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FIXED POINTS OF ACTIONS OF P-GROUPS
ON PROJECTIVE VARIETIES

WILLIAM BROWDER*

Abstract.

Let G be a finite p-group acting on a complex projective variety V" and suppose the degree of V is
prime to p. Does G have a fixed point on ¥? We will always assume G preserves the hyperplane class in
H*(V), or even that it acts projectively on the ambient projective space. In [3] we showed that if
Gz HZ/p and in addition n £ —1 (mod p) then G does have a fixed point, while for non-abelian
G this is not true as shown in [4].

Both of the above papers used algebraic topology exclusively and proved fixed point theorems
under certain topological assumptions. In this paper, we combine some of these methods with simple
geometrical arguments in projective space to get more delicate results.

1. Introduction.

We first consider topological actions of a finite p-group G on finite dimensional
spaces X with the Z,-cohomology of CP", acting trivially on H3(X;Z,). In[1] it
was shown that for G = Z/p, the fixed set X¢ = X,u...u X,_, with each X;
a Z, cohomology CP™ and ) (n; + 1) =n + 1.

We deduce that for any finite p-group G, X¢ + @ if n £ —1 mod p, and for
G =~ Z/p", Bredon’s formula generalizes.

We study the action of G on mo(X€) where C is a central subgroup of
Gisomorphic to Z/p and show, for any p-group G, G acts trivially if g = O where
Tg is the transgression in the spectral sequence of the Borel construction and
ae H¥(X;Z,,) is the hyperplane class. For abelian G, tga = 0 if and only if
X6 £ 0.

All this is done in § 2.

In §3, we recall some facts about actions on projective varieties in a co-
homological setting, and deduce some technical results from §2.

In §4, we consider projective actions of a finite p-group G, and prove that with
certain extra hypotheses, invariant subvarieties V" with deg ¥ & Omod p must
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contain points fixed under G. This happens when:

4.5) G=2Z/p.
(4.6) G abelian and
(i) dimV £ —1modp, or
(ii) Tga =0o0r
(iv) codim V is not divisible by p, or
(v) G has a fixed point on the ambient projective space.
(4.7) G finite p-group actingon CP" m <2p — 1, V" < CP™", n < m.
(4.12) G finite p-group, V™ an irreducible hypersurface, unless V™ is the plane
perpendicular to a unique fixed point of CP™*1,

We use a process of intersection with invariant hyperplanes to prove these
results, or invariant planes of codimension p. The arguments break down into
several cases for (4.12) (namely (4.8) and (4.10)) where we must keep track of the
residue class mod p of the dimension, and use different arguments.

§2. Actions on Z,-cohomology projective spaces.

In this section we will study a finite p-group G acting on a mod p cohomology
projective space, i.e. a finite dimensional space X with H*(X;Z,) = H*(CP",Z,)),
where Z,, = Z localized at p,and G x X — X an action such that G acts trivially
on H*(X;Z,)) (equivalently on H*(X;Z,))). We will fix a generator a e HX(X;Z,,)
called the hyperplane class.

Recall first the theorem of Bredon [1, VII (3.1)].

(2.1) THEOREM (Bredon). If G = Z/p, then the fixed set X¢ = Xou...u X,_,
with each X; an Z ,-cohomology CP™ amd

Ym+)=n+1
Further ji: X, — X induces surjection on H*( ;Z ).
We note that as in [3 § 4] we may define X; as follows: Choose & e H*(X ¢ Zw)
such that j*& = a,where X5 = X x Eg is the Borel construction, j: X — X, since

we know j* is onto where G = Z/p. Then with respect to the choice of & and
B generating H2(Bg) we define:

(2.2) DEFINITION. X is the unique component of X¢ such that i¥d — SB is
nilpotenton X5 x Bg « X% x Bg = (X%¢ U X (theinclusion) is = | (Xs)g-
We will study general finite p-groups G acting on X by taking a central

subgroup C = Z/p in G and considering the action of G and G/C on X€ < X,
using Bredon’s Theorem. We note that G acts on no(X ), permuting components,
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and since |no(X)| < p and G is a p-group, either G acts trivially on 74(X€) or
G acts transitively on 7o(X°), and |no(X€)| = p.

(2.3) THEOREM. Let G be a p-group acting effectively on X. If n £ — 1 mod p,
then X¢ + 0.

PrROOF. Let C< G be a central subgroup, C =~ Z/p as above. Then
p-1

X¢=Xou...uX,_,with H{X;;Z,)) = H¥CP";Z,)andn+ 1= ) (n;+ 1)
i=0

by (2.1). If G permutes the X;’s non-trivially, then G is transitive on (0,...,p — 1)
and ng=n;=..=n,_,, so that n+1=)(m+1)=pny+p, and
= —1modp.
If G sends each X; into itself, then by induction on dimension, XF/© 4+ @ unless

n=—1modp, or n;+ 1 is divisible by p. So if |JXf/©=X%=¢ then
n+1=7Y (n; + 1) is divisible by p.

Further, we may extend Bredon’s Theorem (2.1) to cyclic groups:

-1
(2.4) THEOREM. Let G = Z/p', acting on X, as above. Then X¢ = | ) X, each
i=0

X, is a Z,-cohomology CP™ and
Smi+1)=n+1.

Proor. For! = 1 thisisjust Bredon’s result(2.1). We proceed by induction on
and let C = G, C = Z/p. The singular set of the action is just X, so it follows that
H*(XC)g) = H*(X;) in large dimensions. If G permutes 7o(X€) non-trivially,
then all X;’s are homeomorphic and H*(X¢) = H*(X,) ® A as a Z[G] module,
where A = Z[G/G,], G, acting trivially on 7o(X©), so each X; is a Go-space. Then
(X% = (Xo)s,- Now whenever X has

H*(X) = Z,[a)/a"*! and G = Z/p'

acting on X (trivially on H*(X)), in the Cartan-Leray spectral sequence (i.e. the
spectral sequence for the Borel construction), we have (with Z,, coefficients)

E, = H*(X) ® H*(Bg) = (Zyp)[al/o"*) ® (Z/P'TA)).

Since E, = 0in odd degrees, it follows that E, = E, and from this we deduce
that

H*(X¢) = @ [a]/a"*") ® (Z/P'[B))-
Applying this to X, we get that:
H*(Xo)g,) = Zplaol/ag* ") ® (Z/p'~'[Bo))
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while for X we get the contradicting result:
H*(X) = @p[el/a"* ) ® @/p'(B)),

where a (resp. «,) generates H(X) (resp. H*(X,)) and B (resp. B,) generates
H*(Bg) (resp. H*(Bg,)). Hence G acts trivially on mo(X©) (this could also be
deduced from the Lefschetz Fixed Point Theorem, if X were a finite complex),
and each component X; of X€isa G/C = Z/p' ™! space. Since X; is a Z,-cohomol-
ogy projective space and the inclusion X; — X maps H*( ;Z,) surjectively by
(2.1), it follows that G (hence G/C acts trivially on H*(X;; Z,)) and X; satisfies the
hypothesis of the theorem. Hence X/ = ( ) (X)); etc., and the theorem follows.

Let G be a general finite p-group C = Z/p a central subgroup. Then G acts on
mo(X©), i.e. permuting components of X¢. Let t5: H¥(X;Z,)) = H3(Bs; Z,) be
the “transgression”, i.e. d; in the spectral sequence for X over Bg, where it is easy
tosee E, = Ej.

(2.5) LeMMA. If G = C x L,C = 2Z/p and L = Z/p', acting effectively on X, as
above, then the following statements are equivalent:
i 1ga=0
(ii) G acts trivially on no(X©)

(iii) X + 0.

Proor. Clearly (iii) implies (i) because (iii) implies X — Bg has a section so that
16 = 0. Also if X¢ % @, since X¢ c X€, some component of X€ is invariant, so
that all components are invariant, since G acts either trivially or transitively on
7o(X©), so (iii) implies (ii).

If (i), then G/C acts on each component of X, which are again Z,-cohomol-
ogy CP™s by (2.1), and G/C is cyclic so that G/C has a fixed point by (2.4) on X€,
so X¢ % @, and (ii) implies (iii).

We complete the proof by showing (i) implies (iii). Let H = C x L, = G, where
L, = Z/p. Since tga = 0, it follows that 150 = i*1ga = 0 so that X? 4 @ since
H is elementary abelian (see [2] or [3]). Hence C preserves components of X,
Since L is cyclic, XL # @ by (2.4), so L preserves components of X*'. Hence
G preserves components of X%, and let ¥ be such a component, so that K = G/L,
acts effectively on Y, and Y is again a Z,) cohomology complex projective space
by(2.1). By(2.1),j: Y = X induces surjection on H*( ;Z,), so that G acts trivially
on H*(Y, Z,,), since G acts trivially on H¥*(X; Z,) and hence K acts trivially on
H(Y.Z,).

Now ifay = j*a e H¥(Y; F,), then tgao = j*tga = Oin the spectral sequence for
5. If we can show that 142, = 0in the spectral sequence for Yy over By, the result
(iii) will follow by induction on |G| (or dim X).

Let r: G - K be the quotient map so that r*tga, = 1o, = 0. But by (2.6)
below r* is injective, completing the proof of (2.5).
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(2.6). PROPOSITION Let f: G; — G, be a surjection of finite abelian groups. Then
f* H*G,;Z) > H*(G;2) is an injection.

PROOF. A map of finite abelian groups is an injection if and only if it is an
injection on the elements of prime order. From the exact homology sequence

. — H¥G3;2/p) > H¥G1;2) B HYG2) — ...

associated to the coefficient sequence 0 — Z Lz Z/p — 0, it suffices to
prove f*|im ¢ is injective. Now H*(G;;Z/p) = A(V)) ® Z/p[V;] where V; is the
mod p reduction of H*(G;Z), so that 6¥; = 0, and 6: A?V; —»im d is an isomor-
phism. Now a surjection of groups induces a surjection on Hy and H,(; Z/p),so f*:
V, - V; and f*:4%V, — A%V, are injections. Hence f*|im § is an injection, so
that f*: H3(G,;Z) - H3(G,;2) is an injection.

Note that (2.6) fails for the simplest non-abelian examples, such as 3 x 3
matrices over F, which are the identity on the diagonal and below.
From (2.5) we immediately deduce:

(2.7) PROPOSITION. Let G be a finite p-group (not necessarily abelian) C c G,
a central subgroup of order p, and suppose G acts effectively on X, a Z,-cohomol-
ogy complex projective space, trivially on H*(X;Z,)). If tgo. = O («x the hyperplane
class in H(X;Z,) then G preserves components of X€, i.e. G acts trivially on
mo(XC).

ProoF. The proof goes by reducing to the commutative case and using (2.5).
Let g€ G permute components of X non-trivially and let K be the subgroup
generated by g and C, so that we have a central extension:

0-C->K-L-0

and L is cyclic = G/C so that L= Z/p". Since K permutes components of X°
transitively, XX = @. Now K must split as C x L, for otherwise K would be cyclic
and therefore would have fixed points, by (2.4).

Since K = C x L, and K acts non-trivially on X, applying (2.5) we get that
Tk = j*1qa % 0 so that 15 & 0 and (2.7) follows.

Returning to the case of commutative p-groups, we have:

(2.8) THEOREM. Let G be a commutative p-group acting on a Z,-cohomology
complex projective space X. Then X© % @. if and only if tga = 0 in the spectral
sequence for X over Bg with Z,, coefficients.

We first prove:

(2.9) LeMMa. If X, < X is invariant under G and G/H = K acts effectively on
X, then tga = 0 in the spectral sequence for X implies txag = 0 in the spectral
sequence for (Xo)x, where ag = i*a€ H(Xo,Z,), i: Xo = X.



190 WILLIAM BROWDER

PROOF. Since X, is a G-space 1ga = 0implies 1, = 0in the spectral sequence
for (X,)g. Then we have

(X’ o — (Xo)x
i {

Bg — Bx
and r*tgay = 1600 = 0, and r* is injective by (2.6).

PROOF OF (2.8). By (2.7), tg = 0 implies that G preserves components of X,
where C = Z/p = G. Then G/C acts on a component X, and txa, = 0by(2.9). By
induction on |G|, XX + @, and XX < X where K is the quotient of G/C which
acts effectively on X,

If X 4 @, then X; — B has a section, so that 75 = 0.

(2.10) CorOLLARY. If G is an abelian p-group acting on X o> X, with X,
invariant, such that (X, X,) is Z., cohomology equivalent to (CP™, CP") and if
X 4 O then XS % 0.

PrOOF. Apply (2.8) and (2.9).

(2.11) THEOREM. Let G be a finite p-group (not necessarily abelian) acting on X,
a Z,-cohomology complex projective n-space.
@ Ifn<p—1,X%%+0
®) Ifn=p—1, X %0 if and only if 1qa =0, i.e. G fixes no(XC), C = Z/p
a central subgroup of G.

Further X¢ = | ) Y;, where Y, is a Z,-cohomology complex projective n, space
k
andn+1=Y (n +1).

PrOOF. If n < p — 1 it follows that ta = 0, so it remains to prove (b) with
n < p — 1. By (2.1), a non-empty component X; of X€ is a Z,-cohomology CP™,
0 <m < n £ p — 1,50 byinduction G/C has fixed points on X;,and (2.11)follows
by induction.

§3. Actions on Z ,-cohomology projective varieties of degree prime to p.

Recall that in [3], we showed that for an elementary abelian p-group G acts on
a complex projective variety V" preserving the hyperplane class a € H*(V), with
H'(V) = 0, degree Vprime to p,and n £ — 1 mod p, then ¥ # @. In this section
we will continue to study this situation for more complicated p-groups G.

We shall consider an algebraic topological abstraction of a complex projective
variety in a complex projective space.

Let X be a Z,-cohomology complex projective space of complex dimension
n+k and let i: V" < X be the inclusion of a polarized 2n-Z,) homology-
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near-manifold (following notation of [3]) which means the following: V is
compact, ¥V — S is an oriented connected 2n-manifold, dim S £ 2n — 2, and
ae HX(V) such that o"[V] = deg V > 0, where [V] generates H,,(V:Z,)) = Z,,,.
We suppose that i*(f) = o where Be H*(X;Z,) is a generator.

Let G be a p-group acting on X such that g*f = B, for all ge G, and suppose
V < X is a G-subspace, and ¢S < S for all ge G.

(3.1) DeriniTION. We call the above situation “G-Z,-cohomology complex
projective variety V.

An actual projective action on CP"** leaving a complex projective variety
V invariant is an example.
In [3] it was shown:

(3.2) LEMMA. In the spectral sequence for Vi over Bg with Z,,, coefficients, if
degree V % Omod p, then E3° =~ E3° =~ H¥*Bg;Z,,) and « is transgressive, so
dsoe H¥(Bg; Z))-

Proor. If xeE}' so that d,xeE3° then d,(«"x)= a"(d,x), but
a"xeE}?"*! = 0 and o™ E3° — E3'*" > H3(Bg; H*"(V)) is an isomorphism.

(3.3) THEOREM. Suppose G permutes my(X€) non-trivially (C = Z/p < G a cen-
tral subgroup), (so that n + k = —1modp). If V" < X is a G-Z,-cohomology
complex subvariety of X and deg V £ Omod p then n = — 1 mod p, so that codi-
mension V in X is divisible by p.

PrOOF. If G acts non-trivially on 7mo(X€), then 158 %+ 0 by (2.7). Hence
dya=15040 by (3.2, and d;o"*'=(n+ l)a"(dsa)=0 so that
(n + 1) =0modp.

Now we recall [3, (1.8)].

(3.4) THEOREM. Let V" be a G-polarized Z,-homology 2n-near-manifold with
ae H¥(V;Z,) the polarization. Suppose G = Z/p and deg V = a"[V] % Omod p.
Then V¢ = Vyu...uV,_, where V, = largest union of components such that
&—iy is nilpotent in H*(V)g,Z), for v a generator of H*Bg;Z)
(%)6 = V; x Bg the Borel construction, and &€ H*(Vg; Z,,) is an element such that
j*=aj VoVs If ixx VicV, and o =i¥(®), then of*+0 where

rp—1
Y. (e + 1) 2 n + 1, s0 that dim V, = 2h,.
k=0

We note that for (X"**, V") a G-Z,) cohomology complex projective variety,
GxZ/panddegV £ O0modp, X6 = Xou...uX,_; by(21)and ¥V, =V n X,
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§4. Actions on complex projective varieties.

We will combine results of previous sections with a little bit of the geometry of
projective space to prove stronger theorems.

We adapt a standard method to the equivariant context: intersection with an
invariant hyperplane.

Since we use G-hyperplanes we will not be able to perturb them, so that we
cannot ensure that they are generic for the given G-variety.

(4.1) LEMMA. Let V" = CP™ be a variety,and H" ' = CP™ a hyperplane. Then
deg(Vn H) divides deg V.

PrOOF. This is a standard elementary fact for generic H, taking a generic
(m — n)-hyperplane H' < H, and counting H' "V =H' n(Hn V).

We now proceed as follows: In a small tubular neighborhood T of H, we can
find a generic hyperplane Hy, = T, so that deg(V n Hy) = deg V. Now H, is
homologous to H in T, and the retraction of T into H will carry V, n H inside
aregular neighborhood Sof ¥V n Hin H. Now i¥(o% ~*)[V n H,] = deg(V N H,),
io: VN Hy c Hy, age H*(H,) the hyperplane class, and o, = j*r*a, a € H*(H), j:
Hy = T, the inclusion r: T — H the retraction. It follows that the inclusion iy’
V n Hy = CP™ factors through the inclusion of S « H « CP™ and S = CP™ has
homology image deg(V n H)(generator). It follows that deg(V n H) divides
deg(V n Hy) = deg V.

We note an analogous fact for projections, which we will not use here:

(4.2) Let H? and H{ be complementary planes in CP", m=p + q + 1, i.e.
H, nH, =@, 4nd let p: CP™ — H, — H, be the projection. If ¥ n H, = @, then
deg(p(V)) divides deg(V).

PRrROOF. The argument is similar to (4.1), for the inclusion ¥V = CP™ factors up
to homotopy through the inclusion of p(V) = CP™

(4.3) LEMMA. Let G be a finite p-group < PU(m + 1), V" a G-subvariety of CP™
with deg V £ Omod p, and let H" ' be a G plane <« CP™. If dimVH =n—t,
then V N H has an irreducible component V' with GV’ = V' and deg V' £ Omod p.

PROOF. By (4.1),deg V n H £ O0mod p. For each component ¥; of V n H, such
that GV; ¢ V, then GV, has (p) components ¢ 2 1. If no component were invari-

ant, deg(V N H) = _ deg(GV;) would be divisible by p.

We note the following obvious ‘G-duality’.

(4.4) PROPOSITION. Let G be a closed subgroup of PU(m + 1), and let H — CP™
be a G-invariant plane. Then the complementary plane H* = CP™ is G-invariant.
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(4.5) THEOREM. Let G = Z/p" = PU(m + 1), V" a G-subvariety of CP™ with
deg V £ Omod p. Then V¢ % 0.

PRrOOF. By (2.4), there exist fixed points xo € CP™, Gxo = xo. Then H™ ! = (x3)
is G-invariant, so VN H is a G-subvariety of H® !, and either V < H so
V=VnHordimVnH = (dim) V) — 1 and there is a G invariant component
¥, of V.~ H with deg V;  0mod p, by (4.3) and (4.1). The proof is completed by
induction on dimension and codimension, where codimension 0 is (2.4) and
dimension 0 is the usual counting argument. Namely if S is a finite G-set, and
|G| = p', and if S = @ then |S| = Y’ |orbits| is divisible by p. But a variety V of
dimension 0 is a finite set, and deg V = |V|.

(4.6) THEOREM. Let G be an abelian p-group = PU(m + 1) and suppose
V* « CP™is a G-invariant subvariety with deg V £ 0 mod p. Then under any of the
following conditions V¢ %
(i) nZF —1modp.
(i) tge =0, ac H*(V) the hyperplane class, 1g: H*V)— H3(Bg) the trans-
gression.
(iii) g = 0, fe H(CP™) the hyperplane class.
(iv) m — n % Omod p.
(v) G has a fixed point in CP™.

Proor. Conditions (i), (ii), (iii) and (iv) all imply (v), (see (2.8)), so it suffices to
show (v) implies V¢ # @. If x, e CP™ is fixed by G, then H = (x3) is a G-hyper-
plane. By (4.1)and (4.3) we get V; = V n H with deg V; & O0mod p and by (2.10),
HE¢ # @, so the proof goes by induction.

(4.7) THEOREM. Let G be a p-group < PU(m + 1) withO <m < 2p — 1, and let
V"< CP™, n<m, be a G-invariant subvariety with degV % Omodp. Then
Vo9

ProoF. Since m < 2p — 1,if m + p — 1, G has a fixed point on CP™ by (2.3). If
m = p — 1,15x = 0by(3.3),so that G has a fixed point on CP™ by (2.11). Let x, be
a fixed point, H = (x3). There is a G-invariant component V; of V n H with
degree ¥; £ Omod p by (4.3), and we proceed by induction on m.

(4.8) THEOREM. Let G be a finite p-group in PU(m + 2), V™ a G-invariant
hypersurface in CP™*! with degree V ¥ Omodp and suppose m% —2 or
—1mod p. Then V¢ % 0.

ProoF. Let C be a central Z/p = G so that by (2.1) (CP™"* ") = Xg°uU...
p—1
UX7peit with m+2= ) (m+1). By (3.4 VE=Veu--ulry, with

i=0

r—-1
m+1< Y (m+ 1y and each ¥ c X,. It follows that for at most one i, (say
i=0
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i =0), ny < my, while n; = m;for i > 0, so that X; = V;,i > 0. By (3.3), each X; is
G-invariant, i.e. G acts on X, each i, so V; = V n X;is G invariant. If X¢ + 0, we
are done so that we may assume X = @ for i > 0 so that p|m; + 1 for i > 0.
Hence m = mymod p, by (2.1), Bredon’s Formula. Since m + 1 £ —1modp,
X$ 40, by (2.3) so if Vo =X, we are done, ie. if dimV, =dimX,. If
dim ¥, < my = dim X, then dim V¥, = my — 1, my = mmod p, and by (4.3) V,
has irreducible component V'’ invariant under G with deg V' & 0 mod p. The
result follows by induction on |G| or m.

(4.9) LEMMA. Let G < PU(n + 1) act projectively on X = CP", G a p-group
Go = G such that G/Gy = Z/p and suppose X%° @ and XS = . Then for any
point xo€ X%, Gx, consists of p orthogonal points.

PrOOF. The components of X% are again complex projective spaces, so if
X% =@, then G/G, must freely permute components of X% for otherwise
G/Go = Z/p would act on a single component X;, and we would have
Xr = XE + 0, by (2.1).

But different components of X ° are orthogonal (by induction on |G, ), so that
for any x, € X9, Gx, consists of p orthogonal points, each in different compo-
nent of X%,

(4.10) THEOREM. Let G be a p-group = PU(m + 2) leaving an irreducible
Y™ < CP™*! (= X™*?) invariant, with deg V £ Omod p and suppose p divides
m+ 2. Then VS £ .

Proor. We proceed by induction on |G| and on m, the cases |G| = p and
m < 2p — 2 being proved.
Let C be a central Z/p = G and let C = G, = G where G, has index p in G.
Let VS=Vou...uV,_, X =Xg°U "UXmy, V,c X; and ¥, = X; for
i > 0, as before. We consider two cases:
(a) dim Vo =my — 150 ¥V, ¥ X, and
(b) Vo = X,, so V€ = X€,

By (3.3) each X is G invariant.

We may assume p| m; + 1 for eachi > 0, for otherwise X # @ for some i > 0,
and ¥, = X;,s0 V¢ 0.

In case (a), deg V, £ Omod p, so V¥, has a G irreducible component with degree
prime to p, and p|(mo + 1), since p|(m+2), p|(m;+ 1) for i>1, and
Y (m; + 1) = m + 2. Hence V§ + @ by induction.

Now consider case (b) so ¥¢ = X and assume X&° + @, X¢ = 0.

We would now like to make an inductive argument by intersecting V with
a codimension p plane invariant under G. The difficulty in the argument is to be
sure that the intersection has codimension p, rather than lower codimension.
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Let xo € X9° 50 that Gxo = {xo,9X0,..-,g" X0}, g ¢ Go, is an orthogonal orbit
(using (4.9)), and let H = (xo)*, so GoH = H, Gog'H = ¢g'H for each i and

p—1
G permutes the g'H’s transitively. Then K = (") g'H has codimension pin X and
i=0
is a G-invariant complex projective subspace. It remains to show that V'~ K has
codimension 1 in K so that we may proceed by induction on dimension.

i+1 p—1
Let Hy=H, Hiy, = Hing'*'H= () ¢/H,so that K = () H;=H,_, and
ji=0 i=0

X>H,>H,>...> H,_, > Kisadescending sequence of codimension 1 hy-
perplanes. Since H = xg and Gxo = {X¢,gXo,...,g” 'Xo} = X,isan orthogonal
orbit it follows that each H; meets X, transversally.

(4.11) LEMMA. Suppose V™ is irreducible in CP™** and V™ > A*, a projective
subspace. Let H™ —« CP™*! be a projective hyperplane and suppose H meets
A transversally, so dimA~H =k — 1. Then every irreducible component of
VN H contains An H.

Proor. Since V is irreducible and H does not contain A, it follows that
H % Vand H4¢ V. Hence V n H has dimensionm — 1, V. n H < H™. Hence any
irreducible component U of ¥V n H has dimension m — 1. It follows that U n 4
has codimension at most 1in Aand U n A = A n H, which has codimension one
in A, and AnH is a projective space so UnA=AnH since
dimU n A = dim A n H and 4 n H is irreducible. This proves the lemma.

Since each H; meets X, transversally and V o X, it follows by induction, using
(4.11), that each irreducible component of ¥V n H; contains X, n H;. Since H;
does not contain X, N H;, H;,; cannot be a component of ¥V n H;, so VN H; 4,
has codimension 1 in H,,,. Hence V n K has codimension 1 in K, and (4.10)
follows by induction on dimension.

Now we can derive the general result on hypersurfaces.

(4.12) THEOREM. Let G be a finite p-group = PU(m + 1), leaving an irreducible
variety V™ c CP™*! invariant, with degree V % Omodp. Then either
VO %@ or XO = {xo} and V = (xo)".

Proor. By (4.8) and (4.10), it remains to consider the case where

= —1modp, so that X5+ @ by (2.3). Let xoeX® and let H = (xo)*. If
V £H, then V n H has an irreducible G-component with degree prime to p,
dim ¥V~ H = m — 1 and (4.10) applies.
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