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AN ABSTRACT CHARACTERIZATION OF
o-CONDITIONAL EXPECTATIONS

CARLO CECCHINI

Abstract.

An abstract characterization of w-conditional expectations on von Neumann algebras is given
as dual maps of canonical state extensions perturbed with convenient partial isometries.

1. Introduction, preliinnaries and notations.

The notion of an w-conditional expectation (w-c.e.) from a von Neumann
algebra . to a von Neumann subalgebra .#,, with respect to a faithful normal
state w on # (cfr. [4] for the generalization to states having only faithful
restriction w, to .#,) was introduced in [1] as a generalization of w-preserving
norm one projections; there w-c.e. were constructed explicitely for a general
triple (#, #,, ®) as above and their properties studied. The w-c.e. have been
characterized in the framework of modular theory for von Neumann algebras,
[1] and of the noncommutative theory of integration on von Neumann algebras
[2], but no abstract characterization of w-c.e. exists in the literature. The main
purpose of this paper is to give such a characterization.

We shall always consider a von Neumann algebra .# with predual .#,, acting
on a separable Hilbert space 5, with a von Neumann subalgebra .#,,. The set of
normal states on . will be denoted by #(#), and the set of faithful normal states
on .#, by %(.#,). We shall indicate by ¢, the w-c.e. from .# to .#,, and refer for
the related theory to [1] and [4]. We shall only recall that ¢, is an w preserving
completely positive linear weak-operator continuous contraction from .4 to
M. In [4] a notion of equivalence for w-c.e. was studied. Namely, let .# act in
standard form on the Hilbert space ,, 2 be a cyclic and separating vector in
Hu, # 4, be the closure of the set {a, Q:a, € .#,}. The .#, acts in standard form
on the Hilbert subspace #,_ of #,. Two w-c.¢. ¢, and ¢, are equivalent (¢, ~ &)
if the corresponding states w and ¢ admit representative vectors in the natural
positive cone Vi of . In this case there is a partial isometry u e .# such that
€, = g,(u" -u) (and symmetrically), which is explicitly given in [4]. There is
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a bijection between the set of the elements of & (.#) with restriction to .# in
(M) and F(A#,) x E if we indicate by E the set of all equivalence classes & of
w-c.e. from .# to #,. It is obtained by associating to each w in the former set the
couple (wy, &), with wy = w| 4, _and & the equivalence class of w-c.e. to which ¢,
belongs. With the above notation, we can associate to & the operator T, defined
by setting T(w,) = w. If & is a singleton i.e. it has only one element), then its
unique element is a norm one projection, and, conversely, if & contains a norm
one projections then it is a singleton. For a comprehensive treatment of this
theory see [4].

In [6] it is proved that if w,¢pe F(A) and there is an a > 0 such that
¢ < aw(p < w)then the Connes cocycle (D¢ : Dw), (cfr. [5]) admits a bounded
and continuous .#-valued extension to the strip S={zC:0<Imz <4},

which is analyticin its interior, and that if we denote by 4 (¢, w) its value at z = >
we have

¢(a) = o(d(p, )" a A(¢, w))

for all ae .#. It follows easily from the modular theory of von Neumann algebras
that if # acts standardly on # and Q is cyclic and separating vector in J,,
representing o (i.e. w(a) = (R, ¥$ for ae .#), then A(¢p, w) R is the vector repre-
senting ¢ in the natural positive cone V.

2. The main result.

2.1 DEFINITION. A mapping p: ¥(# ) = S (M) will be called a state extension
if p(wo)| My = Do for all wy e L(A,).

2.2 PROPOSITION. The following conditions are equivalent if p is a state exten-
sion from ¥ (M) to F(M):
a) For all wy, o€ S;(My) such that ¢y, < vy we have, for allae M.

[p(9a)](@) = [p(@0)] (A(¢o, wo) ™ a 4 (o, o))

b) Let # act standardly on 3, Q be a vector (separating for .#,) representing
in #, the state p(w,), with wye S (M), and K, and Vi as defined in the
preliminaries. Then each vector in V° is a representative vector for some state
p(@o) with @€ S(M,) and, conversely, for each ¢, € (M) the state p(@o) has
a (unique) representative vector V.

c) The mapping p is norm continuous and there is an w, € S;(M,) such that if
Qo < wg then for all ae MA:

[(90)1(a) = [p(wo)](A(@o, wo) ™ a 4(@o, wo))

d) p = T, for some equivalence class of w-c.e. from M to M,. .
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PROOF. a=>b. Let ¢q€ F(Mo), 2, +4,) be the representative vector for
0o (3 (@o + @) in V. It suffices to prove that Q,, is a representative vector for
p(po)- We have

Q = A(wo, 3 (W + 90)) Ly(0y +00)
Qq,o = A(@o, 3 (wo + ¢o)) Qo+ 00)

Condition a) applied to the pair of states w and 4 (w, + @o) gives that Q,, 1 5,18
the vector representative of p(} (w, + o)) in Vi, and then applied to ¢, and
$(@o + @o) yields that Q, is the vector representative of p(p,) in
ViiSoo+e0 = V&, thus proving our claim.

b=>c. Let w, and Q be as in the statement. If ¢, < w,, the only vector
representing an extension of @, in Vg is Q,, = A(@o, wo) £, s0 by b) it must
represent p(@,). Therefore

[o(@o)](a) = <Qp(¢0)' an((po)> ={Q@y,aQ¢y) =
= {A(@o, wo) 2,a Ao, o) 2 = [p(0)](A(@o, wo)+ a4(po, wo))

Let now (@,), be a sequence in F(#,) converging in norm to ¢, € $(#,), and
Q)0 2o their representative vectors in V. Because of the properties of the
natural positive cone V. we have

16(@0)n) — Pl < 12, — L00ll* < (@0)s — @0l = 0

and get the continuity of p.
c=d. Let & be the equivalence class of w-e.c. to which ¢, belongs. Then if
Po <€ wg, by [4] A(py + we) 2 is a representative vector for Ty(¢,), and so
Ts(@o) = p(@e). The density of the states ¢, such that ¢, < w, and the norm
continuity of T, proved in [4] give T, = p.

d=a. Let wg, ¢, be as in a), and Q a vector representative of p(w,) = Ts(w)
(85w, €€)- Then by [4] 4 (@, + w,) 2 is a vector representing Ty(@o) = p(@o),
and a) follows.

2.3. DEFINITION. A state extension p: (#,) » &(#) will be called canonical
if it satisfies the equivalent conditions in proposition 2.2. If .# is abelian the
above conditions are equivalent to the preservation by p of Radon-Nikodym
derivates. Conditions a) (and c)) in 2.2 give an abstract of canonical state
extensions, while condition d) is constructive and allows us to establish a bijec-
tion between canonical state extensions and equivalence classes of w-c.e., since
T, = T,,if and only if & = &, (cfr. [4]). We shall denote by &, the equivalence
class of w-c.e. corresponding to p and p, the canonical state extension corre-
sponding to &. In other words if p is a canonical state extension all the w-c.e.
Epwg) fOT o € F(M,) are equivalent and form the equivalence class &,.
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2.4, Theorem. Let p be a canonical state extension from & (M) to S (M). Then
p can be extended to a bounded linear mapping p from (#,), to M, ifand only if &, is
a singleton.

PRrOOF. Let &, be a singleton. By [4] its only element ¢, is a norm one
projection, and
plwo) = ’I}P(wo) = W ° &y

The mapping p: o = ¢, © &, from (#,), to .#, is clearly a bounded extension of
p. The converse implication is a consequence of prop. 2.8.

In the general situation the notion of bounded linear w-up to a phase extension
to be defined below can be used as a substitute of the (nonexisting) bounded linear
extension of a canonical state extension p.

2.5. DEFINITION. Let A",.# be von Neumann algebras, A a mapping from
FHA) to L (M), woeF(AN). We say that a bounded linear mapping
Aw: Ny = M, is a bounded linear wq-up to a phase extension of A if for each
¢ € SYN) there is a partial isometry (phase) u,, (@) in .# such that

a) uwo (wo) =1
b) [Aa, (9)1(a@) = [AP)] ()" au(p)
for all ae #.

Obviously the notion defined above reduces to a usual bounded linear exten-
sion if u,(p) = I for all ¢ € FH(N).

2.6. THEOREM. For any canonical extension p:¥(My)— F(H) and all
o € S(M o) there is a unique bounded linear wy-up to a phase extension p,, of p.
Its explicit form is p,, (9o) = @ ° €,(Wo)-

PROOF. The mapping @o — Q¢ ° &y (Po € F(M,)) is clearly linear and
bounded. In [4] the explicit form of a family of partial isometries u,, (o) in # is
given, such that, for ae #, we have

Ep(w0) (B) = Epipq) (Uary (P0) ™ AU, (P0)),
because, as already remarked, &,(,,, ~ &, SO, for ae #:
[#0 ° &pwe] (@) = @0 (6p(w0) (e, (Po)* a “mo(¢o))) =
= [ (®0)] (0, (90)* au, (o)),

and u,, (wo) = I. This implies that p,,, = @ €,(,, is a bounded linear w, up to
a phase extension of p.
Let now, for each ¢, € &;(#,), u, (@) be a partial isometry in A, u,, (wo) = I
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and g, the w-c.e. from .# to .# relative to p (¢,). A necessary condition for the
mapping

¢o = [p(@o)] (uy, (@) Upy(®0)

to have an extension to a bounded linear mapping from (.#,),, to .#, is that for
each ae .# the mapping

®o = [0 (@0)] (0, (90) " ati, (90)) =
= Qo (ep((po) (umo ((pO))

must have an extension to a bounded linear functional on (.#,),. This implies
that £, (4, (90) " au, (@,)) must be independent from ¢, or, more precisely,
for all ¢, € %(#,) the condition

8p(¢0) (uwo ((p0)+ a uwo ((pO)) = gp(o)o) (a)

must be satisfied, which can happen only for the mapping @o = @ ° €,,,)-

Note that in general the mapping p,,, and p,, by [4] and their explicit form
given above differ only by a partial isometry in .#. The above proposition gives
us immediately the following main theorem.

2.7 THEOREM (abstract characterization of w-conditional expectations). 4An
w-c.e. from M to M is the dual mapping (in the sense of Banach spaces duality) of
the unique bounded linear w, up to a phase extension p, of a canonical state
extension p from S (M,) to F (M) relative to an wy€ F(M,).

Proor. We have for all ae # and ¢, € S(A,)

(P* (@) = [£0y(00)] (a) = [0 ° &)(ap7] (),

which implies p*,,, = €,0q):

2.8. PROPOSITION. p,, = p, if and only if €, = €40
ProoF. If ¢,,,,), we have, for ¥, e S(4,) p,,,o(t//(,) = Y00 = Y0 ° Epipo) =
Pwo('l'o), or pwo = pwo'
Conversely, for all ae M,y o€ F(M,):
Volepiwo) (@) = [pu, W01 (@) = [p;,(W0)](a) =
= Yo (€pp) (@), Which implies €,¢,0) = €y(w0)-
For a study of the condition &,,,, = €, see [7]-
PROOF OF THEOREM 2.4 (end) Let wy, ¢o€ S(#,), and the canonical state
extension p admit a bounded linear extension p (.#,), — .#,. By the unicity of
the bounded linear w, up to a phase extension we have p,,, = p = p, . By prop.

2.8 this implies ¢ - As this holds for all w,, 9o € F(H,), &, is a single-
ton.

p(wo) = Eolo
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