AN ABSTRACT CHARACTERIZATION OF ω-CONDITIONAL EXPECTATIONS

CARLO CECCHINI

Abstract.

An abstract characterization of ω -conditional expectations on von Neumann algebras is given as dual maps of canonical state extensions perturbed with convenient partial isometries.

1. Introduction, prelimnaries and notations.

The notion of an ω -conditional expectation (ω -c.e.) from a von Neumann algebra \mathcal{M} to a von Neumann subalgebra \mathcal{M}_0 with respect to a faithful normal state ω on \mathcal{M} (cfr. [4] for the generalization to states having only faithful restriction ω_0 to \mathcal{M}_0) was introduced in [1] as a generalization of ω -preserving norm one projections; there ω -c.e. were constructed explicitly for a general triple (\mathcal{M} , \mathcal{M}_0 , ω) as above and their properties studied. The ω -c.e. have been characterized in the framework of modular theory for von Neumann algebras, [1] and of the noncommutative theory of integration on von Neumann algebras [2], but no abstract characterization of ω -c.e. exists in the literature. The main purpose of this paper is to give such a characterization.

We shall always consider a von Neumann algebra \mathcal{M} with predual \mathcal{M}_* acting on a separable Hilbert space \mathcal{H} , with a von Neumann subalgebra \mathcal{M}_0 . The set of normal states on \mathcal{M} will be denoted by $\mathcal{S}(\mathcal{M})$, and the set of faithful normal states on \mathcal{M}_0 by $\mathcal{S}_f(\mathcal{M}_0)$. We shall indicate by ε_ω the ω -c.e. from \mathcal{M} to \mathcal{M}_0 , and refer for the related theory to [1] and [4]. We shall only recall that ε_ω is an ω preserving completely positive linear weak-operator continuous contraction from \mathcal{M} to \mathcal{M}_0 . In [4] a notion of equivalence for ω -c.e. was studied. Namely, let \mathcal{M} act in standard form on the Hilbert space $\mathcal{H}_{\mathcal{M}_0}$, Ω be a cyclic and separating vector in $\mathcal{H}_{\mathcal{M}_0}$, $\mathcal{H}_{\mathcal{M}_0}$ be the closure of the set $\{a_0 \Omega : a_0 \in \mathcal{M}_0\}$. The \mathcal{M}_0 acts in standard form on the Hilbert subspace $\mathcal{H}_{\mathcal{M}_0}$ of $\mathcal{H}_{\mathcal{M}_0}$. Two ω -c.e. ε_ω and ε_φ are equivalent $(\varepsilon_\omega \sim \varepsilon_\varphi)$ if the corresponding states ω and φ admit representative vectors in the natural positive cone $V_\Omega^{\mathcal{M}_0}$ of $\mathcal{H}_{\mathcal{M}_0}$. In this case there is a partial isometry $u \in \mathcal{M}$ such that $\varepsilon_\omega = \varepsilon_\varphi(u^+ \cdot u)$ (and symmetrically), which is explicitly given in [4]. There is

a bijection between the set of the elements of $\mathscr{S}(\mathscr{M})$ with restriction to \mathscr{M}_0 in $\mathscr{S}_f(\mathscr{M}_0)$ and $\mathscr{S}_f(\mathscr{M}_0) \times E$ if we indicate by E the set of all equivalence classes \mathscr{E} of ω -c.e. from \mathscr{M} to \mathscr{M}_0 . It is obtained by associating to each ω in the former set the couple (ω_0, \mathscr{E}) , with $\omega_0 = \omega|_{\mathscr{M}_0}$ and \mathscr{E} the equivalence class of ω -c.e. to which ε_ω belongs. With the above notation, we can associate to \mathscr{E} the operator $T_{\mathscr{E}}$ defined by setting $T_{\mathscr{E}}(\omega_0) = \omega$. If \mathscr{E} is a singleton i.e. it has only one element), then its unique element is a norm one projection, and, conversely, if \mathscr{E} contains a norm one projections then it is a singleton. For a comprehensive treatment of this theory see [4].

In [6] it is proved that if $\omega, \varphi \in \mathcal{S}(\mathcal{M})$ and there is an $\alpha > 0$ such that $\varphi \leq \alpha \omega (\varphi \leqslant \omega)$ then the Connes cocycle $(D\varphi : D\omega)_t$ (cfr. [5]) admits a bounded and continuous \mathcal{M} -valued extension to the strip $S = \{z \in \mathbb{C} : 0 \leq \text{Im } z \leq \frac{1}{2}\}$, which is analytic in its interior, and that if we denote by $\Delta(\varphi, \omega)$ its value at $z = \frac{i}{2}$, we have

$$\varphi(a) = \omega(\Delta(\varphi, \omega)^+ \ a \ \Delta(\varphi, \omega))$$

for all $a \in \mathcal{M}$. It follows easily from the modular theory of von Neumann algebras that if \mathcal{M} acts standardly on \mathcal{H} and Ω is cyclic and separating vector in $\mathcal{H}_{\mathcal{M}}$ representing ω (i.e. $\omega(a) = \langle \Omega, \Omega' \rangle$ for $a \in \mathcal{M}$), then $\Delta(\varphi, \omega) \Omega$ is the vector representing φ in the natural positive cone $V_{\Omega}^{\mathcal{M}}$.

2. The main result.

- 2.1 DEFINITION. A mapping $\rho: \mathscr{S}(\mathcal{M}_0) \to \mathscr{S}(\mathcal{M})$ will be called a state extension if $\rho(\omega_0)|_{\mathcal{M}_0} = \omega_0$ for all $\omega_0 \in \mathscr{S}(\mathcal{M}_0)$.
- 2.2 Proposition. The following conditions are equivalent if ρ is a state extension from $\mathcal{S}(\mathcal{M}_0)$ to $\mathcal{S}(\mathcal{M})$:
 - a) For all ω_0 , $\varphi_0 \in \mathscr{S}_f(\mathscr{M}_0)$ such that φ_0 , $\leqslant \omega_0$ we have, for all $a \in \mathscr{M}$:

$$[\rho(\varphi_0)](a) = [\rho(\omega_0)](\Delta(\varphi_0, \omega_0)^+ a \Delta(\varphi_0, \omega_0))$$

- b) Let \mathcal{M} act standardly on $\mathcal{H}_{\mathcal{M}}$, Ω be a vector (separating for \mathcal{M}_0) representing in $\mathcal{H}_{\mathcal{M}}$ the state $\rho(\omega_0)$, with $\omega_0 \in \mathcal{L}_f(\mathcal{M}_0)$, and $\mathcal{H}_{\mathcal{M}_0}$ and $V_\Omega^{\mathcal{M}_0}$ as defined in the preliminaries. Then each vector in $V_\Omega^{\mathcal{M}_0}$ is a representative vector for some state $\rho(\varphi_0)$ with $\varphi_0 \in \mathcal{L}_f(\mathcal{M}_0)$ and, conversely, for each $\varphi_0 \in \mathcal{L}_f(\mathcal{M}_0)$ the state $\rho(\varphi_0)$ has a (unique) representative vector $V_\Omega^{\mathcal{M}_0}$.
- c) The mapping ρ is norm continuous and there is an $\omega_0 \in \mathscr{S}_f(\mathcal{M}_0)$ such that if $\varphi_0 \ll \omega_0$ then for all $a \in \mathscr{M}$:

$$[\rho(\varphi_0)](a) = [\rho(\omega_0)] (\Delta(\varphi_0, \omega_0)^+ a \Delta(\varphi_0, \omega_0))$$

d) $\rho = T_s$ for some equivalence class of ω -c.e. from \mathcal{M} to \mathcal{M}_0 .

PROOF. $a \Rightarrow b$. Let $\varphi_0 \in \mathscr{S}_f(\mathscr{M}_0)$, $\Omega_{\frac{1}{2}(\omega_0 + \varphi_0)}$ be the representative vector for $\varphi_0(\frac{1}{2}(\omega_0 + \varphi_0))$ in $V_{\Omega}^{\mathscr{M}_0}$. It suffices to prove that Ω_{φ_0} is a representative vector for $\rho(\varphi_0)$. We have

$$\Omega = \Delta \left(\omega_0, \frac{1}{2}(\omega_0 + \varphi_0)\right) \Omega_{\frac{1}{2}(\omega_0 + \varphi_0)}$$

$$\Omega_{\varphi_0} = \Delta \left(\varphi_0, \frac{1}{2}(\omega_0 + \varphi_0)\right) \Omega_{(\varphi_0 + \varphi_0)}$$

Condition a) applied to the pair of states ω and $\frac{1}{2}(\omega_0 + \varphi_0)$ gives that $\Omega_{\frac{1}{2}(\omega_0 + \varphi_0)}$ is the vector representative of $\rho(\frac{1}{2}(\omega_0 + \varphi_0))$ in $V_{\Omega}^{\mathcal{M}_0}$, and then applied to φ_0 and $\frac{1}{2}(\omega_0 + \varphi_0)$ yields that Ω_{φ_0} is the vector representative of $\rho(\varphi_0)$ in $V_{\Omega^{\frac{1}{2}(\omega_0 + \varphi_0)}}^{\mathcal{M}_0} = V_{\Omega}^{\mathcal{M}_0}$, thus proving our claim.

 $b\Rightarrow c$. Let ω_0 and Ω be as in the statement. If $\varphi_0 \ll \omega_0$, the only vector representing an extension of φ_0 in $V_{\Omega}^{M_0}$ is $\Omega_{\varphi_0} = \Delta(\varphi_0, \omega_0) \Omega$, so by b) it must represent $\rho(\varphi_0)$. Therefore

$$\begin{split} \left[\rho(\varphi_0)\right](a) &= \left<\Omega_{\rho(\varphi_0)}. \text{ a } \Omega_{\rho(\varphi_0)}\right> = \left<\Omega\varphi_0, a\,\Omega\varphi_0\right> = \\ &= \left<\varDelta(\varphi_0, \omega_0)\,\Omega, a\,\varDelta(\varphi_0, \omega_0)\,\Omega\right> = \left[\rho(\omega_0)\right]\left(\varDelta(\varphi_0, \omega_0)^+ \,a\,\varDelta(\varphi_0, \omega_0)\right) \end{split}$$

Let now $(\varphi_0)_n$ be a sequence in $\mathscr{S}_f(\mathcal{M}_0)$ converging in norm to $\varphi_0 \in \mathscr{S}_f(\mathcal{M}_0)$, and $\Omega_{(\varphi_0)_n}$, $\Omega\varphi_0$ their representative vectors in $V_{\Omega}^{\mathcal{M}_0}$. Because of the properties of the natural positive cone $V_{\Omega}^{\mathcal{M}_0}$ we have

$$\|\rho((\varphi_0)_n) - \rho(\varphi_0)\| \le \|\Omega_{(\varphi_0)_n} - \Omega\varphi_0\|^2 \le \|(\varphi_0)_n - \varphi_0\| \to 0$$

and get the continuity of ρ .

 $c\Rightarrow d$. Let $\mathscr E$ be the equivalence class of ω -e.c. to which ε_{ω} belongs. Then if $\varphi_0 \ll \omega_0$, by [4] $\Delta(\varphi_0 + \omega_0)\Omega$ is a representative vector for $T_{\mathscr E}(\varphi_0)$, and so $T_{\mathscr E}(\varphi_0) = \rho(\varphi_0)$. The density of the states φ_0 such that $\varphi_0 \ll \omega_0$ and the norm continuity of $T_{\mathscr E}$ proved in [4] give $T_{\mathscr E} = \rho$.

d \Rightarrow a. Let ω_0 , φ_0 be as in a), and Ω a vector representative of $\rho(\omega_0) = T_{\mathscr{E}}(\omega_0)$ ($\varepsilon_{\rho(\omega_0)} \in \mathscr{E}$). Then by [4] $\Delta(\varphi_0 + \omega_0)\Omega$ is a vector representing $T_{\mathscr{E}}(\varphi_0) = \rho(\varphi_0)$, and a) follows.

2.3. DEFINITION. A state extension $\rho: \mathscr{S}(\mathcal{M}_0) \to \mathscr{S}(\mathcal{M})$ will be called canonical if it satisfies the equivalent conditions in proposition 2.2. If \mathcal{M} is abelian the above conditions are equivalent to the preservation by ρ of Radon-Nikodym derivates. Conditions a) (and c)) in 2.2 give an abstract of canonical state extensions, while condition d) is constructive and allows us to establish a bijection between canonical state extensions and equivalence classes of ω -c.e., since $T_{\mathcal{E}_1} = T_{\mathcal{E}_2}$ if and only if $\mathcal{E}_1 = \mathcal{E}_2$ (cfr. [4]). We shall denote by \mathcal{E}_p the equivalence class of ω -c.e. corresponding to ρ and $\rho_{\mathcal{E}}$ the canonical state extension corresponding to \mathcal{E} . In other words if ρ is a canonical state extension all the ω -c.e. $\varepsilon_{\rho(\omega_0)}$ for $\omega_0 \in \mathcal{S}_f(\mathcal{M}_0)$ are equivalent and form the equivalence class \mathcal{E}_p .

2.4. Theorem. Let ρ be a canonical state extension from $\mathscr{S}(\mathcal{M}_0)$ to $\mathscr{S}(\mathcal{M})$. Then ρ can be extended to a bounded linear mapping $\tilde{\rho}$ from $(\mathcal{M}_0)_*$ to M_* if and only if \mathscr{E}_p is a singleton.

PROOF. Let \mathscr{E}_p be a singleton. By [4] its only element ε_p is a norm one projection, and

$$\rho(\omega_0) = T_{\mathfrak{E}}(\omega_0) = \omega_0 \circ \varepsilon_{\rho}.$$

The mapping $\tilde{\rho}: \varphi_0 \to \varphi_0 \circ \varepsilon_{\rho}$ from $(\mathcal{M}_0)_*$ to \mathcal{M}_* is clearly a bounded extension of ρ . The converse implication is a consequence of prop. 2.8.

In the general situation the notion of bounded linear ω -up to a phase extension to be defined below can be used as a substitute of the (nonexisting) bounded linear extension of a canonical state extension ρ .

2.5. DEFINITION. Let \mathcal{N}, \mathcal{M} be von Neumann algebras, λ a mapping from $\mathscr{G}_f(\mathcal{N})$ to $\mathscr{G}(\mathcal{M})$, $\omega_0 \in \mathscr{G}_f(\mathcal{N})$. We say that a bounded linear mapping $\lambda_\omega \colon \mathcal{N}_* \to \mathcal{M}_*$ is a bounded linear ω_0 -up to a phase extension of λ if for each $\varphi \in \mathscr{G}_f(\mathcal{N})$ there is a partial isometry (phase) $u_{\omega_0}(\varphi)$ in \mathcal{M} such that

a)
$$u_{\omega_0}(\omega_0) = I$$

b) $[\lambda_{\omega_n}(\varphi)](a) = [\lambda(\varphi)](u_{\omega}(\varphi)^+ a u_{\omega}(\varphi))$

for all $a \in \mathcal{M}$.

Obviously the notion defined above reduces to a usual bounded linear extension if $u_{\omega}(\varphi) = I$ for all $\varphi \in \mathscr{S}_f(\mathscr{N})$.

2.6. THEOREM. For any canonical extension $\rho: \mathcal{S}(\mathcal{M}_0) \to \mathcal{S}(\mathcal{M})$ and all $\omega_0 \in \mathcal{S}_f(\mathcal{M}_0)$ there is a unique bounded linear ω_0 -up to a phase extension ρ_{ω_0} of ρ . Its explicit form is $\rho_{\omega_0}(\varphi_0) = \varphi_0 \circ \varepsilon_\rho(\omega_0)$.

PROOF. The mapping $\varphi_0 \to \varphi_0 \circ \varepsilon_{\rho(\omega)}(\varphi_0 \in \mathscr{S}_f(\mathscr{M}_0))$ is clearly linear and bounded. In [4] the explicit form of a family of partial isometries $u_{\omega_0}(\varphi_0)$ in \mathscr{M} is given, such that, for $a \in \mathscr{M}$, we have

$$\varepsilon_{\rho(\omega_0)}(a) = \varepsilon_{\rho(\varphi_0)}(u_{\omega_0}(\varphi_0)^+ a u_{\omega_0}(\varphi_0)),$$

because, as already remarked, $\varepsilon_{\rho(\varphi_0)} \sim \varepsilon_{\rho(\varphi_0)}$. So, for $a \in \mathcal{M}$:

$$\begin{split} \left[\varphi_0 \circ \varepsilon_{\rho(\omega_0)}\right](a) &= \varphi_0 \left(\varepsilon_{\rho(\omega_0)} \left(u_{\omega_0} (\varphi_0)^+ a \, u_{\omega_0} (\varphi_0)\right)\right) = \\ &= \left[\rho \left(\varphi_0\right)\right] \left(u_{\omega_0} (\varphi_0)^+ a \, u_{\omega_0} (\varphi_0)\right), \end{split}$$

and $u_{\omega_0}(\omega_0) = I$. This implies that $\rho_{\omega_0} \equiv \varphi_0 \circ \varepsilon_{\rho(\omega_0)}$ is a bounded linear ω_0 up to a phase extension of ρ .

Let now, for each $\varphi_0 \in \mathscr{S}_f(\mathscr{M}_0)$, $u_{\omega_0}(\varphi_0)$ be a partial isometry in \mathscr{M} , $u_{\omega_0}(\omega_0) = I$

and $\varepsilon_{\rho(\varphi_0)}$ the ω -c.e. from \mathcal{M} to \mathcal{M}_0 relative to $\rho(\varphi_0)$. A necessary condition for the mapping

$$\varphi_0 \rightarrow [\rho(\varphi_0)] (u_{\omega_0}(\varphi_0)^+ \cdot u_{\omega_0}(\varphi_0))$$

to have an extension to a bounded linear mapping from $(\mathcal{M}_0)_*$ to \mathcal{M}_* is that for each $a \in \mathcal{M}$ the mapping

$$\begin{split} \varphi_0 &\to \left[\rho\left(\varphi_0\right)\right] \left(u_{\omega_0}(\varphi_0)^+ \, a \, u_{\omega_0}(\varphi_0)\right) = \\ &= \varphi_0\left(\varepsilon_{\rho(\varphi_0)}(u_{\omega_0}(\varphi_0))\right) \end{split}$$

must have an extension to a bounded linear functional on $(\mathcal{M}_0)_*$. This implies that $\varepsilon_{\rho(\varphi_0)}(u_{\omega_0}(\varphi_0)^+ a u_{\omega_0}(\varphi_0))$ must be independent from φ_0 , or, more precisely, for all $\varphi_0 \in \mathscr{S}_f(\mathcal{M}_0)$ the condition

$$\varepsilon_{\rho(\varphi_0)}(u_{\omega_0}(\varphi_0)^+ a u_{\omega_0}(\varphi_0)) = \varepsilon_{\rho(\omega_0)}(a)$$

must be satisfied, which can happen only for the mapping $\varphi_0 \to \varphi_0 \circ \varepsilon_{\rho(\omega_0)}$.

Note that in general the mapping ρ_{ω_0} and ρ_{φ_0} by [4] and their explicit form given above differ only by a partial isometry in \mathcal{M} . The above proposition gives us immediately the following main theorem.

2.7 THEOREM (abstract characterization of ω -conditional expectations). An ω -c.e. from \mathcal{M} to \mathcal{M}_0 is the dual mapping (in the sense of Banach spaces duality) of the unique bounded linear ω_0 up to a phase extension ρ_{ω_0} of a canonical state extension ρ from $\mathcal{L}(\mathcal{M}_0)$ to $\mathcal{L}(\mathcal{M})$ relative to an $\omega_0 \in \mathcal{L}_f(\mathcal{M}_0)$.

PROOF. We have for all $a \in \mathcal{M}$ and $\varphi_0 \in \mathcal{S}_f(\mathcal{M}_0)$

$$(\rho^*_{\omega_0}(a)) = [\rho_{\omega_0}(\varphi_0)](a) = [\varphi_0 \circ \varepsilon_{\rho(\omega_0)}](a),$$

which implies $\rho^*_{\omega_0} = \varepsilon_{\rho(\omega_0)}$.

2.8. Proposition. $\rho_{\omega_0} = \rho_{\varphi_0}$ if and only if $\varepsilon_{\rho(\omega_0)} = \varepsilon_{\rho(\varphi_0)}$

PROOF. If $\varepsilon_{\rho(\varphi_0)}$, we have, for $\psi_0 \in \mathscr{S}_f(\mathscr{M}_0)$ $\rho_{\omega_0}(\psi_0) = \psi_0 \circ \varepsilon_{\rho(\omega_0)} = \psi_0 \circ \varepsilon_{\rho(\varphi_0)} = \rho_{\omega_0}(\psi_0)$, or $\rho_{\omega_0} = \rho_{\omega_0}$.

Conversely, for all $a \in \mathcal{M}, \psi_0 \in \mathcal{S}_f(\mathcal{M}_0)$:

$$\psi_0(\varepsilon_{\rho(\omega_0)}(a)) = [\rho_{\omega_0}(\psi_0)](a) = [\rho_{j_0}(\psi_0)](a) =$$

$$= \psi_0(\varepsilon_{\rho(\varphi_0)}(a)), \text{ which implies } \varepsilon_{\rho(\varphi_0)} = \varepsilon_{\rho(\omega_0)}.$$

For a study of the condition $\varepsilon_{\rho(\varphi_0)} = \varepsilon_{\rho(\omega_0)}$ see [7].

PROOF OF THEOREM 2.4 (end) Let ω_0 , $\varphi_0 \in \mathscr{S}_f(\mathscr{M}_0)$, and the canonical state extension ρ admit a bounded linear extension $\hat{\rho}(\mathscr{M}_0)_* \to \mathscr{M}_*$. By the unicity of the bounded linear ω_0 up to a phase extension we have $\rho_{\omega_0} = \hat{\rho} = \rho_{\varphi_0}$. By prop. 2.8 this implies $\varepsilon_{\rho(\omega_0)} = \varepsilon_{\rho(\varphi_0)}$. As this holds for all ω_0 , $\varphi_0 \in \mathscr{S}_f(\mathscr{M}_0)$, \mathscr{E}_ρ is a singleton.

ACKNOWLEDGEMENT. This paper was written during the author's stay at the Institut für Angewandte Mathematik, at the Universität Heidelberg, which the author would like to thank for the support. It is a pleasure to thank professors W. von Waldenfels and M. Leinert for their kind hospitality and Dr. M. Schürmann for his practical help.

REFERENCES

- L. Accardi, C. Cecchini, Conditional expectations in von Neumanns algebras and a theorem of Takesaki, J. Funct. Anal. 45 (1982), 245-273.
- 2. C. Cecchini, Noncommuntative integration for states on von Neumann algebras, J. Operator Theory 15 (1986), 217-237.
- C. Cecchini, D. Petz, State extension and a Radon Nikodym theorem for conditional expectations von Neumanns algebras, Pacific J. Math. 138 (1989), 9-23.
- C. Cecchini, D. Petz, Classes of conditional expectations over von Neumanns algebras, to appear in J. Funct. Anal.
- A. Connes, Une classification des facteurs de type III, Ann. Sci. École Norm. Sup. 6 (1973), 133-252.
- A. Connes, Sur le theoreme de Radon-Nikodym pour les poids normaux fideles semifinis, Bull. Sci. Math. (2) 97 (1973), 253–258.
- D. Petz, Sufficient subalgebras and the relative entropy of states of a von Neumann algebra, Comm. Math. Phys. 105 (1986), 123–131.

DIPARTIMENTO DI MATEMATICA DELL' UNIVERSITATA DI GENOVA VIA L.B. ALBERTI 4 16132 GENOVA ITALY