoid of (N, +), i.e. a subset of
N which contains 0 and is closed under addition. Furthermore (discarding the
trivial semigroups {0} and N, and employing isomorphisms of monoid) we
always assume that N\ S { = ne N: n¢S}) is a non-empty finite set.

If S is a semigroup, then the Frobenius number g(S):= max N\ S, while the
minimal generator m(S) := min S\ {0}.

If X is any subset of N, then S{X) is the minimal semigroup containing X, i.e.
the set of all linear combinations of elements in X, with non-negative integer
coefficients; while 2X := {x + y: x,ye X}.

If X is any finite set, then | X| = number of elements in X.

If a is a real number, then [a] = integer part of a; and if a > 0, Ina and 1ga
denote the logarithms of a with bases e and 2, respectively.

&, := {semigroups S with g(S) = g}, forg = 1,2,.... &, is partially ordered by
(set-theoretical) inclusion; let .#, be the set of the maximal elements in .

In [2] a number of equivalent conditions on elements S € &, are given, which
are shown to be equivalent to the condition “S be maximal”. They are slightly
dependent on the parity of g. In particular, for g odd it is shown that Se %, is
maximal iff S is symmetric in the sense that for any integer i we have that ie S iff
g —i1¢S. (There are some more precise conditions on symmetric semigroups
than on “even-case” maximal ones, like this: S is symmetric iff the semigroup ring
k[S] is Gorenstein (k some field). These conditions are of no concern in this
article.)

Below we shall concentrate on achieving estimates for the quantities

f9):= |%,| and e(g): = |#,].

I.1. THE MAIN RESULTS. The main object of this article is to prove.

THEOREM. With the terminology above,

(i) 0 < liminf2792|¥,| < limsup 292 |¥,| < o0, and
g~ o g~ ©
(ii) 0 < liminf2~9% |.4,| < limsup2~%°|.#,| < co.
g g—

In fact, we will get stronger results, like

) 2Me-12] < |#,| < 4216~ 112 for all positive integers g, and
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PROPOSITION 1. lim2792|¥,| and lim 279%|¥,| exist, and likewise
godd geven

lim 2796 |4, exists fori =0, 1,2, 3,4,5.
g:g=i(mod 6)

The values of these limits are briefly discussed in section I.3. Furthermore,
“almost all” S in & (in .#,) have their minimal generators m(S) “almost equal” to
g/2 (to g/3, respectively), in the following strong sense:

PROPOSITION 2. For any real number ¢ > 0 there is an integer ny such that for
every positive integer g we have

@ [{Se S Im(S) — g/2| > no}| < &:2/2, and
G) {S e, |m(S) — g/3| > no}| < &-29°.

In the next section, the theorem and the propositions are proved, except for the
“lim inf # lim sup”-parts of the theorem, the proof of which is postponed to I.3.
The proofs are mainly by subdivision into different cases, depending on m(S).

1.2. Proors. It will turn out that the sets A:= {neN:g/2 <n < g} and
B:={neN:g/3 < n < g/2} are of fundamental interest for the counting argu-
ments, and we shall compute in terms of 2* and 2, where a:= |4] and b:= |B,
rather than in terms of 292 and 29/°. (4, B, a and b are functions of g, strictly
speaking.) Clearly a = [(g — 1)/2] and b = [(g — 1)/2] — [4/3], and for all g we
have |Ja — g/2| < 1 and |b — ¢/6| < 1; the exact differences depend only on the
residue classes of g modulo 2 and modulo 6, respectively. For any positive
integers g and m, let &, ,,: = {S€ ¥,: m(S) = m} and M, ,,:= {S € M, m(S) = m}.
Furthermore, let f(g, m): = |¥, | and let e(g,m):= |4, ,|. Clearly,

@) Y. flg;m) = f(g) and
) Y. elg,m) = e(g).
LEMMA 1.

@D fg,m) ={Xc{mm+1,.,9—1}:g¢SKX)&meX}|
form < g.

(i) e(g,m) =X c{mm+1,...,[(g — 1)/2]}: g¢S<X)&meX}|
form < g/2.

(iii) g f(g,m) =flgg+ =1

(iv) Y egm =eglg+2/2) =1

m2i(g+1)/2]



200 JORGEN BACKELIN

PrOOF. If S€¥, , and S+ {0,g+1,g+2,9g+3, ...}, then Sn{1,2,...,
g — 1}isaset X fulfilling the conditions in (i). On the other hand, if X is such a set,
then {0} UuXuU{g+1,9+2, ..}, (i) and (iii) follow.

(ii) and (iv) are proved similarily, using the following implicit facts from [2]: If
S is a maximal semigroup and n is any integer (F g(S)/2), thenne S <>g(S) — n¢S;
and if' S is any semigroup, then there is exactly one maximal semigroup S, such that
SS8 &gS)=9g(S) &SN {1,2,...,[(g — 1)/2]} =S, n{1,2,...,[(g — 1)/2]}.

If X € A or X € B, then g¢ S{X). For g¢ A, while the sum of two or more
elements in A is greater than 2-g/2 = g, and likewise g¢ B, the sum of two
elements in B is less than g, and the sum of three or more elements in B is greater
than 3-g/3 = g. Thus and by lemma 1,

(6) flgmy=22"""1 if g2<m<y, and
) elg,m)=2°"" if g/3<m<g/2; and furthermore,
®) Y flg.m=2" and
m>g/2
) Y elg.m)=2"
m>g/3

(4), (8), (5) and (9) immediately prove the left inequalities of the theorem and of
0.

Of course, (8) is just a numerical consequence of the correspondence “S with
‘upper’ m(S) <> subsets of A” (where “upper” obviously means “greater than
9(S)/2™). The reason for analyzing it as a geometric sum by means of (6) is that this
also yields the “upper case” part of (2). Similarly, the “upper case” of (3) follows
from (7). (Here “upper” means: “greater than ¢g(S)/3”.)

With more effort we shall establish upper bounds on f(g,m) and e(g, m) for
“lower” m, and thus be able to bound the sums of these with 2° or 2° times
a geometrical sum, thus establishing both the right inequalities of the theorem
and the rest of proposition 2.

From now on, fix g and always assume that 2 < m < a. Let X be any subset of
D,:= {m,m + 1,...,a}, such that me X. X is called m-admissible if there is an
S€¥, m such that X = SN D,,. If X is m-admissible, then let f(g,m, X):=
{S€ %, m: S D, = X}|.

LEMMA 2.
(i) X is m-admissible iff g¢ S<{X).
@ fem= T f@mX)

(iii) e(g, m) = |{m-admissible X}|.

This is just reformulations of the definitions and former resuits.
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In order to get estimates for f(g, m), we shall use different methods, depending
on whether m > g/4 or not.

f(g,m) for m > g/4: Fix an m with g/4 < m < g/2; we may exclude the trivial
case m = g/3. Let s:= a + 1 — m. Then we have:

-1

Let A:={[g/2]1+ 1,...,9 — 1} (as before). Fix an m-admissible X. Let
k:= | X|. Weshall try to restrict the number of X-admissible sets Y, i.e. the subsets
YofAsuchthatS = {0} uXUYu{g+ 1,9 +2,...}e, n Tobegin with, we
note that such a Y must fulfill three conditions:

(@ IfxeX,theng — x¢Y (since x + (g — x)¢S);

(b) If x;,x,€X, then x, + x,€Y; and

(c) Iy, y,eAdand y, — y, €X, then none of y, and y,, or both of them, or y,
but not y, belongto Y
(since y, €Y=y, =y, + (y; —y))eSNA=Y)

On the other hand, when m > g/3 any Y < A fulfilling (a), (b) and (c) indeed is
X-admissible: (b) and (c) guarantee that S(X U Y) n A = Y, whence (a) implies
that g¢S<(X U Y). Thus indeed SCX U Y) = Se &, m.

The elements g — x of (a) and x,; + x, of (b) (all of which indeed lie strictly
between g/2 and g) form two disjoint sets g — X and 2.X, respectively, for which
there is no freedom of choice when constructing an X-admissible Y. Thus Y is
determined by YN L, where L:= A\((g — X)u2X). Now |N|=a and
l9 — X| = k, while |2X| 2 2k — 1 by the following well-known argument (cf e.g.
[1,1.8] and note that m=minX): (m+ X)u (X + maxX) € 2X; and
Im+ X| = |X + max X| =k, while |(m + X)n(X + maxX)| = |{m + maxX}| =1,
whence {(m + X)U(X + max X)| = 2k — 1. Thus

11 IL| <a—3k+1.

(10) |{m-admissible X: |X| = k}| < (i - 1) k=1,...,53)

The condition (c) may be reformulated thus: Let us turn A into a directed graph
by introducing an arrow y; — y, (y, v, € A)iff y, — y, € X. Then any X-admiss-
ible Y does not contain any tail (i.., arrow-start) without containing the corre-
sponding head (arrow-end). In order to get a computable upper bound, let us
confine ourselves to the principal arrows, i.e. to y, — y, givenby y, — y; = m.In
the entire set A there are exactly s — 1 = a — m (disjoint) principal arrows,
namelyg—-a—-g—-s+1,g9g—a+1->g—s+2..,g—m—1-g—1The
other a — 2(s — 1) points in A be called isolated.

As we saw above there are but three possibilities as for what part of a principal
arrow may be contained in a given X-admissible Y; and for any isolated point
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there are two possibilities (“to belong or not to belong”). Thus only using (c) we
get

s—1
f(g,m,X)s3=-1~z«—z<s~n=2a.(%) ,

while (a) and (b) alone gave (11) and thus
f(g,M, X) < 26~ 3k+ 1'

Let us combine the results, by starting with (4, {principal arrows}) and
removing the elementsing — X and in 2X one by one, checking the effect of each
step on the upper bound for the number of X-admissible sets!

The element g — misisolated, whence deleting it reduces the bound to 1/2 of its
former value.

Deleting any other point in g — X or in {y€2X:y > g — m} means deleting
either an isolated point or one of the points of a principal arrow (thus also
deleting the arrow, turning its other end to a new isolated points). This reduces
the bound to 1/2 or to 2/3 of the former value, respectively, and thus reduces it “at
least” to 2/3 thereof.

Finally, deleting any remaining element ye2X either deletes an isolated
element or the tail of an arrow; in the latter case, however, we know that also
y + me Y for any X-admissible Y, whence the whole arrow (including both its
points) may be deleted. Thus the reduction is at least max(1/2,1/3) = 1/2; and
there are at least |m + X| = k such Y.

Summing up, we find that

. 3 s—1 1 k+1 2 2k-2 1 . 3 s—1 2 k-1
@ sam0s7 () (7)) -3 (@) G)
(k = |X] and g/4 < m < g/2).
By (10), (12) and the binomial theorem we have:

1 1 s—1
(13) f(g,m)sZ'Z“-<—1%) (forgld<m=a+1-s<g/2).
Thus indeed
a-lg/4] { 11\*?
(14) Y fems< Y 7-2“-(—) <3-2°
g9/4<m<g/2 s=1 12

f(g,m) form < g/4: Fixanm with 1 < m < g/4 and such that m does not divide
g. Let n:= [g/m] and r:= g — mn (= the remainder of g modulo m). Thusn = 4
andr > 0. ’

Consider Se ¥, ,. We shall partition that “candidates” for elements in
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Sn(m+1,...,9 — 1} into residue classes modulo m, and employ the fact that if
one element in a class belongs to S, then so do all higher elements in this class.
(This corresponds to the “principal arrows” above.) Furthermore, the condition
g ¢S will turn out to impose heavy restrictions.

For any integer i, let r;:={jeN:m <j<g&j=i(modm)}, and let
si = 8{(8):=r;n S. Then we have:

So = rg, and

s, = ; whence

Sn{m+1,...,9— 1} =< U s,—)uro.

0<i<m
i¥r

Henceforth we only regard r;and s;fori & 0,r. If xes;and x < yer;, then yes;.
Thus s; is completely determined by |s;|€{0,...,|r;|}. If 0 < i < r then |r;| = n,
whileif r <i <mthen|r;| =n— 1.

Let us call ry,...,r,_, and r,;q,...,7m-, the lower and the upper classes,
respectively. If r; r; and i + j = r, then we shall call {r;,r;} a class couple.
Clearly, the classes of a couple either both will be lower or both will be upper,
whence we may talk of lower class couples or upper class couples.If 2i = r, thenr;is
called a (lower or upper) class singleton.

Fix a lower class couple {r,r;} with 0 <i<j<r, and assume that
Il +Is;l >n +2. Then we have i+j=r ri={m+i2m+i,...,nm+i};
ri={m+j2m+j,...nm+j}; s;={om +i,...,nm + i} (where a=n+1-—
s:l); and s; = {fm + j,...,nm + j} (Where f = n + 1 — |s;|). By the assumption
a+ B =2n+2—(sl + |s;|) < n, whence

g=nm+i+j=m0n—a—Pfm+(am+ i)+ (fm +))eS,
a contradiction. Thus, in fact
Isil + s/ <n+ 1.

This together with the conditions |s;, |s;] < n yields: there are (at most)
(n* + 5n + 2)/2 different possible pairs (|s;], Is;|) and thus different possible s; U s;.

For upper class couples {r;r;}, lower class singletons r,, and upper class
singletons r,, we similarly get the conditions

sil + Is;] <,
Isil < [(n + 1)/2], and
[sal < [n/2],

yielding (at most) (n? + 3n — 2)/2, [(n + 1)/2] + 1, and [n/2] + 1 possibilities,
respectively. Thus, if we count the numbers of the various couples and singletons
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(with due consideration to the parities of m and r), we get an upper bound for
f(g,m). To be precise,

n? 4+ 5n+2\Be-DI/p2 L 3, 2\[Hm-r-1)
<| ——= - - - .
f(g,m)_< 3 ( ’
(15) n+5 r—1-2[4(r—1)] n+4 m—r—1-2[(m-r—1)]
[ 2 ] [ ) ] (for m < g/4).

The rest is an exercise in elementary calculus: Considering odd and even cases
forr — 1 and for m — r — 1 separately, and using the assumption n > 4, we find
that the right side of (15), and thus f(g, m), is not greater than

413,/19)71((n* + Sn + 2)P({n* + 3n — "0 <
0.071h(n + 1) h(n)tm—n2~4m

where h(x) = x* + 3x — 2 (x real). Now (k(n + 1) -h(n)" ")/™ = h(n + 1)*-
h(n)! ~* (w:= r/m) is a weighted geometric mean of h(x). Taking logarithms we
pass to an arithmetic mean, and since

dz
Ez—lnh(x) <0 (x=4),

we get

winh(n + 1) + (1 — w)In k(n) < In k(n + w) = In h(g/m),
whence

A im
(16)  flg,m) < 0.071(3h(g/m)*" = 0.071 <% ((;) +i-— %))
for m<g/4.
Now (3h(4))39/4 = 130/8 = 29/2.2~908(16/13))8,
%(}y In(3h(g/y))y=g4 = $In13 — 11/13 > 0.436, and

2

dd—yz(%y In@hg/y)) <O for 0<y < g/

Thus (3h(g/(m — D)™~ < (Bhig/m)t™-e~0*3¢ < (Jh(g/m))*m2~ 028, for
2 < m < g/4, and we get indeed
(17) f(g,m) < 0.071-29/2-(13/16)9/8 -2~ 0-6280/=m  for m < g/4

and thus a way to express Z £ (g, m) as a geometric sum. For uniformity, it may
m<g/4
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be nicer to note that (since (13/16)'/® < (11/12)"/* and 0.628 > 1g(12/11)) we can
extend (13) to the case m < g/4, too. That is, we have

1 11\*™™
18)  flg,m< 2—-2“'<—1?) for m=23,...,a(=[(g — 1)/2]).

This (and (8)) yield the upper inequality of (1), whence indeed
limsup 2792 f(g) < 4 < 00. Moreover, (6) and (8) imply the (2)-part of proposi-
9

tion 2.

Finally, we shall derive bounds for the e(g, m) in a similar way; we are through if
m:= m(S) > g/3, and otherwise we divide the analysis into two parts, depending
on whether m > g/6 or not. However, just copying the methods from the
lim sup flg) — proofis not enough; indeed that yields 2° - (geometrical sums), but
the bases of the terms of the power expressions are greater than rather than less
than 1. We overcome this by using the following Main lemma (instead of the crude
estimate [2X| > 2|X| — 1) which essentially tell us that on the average the car-
dinality of 2X is much bigger than the cardinality of X. The explicit lemma deals
with the inverse problem: Given |2X]|, there are few possible X, and thus in
particular few possible X of large cardinality:

(Ve > 0)3CKVn,qe NX|{X <= {1,2,...,n}: |2X| < q}| < C-2"*49)

e(g,m) for m > g/6: Fix m such that g/6 <m < g/3 (and m * g/4,g/5). Let
s:= [(g + 2)/3] — m. This time, we shall only regard “small” m-admissible sets X,
ie. such that me X < {m,...,[(g — 1)/3]} and g ¢ S{XD. Then

(19) elg,m) = e(g,m,X),
X

where  e(g,m,X):=#Y < B, such that g¢S¢(XuY) and that
S¢XuUY)nB=Y. (This clearly is equivalent to X U Y being a general

m-admissible set; cf. lemma 2 (iii).) Now, let e(g,m,q):= Y. e(g,m, X) for
12X|=q
4=1,...,25s — 1. Then

2s-1

(20) e(g,m) = Z e(g,m, q).

q=1
Lete> 0, e< lg(2/\/§) =1 — 4lg3 be given. By the main lemma there is
a constant C such that for any fixed g we have

|{small m-admissible X with [2X| = q}| <
|{small m-admissible X with |2X| < q}| < C-2%-2%.
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Next, fix such an X (with |2X| = q) and let us estimate e(g, m, X). The element
minduces a structure of undirected graph on B, by the rule that there should be an
edge between y and z (y,ze B)iff m + y + z = g. These edges are disjoint. Their
exact number depends on the residue class of g modulo 3 and on s, but there are
not less than (s — 1)/2 of them within B. They are unordered and ‘antipathic’,
where the principal arrows analyzed above were ordered and ‘sympathic™. if {y, z}
forms an edge, then none or one but not both of y and z may be contained in
a Ysuch that g ¢ S(X u Y). Thus the effect of their presence is the same as for the
principal arrows: they reduce the number of possibilities to (3/4)* 4 of the
a priori number.

Let D':=2Xn{l,...,a},D":= g — (2X\ D'). Then D' < B (since 2m > g/3),
D" < B, and for any Y as above, D' < Y while D" nY = 0. (In particular
D'~ D" =@.) Thus Y is determined by Y n C where C:= B\ (D’ u D"); and as
before we find that there are not less than (s — 1)/2 — [D'uD"|=(s—1)/2 — ¢
edges in C. Thus

A(s—-1)— q 4s
21) e(g,m,X)sz'C'-(%)( R g-zb(:;‘-) (%) (m> g/6; [2X| = g).

Thus and by (20) and the main lemma
(22) elg m) < ( Z (}.)q.z&q) . C -2t 108(3/4)s. ob
9 3 b
q=1

where C only depends on & The sum over q is C,;:= \/§/(3 — \/g); and
C,:= 2:+4183/9 < 1 by the choice of &. Thus indeed

(23) Y egm< Y Cy-CiC2b=C-2

(9/6) <m <(g/3) s>1

for some C’ (which is independent of g).

e(g,m) for m < g/6: Fix m; for Se .#, , let X(S):=Sn {m,m + 1,...,2m}; for
X c{m,...,.2m} let €(g,m, X):= |{Se S, m: X(S) = X}|; for g = 3,4,...,2m — 1

lete(g,m q):= Y  €(g,m,X);choose ane with0 <& < 1 —0.41g5; and (by

X:|2X| =q
means of the main lemma) choose a C such that
(24) HX = {m,....2m}:|12X| = q}| < C-2m*31 < C.2/6+44

We have also

(25) elg,m) = Y  elg, m, q).

Fix gand X (with |2X| = q). We are trying to decide in how many ways we may
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extend 2X\ {2m} toaset Z = {2m + 1,...,a} such that g ¢ S(X U Z). Thus, let
rio={ji2m+1<j<a&j=i(modm)}; s;:=r;,nS (whenever S is chosen);
n:=[g/m](=6);andr:= g — mn. As before,ry,...,r,_yandr,,q,...,r,- be the
lower and the upper classes, respectively; and lower or upper class couples and
singletons be as before.

If {r,r;} is a class couple, xer, and yer; then x+y<g and
x+y=g(modm); thus x + y¢S. Le., if {r,r;} is a class couple, then
s; = @ or s; = . Should e.g. s;+ @, then s, is determined by min s;er;. Thus

n—2if {r,r;} is lower

ible(s.. s; . , = .
# possible(s;, s;) < |ril + |r;l + 1 {n —30f {ryr;} is upper

(If r; is a singleton, then s; = @.) Thus (ignoring the restrictions imposed by
having fixed 2X) we get an upper bound

(n — 2)*’~(n — 3)§(m—r)

on €'(g, m, X). Arguing as before (taking logarithms, etc.) yields
elg,mX 9 _3 '
’, < .
(g’ Y ) -_—

The influence of the 2X-elements may be estimated thus: Let {r;,r;} be a class
couple. Assume that xe€2X and that x =i(modm), then we must have
x=2m+i or x=3m+i Thus g/2+m>3m+ieS. If yes; then
g+m>y+3m+i=g(modm), whence y¢S. Thus s; = @ (even if x ¢s;). Fur-
thermore, if in addition ze2X and z = j (mod m), then we must have x = 3m + i,
z=3m + j,and s; = s; = @; while if z€ 2X, z = i(mod m) and z ¥ x, then s; = ;.
To sum up, there are at most two 2X -elements with remainders corresponding to
a given class couple {r;,r;}, and if there are two such elemments, then they
completely determine (s;, s;). If {r;, 7;} is a class couple with just one single element
x€2X which is congruent to i (and none congruent to j), then there may be one
choice left: if x > 3m then we may or we may may not have x — mes;. There are at
most four elements in 2X with zero or singleton remainders. Any other element
will yield a reduction not “less” than max(2/(n — 3), 1/2) < 2/3, and we get

camn () (5"

q 4m
e(g,,,,,q,<§£(zﬁ) .2,,,6.(%__3) ,

16 3

whence by (24)
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Summing over ¢ yields

(26) elg,m) < C"2%91% (% - 3)”

for some constant C".
1y
Now the continuous function Ky) = <i — 3) , 0 < y < g/6, has a negative
y

second derivative in the whole interval, and its firstderivative changes sign within
the interval; thus h has a unique maximum, which in fact is attained for some y,
such that g/7.98 < y, < ¢/7.97. In particular,

g im g 9/7.5
(27) —=3 <= — = §8/15 — 2(6/6)-0.41g5
m /8

Thus and by (26)

S egm<L g 1282006,

m<g/6

where Cy:= (1 — 0.41g5 — &) > 0, whence lim g2~ = 0. Proposition 2 and
g—

the last inequality of the theorem follow.

PROOF OF PROPOSITION 1: By proposition 2, as g tends to infinity it is enough to
investigate f(g, m) and e(g, m) for m being close to g/2 and to g/3, respectively. In
particular, we may confine ourselves tom > g/3 and tom > g/4, respectively. For
concreteness, consider

C:= Y flg.m)27%% geven,
m>g/3

as g tends to infinity. By lemma 1, the “upper” part of the sum (i.e. the
“m > }g”-part) equals 2% = 27!, In the “lower” cases, we found that for each
m-admissible set X we had three conditions (a), (b), (c), which were translatable to
a graph structure on a certain subset of 4; and this graph structure completely
determined the quantity f(g, m, X). Now since m > g/3, all elementsin g — X are
strictly smaller than the elements in 2X. Therefore, if we put g':=g + 2,
m:=m+ 1,and X':= X + 1, then the graph corresponding to f(g’,m’, X’) will
be isomorphic to the graph corresponding to f(g, m, X) with one isolated vertex
added. Thus f(g',m’,X’) = 2f(g,m, X), whence f(g’,m')-27%/* = f(g,m)-279*
and (using proposition 2) the existence of lim C(g) follows.

The case g odd and the e(g)-cases are similar. In the latter cases the
graph-structures depend on g(mod 3), while b — g/6 depends on g(mod 6).
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1.3. APPROXIMATE VALUES OF THE LIMITS. We have established the existence of
the limits of proposition 1. In this section we consider the less important
question: what might these limits be? Let us reformulate proposition 1 in terms of
2% and 2%, where as before

a=alg)=[(g— 1)2], and
b= blg) = [(g — 1)/2] — [4/3]).

The proof of the proposition yields:
There are constants C,y, C,, Dy, D, and D, such that

(28) lim 27°f(g)=C; (i=0,1) and
g=i(mod 2)
(29) lim 27%(g)=D; (i=0,1,2).
g=i(mod 3)

We also get methods for computing arbiitrarily good approximations for these
constants:

(30) Ci=1+ Y ¢ ,and

s=1
(31 Di=1+Y d,
s=1
wherec; , = f(g,[(g + 1)/2] — s)-2~“for any g such that (g/3) < [(g + 1)/2] —s
and that g = i(mod 2), and d; , = e(g, [(g + 2)/3] — s)- 27" for any g such that
(9/4) < [(g + 2)/3] — s and that g = i(mod 3).
Fixing i and s we may calculate c; ; as follows: Pick appropriate g and

m(=[g + 1)/2] — s) with ¢; ; = f(g.m)27* = f(g,m, X) (sum over m-admiss-

X

ible X). For any subset T < {1,...,s — 1}, let X = X(T):= {[(g + 1)/2] — k:
ke T U {s}}; and let the directed graph L = L(T):= A\ (g — X) u 2X) with the
arrows as introduced in section L2. If (y,,y,) is an arrow in L we have
n<g-—1[g+1)/2]+s=[g/2] +s<2[(g + 1)/2] — 5) < y,. Hence all el-
ementsin g — X and all tails are <g — m, while all elements in 2X and all heads
are >2m(g — m). Thus L consists of a bipartite graph L' = L(T) in disjoint union
with3m — g — 1 = a — 3s + iisolated vertices, where L (up to isomorphisms) is
independent of the choice of g; and we get:

f(g,m,X(T))2™* = |{independent subsets of L'}|-2~3* whence
¢i.s = Y. |{independent subsets of L(T)}|-27**".
T

s—1
By(13),¢;, < —:— . (%) . Thus, if we calculate ¢, ,. . ., ¢;, , for some n, we find
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that

1+ Y a,<C<s1+ Zci,,+3-<%).
s=1

s=1

Choosing n = 15 and calculating (by computer) gave

15 15 11 15
Ycos=1472..; Y ¢, =1502...; 3<E) =0813..;

thus
(32) 247 <c9<33;,25<c¢; <3.32

In particular,

lim (S, 2"%¥)=4-Co < \/§c1 = lim (|S,|- 27 %),
geven godd

(Actually, we may get sharper results without increasing n, by employing
non-principal arrows and more precise results than the crude inequality
|2X| = 2|X| — 1.1In this manner we may deduce that the value of the constants lie
“fairly” close to the lower estimates given in (32).)

For the D;’s, the situation is slightly “better”, but much “worse”. “Better” in the
sense that we may show the remaining middle inequality in the theorem directly,
just by noting that the quantities b(g) — g/6 depend strictly on the residue class of
g modulo 6, while D, only depends on g(mod 3). Thus e.g. b(6g’) — 6g'/6 = —1,
while b(6g’ + 3) — (69’ + 3)/6 = — 4, whence

lim 279 |4| = 4Dg < /3Dy = lim 279°|.4,|.

g =0(mod 6) g = 3(mod 6)

On the other hand, although we may calculate any d; ; in a manner corre-

sponding to the method above, and thus calculate any partial sum Y d; , of the
1

sum in (31), we have no good estimate for the “tail” Y d; , of that sum. Indeed,
s=n+1

we used the main lemma in order to ensure the convergence in (31); and, while

realizations of the sought constants of that lemma may be deduced from its proof

presented below, these yield ridicuously bad estimates for the rate of convergence

in (32). .

A computer calculation of d, ,fors = 1,...,21 isgiven in Table 1. It shows that
9.36 < D,. The marked diffferences between the odd and the even cases are due
to the “extra” forbidden elements g/6 + s/2 for s even. Inspecting the table
(taking this into account) makes it seem less likely that D, would not be less than

(say) 15.
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TABLE 1.
s do, s (exact) do s (®) accumulated sum

1 2/4 0.5 0.5

2 5/16 0.3125 0.8125

3 37/64 0.578125 1.390625

4 100/256 0.390625 1.78125

5 615/1024 0.60058593 2.3818359

6 1491/4096 0.36401367 2.7458496

7 10058/16384 0.61389160 3.3597412

8 25080/65536 0.38269042 3.7424316

9 154485/262144 0.58931350 4.3317451
10 347956/1048576 0.33183670 4.6635818
11 2275341/4194304 0.54248356 5.2060654
12 5617059/16777216 0.33480280 5.5408682
13 32932169/67108864 0.49072755 6.0315957
14 74146540/268435456 0.27621738 6.3078131
15 459815105/1073741824 0.42823618 6.7360493
16 1101432174/4294967296 0.25644716 6.9924964
17 6466239450/17179869184 0.37638467 7.3688811
18 14383614901/68719476736 0.20930914 7.5781903
19 88513143507/274877906944 0.32200893 7.9001992
20 205912251644/1099511627776 0.18727610 8.0874754

N
—

1202802586025/4398046511104  0.27348564 8.3609610

II. The main lemma.

IL.1. STATEMENT. Recall that if A4 is a set then | 4| = number of elements in A; if
A and B are sets of integers and c is an integer, then A + B = {a + b:ae A& be B},
A+c={a+caecA}, and 24 = A + 4; and if x is a real number, then [x]
denotes the integer part of x.

MAIN LEMMA. Let ¢ be any given positive real number. Then there is a constant
C such that for any positive integers n and q we have

(33) K(n,g):=|{X = {1,2,...,n}:2X| < g}| < C-omt4a,
I1.2. REMARKS.

1. We could as well have formulated the lemma for subsets of any fixed
arithmetic sequence « + f,a + 2p,...,a + np of length n, by means of obvious
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mappings; and, in fact, in this paper the lemma is indeed applied with this
apparent generalization tacitly understood.

2. In some respects this lemma is close to optimal. Loosely spoken, if we fix
nand let g vary (over 1,...,2n — 1), then for any q we have that there are at least
2% gubsets X of {1,...,[(g + 1)/2]} (and of any other arithmetic subsequence of
this length), and [2X|<gq for each such X. (Thus in particular

sup (K(n, q)/2*"*%) = oo for ¢ < ¢ + 2¢ < 4.) On the other hand, for any given
nq

d
degree d we may fixaq > ( ; 2) and let n grow; then, since if | X| < d + 1 then

2X| < <d;—2),weget

K(n,q)>(d: 1),

whence K(n, q) grows faster than polynomially in n.
3. It would be very interesting to find explicit formulas or good approxi-
mations for the quantities

K(n,k,q):={X = {1,...,n}:|X| = k&|2X| = g}

(E.g. for g <3k — 3 fairly good results can be obtained by means of
[1,thm. 1.9]; perhaps the weaker but quite general “fundamental theorem”
[1, thm. 2.8] may yield good results in general.)

I1.3. ProoF. The lemma will be proved in the following, apparently weaker,
formulation:

For any given positive ¢ there is a polynomial p(x) (with real coefficients) such that
for any positive integers n and q we have

(34) K(n,q) < p(n)-2°"*4.

Actually (33) for ¢ = ¢, > 0 follows from (34), applied on some ¢ = ¢,, where
0 < &; < ¢;. Choose an ¢ > 0. For a while, fix an integer m > 3/¢. For any set A of
integers,andfori = 1,2,...,m,let 4;:= {je A:j = i(mod m)}. We shall find upper
bounds for the quantities

K"nq):={X < {1,...,n}:2X| < q&X; 0 for i=1,...,m}|

K™(n,q) = 0 if m > n, whence we subsequently assume m < n. Let o vary over
the set of 2m-tuples (a,a;,...,am by,...,b,) such that a,=b,=i and
1<a; <b;<nfori=1,...,m There are less than n>™ such «; and clearly

(35) K™(n,q) = | ¥"(n,q,m,«)|, where
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¥(ngma):={X c{l,...,n}:|12X| < & (min X; = a; & max X; = b;fori = 1,
...,m)}. Fix such an « = (ay,..., b,). Since |2X| = Y |(2X),|, we have
r=1

(36) Vi=¥(ngma= ) ¥,
r=1

where ¥":= {X €¥":|(2X),| < g/m}. Fix an re{l,...,m}. Note that for any
i,je{l,...,m} such that i + j = r(mod m) and for any X € ¥ we have

A,'(X):-': (a,- + XI)U(X, + bJ) [ X( + X c (ZX),.

Conversely, given such an 4,(X) < (2X), we may reclaim X; and X, since then
Xj={x—aza;+b;>xeA(X)} and X;={x —bjia;+ b; < xe A(X)}. The
set {1,...,m} may be partitioned into ¢ pairs p,:= (i,.j,) with i, <j, and
i, +j,=r, and d “singletons” s, with 2s, = r. By construction, 2c + d = m.
Furthermore, the family

y(X) = (Ail(X)’ Aiz(X)a R Ai‘.(X)’ ASI(X)’ LERE] Asd(X))
is completely determined by and completely determines X.

Let BX):= |) A;then B(X) < (2X), < {2,...,2n — 1},; and |B(X)| < g/m.
AeF(X)
Thus there are less than 2(2Wm*1 < 23n/m < 22 pogsible different sets B = B(X).

Fix such a B. For each u = 1,...,c there are less than 2%™ possible different
A; (X). Furthermore, if ke {1,...,m} is a singleton, then let

D= {(x€B:x > a, + b} if this set has less than g/2m elements
T l{xeB:x <a+ b} else '

Clearly A4,(X) n D, completely determines X,(X). Thus, for each v = 1,...,d
there are at most 2!/ly < 292™ possible 4 »(X) (with B(X) = B). Thus # possible
F(X)where B(X) = Bislessthan 2¢4/m+4:a/2m — 234 Summing over the different
possible B(X) we get

37 [#7] = # possible F(X) < 22"+ %4,
Thus and by (35) and (36) we get
(38) Km(n’ q) < n2m “m- 23n+4}q é n2m+ 1, 2m+4}q-

Next, as is well known, we may choose a finite number of pairwise relatively
prime integers (e.g. primes) m,, ..., m,, say, such that m; 2 3/efori = 1,...,t,and
that

(39) ei= [

A

E.
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We may choose them in such a way that m;, = max m;. Furthermore, let

i

t
D = l—l m,-.
i=1
Fix n and q. For any X < {1,...,n} such that |2X| < g one of the following
statements must hold:

(A) Thereis an m; suchthat there are elements of X in all residue classes modulo m;;
or

(B) There is a family g = (g,);~, of integers, such that for i = 1,...,t we have
1 <g;<mand x £ g;(mod m;) for all xe X.
Clearly, the number of sets X fulfilling (A) does not exceed
t

Y. K™(n,q) < t-n*™*1!.2:"*3 Thusit is sufficient to get a good upper bound for

i
the number of sets fulfilling (B). We shall do this for all subsets X of {1,...,n],
relaxing the condition on |2X].

For any family 4 as above, let

8g):={Xc{1,...,n}:(Vxe X)(Vie{l,...,t})(x * gi(mod m))}.

Then the number of X fulfilling (B) does not exceed ) |(¢)|. There are D different

£ 4
families g of this kind. For any fixed 4 and any sequence
S={u+ lLu+2,...,u+ D} of D successive integers there are exactly cD el-
ements s € S such that s £ g;(mod m;) for all i. Hence

{se{1,...,n}:(Vi)(s * g;(modm,)}| < cn + D < en + D,
whence Z |&(g)| < D- 2D . gen,

To sum up: For all n and g
(40) I(n,q) < (t-n®*™*' 4 D-2P).2en*4a,

where t, m; and D are independent of n and ¢. (34) and thus the main lemma
follow.
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