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AN EXTREMAL PROBLEM FOR POLYNOMIALS
WITH A PRESCRIBED VALUE AT A GIVEN POINT
OF THE REAL AXIS

KARL-JOACHIM WIRTHS

Let neN, z,e C\{1}, and %,(z,) be the class of polynomials P of degree < n
which satisfy

M max {|P(e”) ¢ R} = |P(1) > 0

and P(z,) = 0. It is easily seen that there exists an open set G, € C containing the
point z = 1 such that ,(z,) is empty if and only if z, € G,. Naturally, it is much
more difficult to determine these sets G, explicitly. P. Turan (see [3]) proved
some partial results in this direction and C. Hyltén-Cavallius (see [1]) gave the
exact result:

THEOREM A. For neN

G, = {pe®|cos(#/2) > 3(/p + 1//p)cos(n/2n), —n < ne < =}.

The present paper is dedicated to a generalization of the above observation.
Let 6eR* := {x|x = 0} and consider the class €,(z,, d) of all polynomials P of
degree < n which fulfill (1) and

@ [P(zo)l = 6|P(1)].

Again it is obvious that for § # 1 there exists an open set G,(J) containing the
point z = 1 such that ,(z,, 9) is empty if and only if z, € G,(d). In the sequel we
shall determine those pairs (z9,6)e R x R* for which 4,(z,, d) is empty.

To reach this aim we use the following equivalence:

PROPOSITION 1. Let (z4,0)€ C x R* and 2,(z,, 6) be the class of all polynomials
P of degree < n which fulfill P(z,) = 6 and

(€) max {|P(e*’)| |peR} = 1.
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Furthermore we define
) M,(z,0):= max {|P(1)||P € 2,(z,, )}
Then (zq,9) is empty if and only if M,(z,,0) < 1.

Proor. The existence of the maximum (4) is proved by compactness arguments
which use the fact that £,(z,,d) is locally uniformly bounded on C. If
M,(zo,0) = 1 obviously €,(z,, 6) is not empty. If ,(z,, d) is not empty there exists
a Pe%,(zo,9) such that |P(1)| = 1 = max{|P(¢'”)||¢ € R} and P(z,) = J, hence
M,(zo,0) = 1.

The task of determining M,(z,, d) may be reduced by the following two simple
facts:

PROPOSITION 2. a) IfneN, 0 < |z4| < 1 and P is a polynomials of degree < n
such that (3) is fulfilled then |P(1/z,)| < 1/|zo|"
b) For ne Na 0< lzol § 1’ 66[0’ 1] Mn(1/209 5/IZO'") = Mn(z(), 5)

ProOOF. a) Assume that there exists a polynomial P of degree < n such that (3)
is fulfilled and |P(1/z,)| > 1/|zo|". Then the polynomials P defined by

P(z) = z’P(1/z)

is of degree < n and satisfies (3), too. But |[P(z,)| > 1 which is impossible accord-
ing to the maximum principle.

b) Let E,(z4,0;") € 2,(20, 0) be a polynomial such that |E,(z,, J; 1)| = M,(z,, 9).
It is easily seen that the polynomial D defined by

D(z):= (2o/1201)'2"En(20, 0: 1/2)

belongs to the class 2,(1/z4, 8/|zo|"). Now assume that there exists a polynomial
Pe?,(1/z4,8/|2o|") such that |P(1)] > |D(1)] and consider the polynomial P*
defined by

PX(z):= (1zol/20)"z"P(1/2).

P*e P (z4,0) and |P(1)| > M,(z,,5) = |D(1)], a contradiction to the definition of
M,(z,,6). Therefore M,(1/z,,6/|zo") = ID(1)] = M,(z¢,5). This means that we
may restrict our considerations to the pairs (zo,8) e {z||z| < 1} x [0,1].

A further reduction of the considered pairs is due to Theorem A:

PROPOSITION 3. Let (2, 0) € ({z] |z| £ 1}\G,) x [0, 1]. Then M,(z,,6) = 1.

PROOF. According to Theorem A there exists a polynomial H € €,(z,) such that
H(1) = 1 = max {|H(e'®)| |¢ € R}.
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Hence the polynomial P defined by
P(z) =6 + (1 — 8)H(2)
belongs to the class Z,(z,, ) and P(1) = 1 which implies M,(z,,d) = 1.

If we only consider pairs (p,6)eR x R* as we shall do in the sequel we
conclude from Theorem A and Propositions 1-3 that we only have to determine
M,(p, d) for

— sin(n/2n)

pE(ly ) tni= 1 + sin(n/27)

and 0€[0,1].

The central part in these determinations is played by a class of bounded poly-
nomials which were used by St. Ruscheweyh and the present author in [2] to
solve a similar extremum problem.

We summarize the facts proved in [2]:

THEOREM B. Let ue[0,1] and let
a,b,c:C\{0} > C

be functions of the form

zZez + ;, ¢€eC\{0},

such that
a(z)? + b(z)* + c(z)* = 1, zeC\{0},
and
f@):=a@) —i/1— p?bz)+£0 for |z =1
ForneN let

P@Z%):= 2"[uT,(c(2) — (/1 — 1’ az) — ib2))U, - 4(c(2))],

where T,, U, _ | denote the Chebyshev polynomials of the first and the second kind.
Then

P:z+— P(2)
is a polynomial of degree < n and for ¢ € R the following identity is valid
g2 JE) . Cai
5 e o2 2" P(¢'%) = cos O(¢) + | ————="rsin O(¢)),
® @y ) = cos O G
where
pa(e’®)

©(2¢):= narccos c(e'®) + arccos

If )
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(5) implies
a) |P(e””) = 1 for p€R,
b) |P(e*)| = 1 if and only if sin @(¢) = 0,
¢) Ifthere exists a & with ©(d) < n then there are n points €%, j = 1,...,n, with
< <¢y<...<¢, <@+ 2nsuch that |P(e") = 1.
The existence of such a value ¢ further implies

(6) O(¢;) = jm, cos B(¢;) = (— 1Y, O'(¢;) > 0,
and

f(eiw/l) inpyf2

P(e“"f) = (— I)JWE)TQ

forj=1,...,n.

Among the polynomials described in Theorem B we now consider those which
serve as extremal polynomials for the present problem:

THEOREM 1. Let neN, pe(t,, 1), and 6 [0, 1].
Suppose that there exists r = 1 such that
*1—pP (A—=rp?

(7) pn+l - il

and

(®) u:=0./(r/p)"e[0,1].

In this case let

a(z):= —3/T— uzi—‘—‘;(z +1/2),

1+
1
bz):= 5-(z = 1/2)

(= AT AP

c\z

2(1 + p)
and
Exp, ;2%):= 2"[uT,(c(2)) — (/1 — H* a(z) — ib(2)U, - (c(2))].
Then

a) the polynomial E,(p,d;"): z— E,(p, 5; z) belongs to the class 2,(p, ),

b) E,(p,5;1) = sin (n arcsin (, /1 — p? i ; Z) + arcsin u),
) if
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1-—
) narcsin (, /1 — u? p) + arcsin u < /2

1+p
then E,(p,6; 1) = M,(p, 9).

ProoF. The proof runs along similar lines as the proof of Theorem 4 in [2].
It is no problem to verify that the functions a, b, c defined in Theorem 1 satisfy
the conditions of Theorem B, the function f in this case is of the simple form

)
fo= -

So it is an immediate consequence of Theorem B that E,(p, J; ) is a polynomial of
degree < n and that |E,(p, 6;€*?)| < 1 for ¢ e R. To prove a) it remains to show

that E,(p, d; p) = 6. As in [2] we derive from f' (\/;_)) =0
E,(p, 8 p) = uy/p"(cly/p) + iub(/p))"
If we insert the explicit expressions for c(\/;;) and b(\/;) and use (7) and (8) to get
1—-p r-1

SN

we arrive at

E,(p,8;p) = uy/(p/r)" = 6.
To prove b) we use (5) for ¢ = 0. We get

1—
—E,(p,d;1) = cos (n arcsin (, /1 —pu? T Z) + arccos(—u)>
1—
= —sin (n arcsin (, /1 — u? i Z) + arcsin y).

The proof of ¢) is trivial in the case of equality in (9) since then E,(p,d;1) = 1
implies M,(p, d) = 1. The inequality

. 1- .
narcsm( 1 —p? 1 +Z>+arcsmu<n/2

is equivalent with ©(0) < n. Hence the conditions of Theorem B ¢) are fulfilled
and we get n points €'%/,j = 1,...,n,such that0 < ¢, < ¢, <... < @, < 2mand

. ipj/2 —ipj/2
ing;/2 elri? — pe el .
|ei¢1/2 — pe—l'¢‘,/2|

Eu(p9 6; ei'Pj) = —-( - l)je

Now let

Q(2) = —(z — P/ W), W(2):= 2'(1 — E,(p, ; 2)E,(p, 6; 1/2)).
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We may choose the square root such that Q'(p) < 0 since W is a polynomial of
degree 2n which has double zeros in the n points ¢'*/. So this polynomial has no
real zeros. Since all coefficients are real, W is real on the real axis. Hence W(1) > 0
implies W(p) > 0. Observing (6) we get from (5)

Q(e'?) = —(” — p)e™**g(¢) sin O(¢),

Zb( i¢/2)2 1/2

Again taking notice of (6) we conclude
. 1 . . . ;
Q™) = — — (€% — peTieieieVeig(g )~ 1Y6'(4),

E,(p,8;€%) 1
10 Gt —e) = T 2 e g )0 G2 <

forj=1,...,n and

1) Ep,8;0) 4

= =<

21 —-p) QA -p) ~

(10) and (11) are decisive for the proof which consists in the use of Lagrange’s

interpolation formula for a polynomial R € Z,(p, 8) with the interpolation points
p,€®,j = 1,...,n. This yields

0.

" 1 o
(12) R1§1< — —t — >
RN < 10O 2, 5wt — oo * 100 =
Since |E,(p, ;€)= 1,j = 1,...,n, and E,(p,d;p) = 6 the inequalities (10) and
(11) imply that the right side of (12) is just |E,(p,d;1)] and therefore
|E.(p, 6; 1)] = M,(p, 5). To complete the proof one remarks that E,(p, 5; 1) > 0.

In the rest of the paper we shall show that Theorem 1 allows to compute
M,(p, 9) for every pair (p, 8)e(t,, 1) x [0, 1].

Since the discussions of Theorem 1 in the case n = 1 differ a little from those for
n 2 2 we first mention the result in this case. We omit the simple proof which may
be performed by elementary extremum computations as well.

THEOREM 2. a) Let pe(0, 1) and 5 €[0, p). Then

20+1—p

M,(p,0) = E(p,0;1) = Tt

<1,

é+1 d—p
E(p,d;") e 2, (p,d).
1er2+1+p, 1(p, ;)€ Z,(p, 9)

‘ E(p,0;2) =
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b) Let pe(0,1) and 6€[p,1]. Then
- 1-96 o — ~
Epb) =12+ 17—, Eip.8)€2,(p,0).
—pP 1—p

For n = 2 we get more complicated formulae. Therefore we need some prep-
arations.

PROPOSITION 4. Let ne N\{1}, 6€[0,1] and

n+1

gn: (0,0) = R, x> g,(x):= (1 — x)?/x

n—1

2 n+1
a) pre(O, p_—y 1>and5 g,.(p)<g,,<—n_ 1>,then

13) 6°gu(p) = 9.(r)

, . n+1
has a unique solutionre| 1, 1)

n

-1
b) pre[m, 1) , 0€[0, p"), then (13) has a unique solution re[1,1/p).

Proor. It is immediately seen that g, is strictly increasing and continuous on

n+1 n+1 n+1 s
I:l’n_——l]’ gn (l:l’ - 1)) = [0, In (-rl—_—l)> This implies a).

b) follows from the same facts and the additional observations

and g,(1/p) = (1 — p)*p" "' > 6%g,(p).

n+1
<
1/p=n_1

PROPOSITION 5. Let ne N\ {1},

T arcsin y

@ [0,1) = (0,7/2n], pi> g, (W) = 5 — ———,

w1 J1— 12 — sing,(
14 S0 =)ty —— 1, = '
X P T2 1 sing,

a) p,(w) < p is equivalent with

1 - .
15 narcsin <,/1 —u? P Z) + arcsin u < 7/2,

pa(1) = p with

1- .
narcsin (« /1 —pu? p) + arcsin y = m/2.

1+p

b) p, is strictly increasing and bijective.
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PROOF. a) is trivial.

-1
To prove b) we see that p,(0) =¢,, lim p,(0) = "
p=1-0 n+1

and p, is continuous

and %ﬂ(u) > 0 for ue[0,1). Only the last statement needs a little explanation.
u

Write
dp, ) = 2Z,(1)
dp 1= 121 = + sing, ()’
. J1—p?
Z, (W = —psing,(p) + ———nl—cos dn().
Then
dz, o .
—= W) =(—1+ 1/n*sing,(u) <0 and Ilm Z () =0
d# p—=1-0

prove this assertion.

PROPOSITION 6. Let ne N\ {1}, u€[0, 1), p, as above. The equation

(1 —p,)> (1—77
16 2 =
(16) a Pall) r

has a unique solution r = r,(u) 2 1. The function

1 2usi
unmmnabiiﬁ#wmm=u— 2wk
n- V1 — p*cosq,(u) — psing,(p)

is strictly increasing.

Proor. Since (16) is a quadratic equatien in r it is easy to get the explicit

n+1. . .
1 is an exercise ("Hospi-

expression for r = r,(u) givenin (17). lim r,(u) = "
u—1-0 -
tal’s rule).
. . . . . n+1
To show the monotonicity of r, which here implies r,([0,1)) = 1, P we
prove that

| /1= pPcos g,
K, (0,1) = R, = K, (u) = psin g, ()

is strictly decreasing;

dK %sin(Z arcsin p) — sin 2q,(¢)

dp W= 242 (sin g,(w)*y/1 — 4

<0.
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The last inequality is equivalent with
0< sin<" ;y) —ﬂr’l—y for ye(0,n)

which is easily verified by differentiation.
We now define
(18) d,: [0,1) - [0,1)

1 — u?—si n
p dy(1) = p/ (pa(W)/ra(W))" = u[ \/r_‘/_#:os’i (u)Slwl: (;14::)1 - (ﬂ)]

It follows from Proposition 5 and Proposition 6 that d,(u) < 1 for ue[0,1).
According to Proposition 5 there exists

- n—1 -
Pn l: [tn’ m) - [0’ 1)9 PPy l(p)’

the inverse function of p,,.
The decisive part in the solution of our problem is played by the function

-1
Oy [t,., %+—1—) - [0,1), p—3,(p) = d,(p, *(p)).

As we have seen above a parametrisation of this function is given by (14) and (18).
The announced solution is as follows:

THEOREM 3. Let ne N\{1}, pe(t,, 1) and
n—1
4(p) PE (t,., m)

€ n_ll
Pn p nr 1)

M,(p,0) < 1if 5€[0, 4,(p)) and M,(p,d) = 1if 5€[4,(p), 1].

4,p) =

n—1 . . . .
PROOF. Let pe (t,,, —’—'————) . According to Proposition § there exists an unique

+1
Uo€(0,1) such that p,(uo) = p. Let r,(u,) and d,(u,) be defined as above and
0=< 6 <d,(p) =d,(uo)- Then

6’(1 — p)?

pd=pr _ s = o) _

p"+1 < d,(uo p"+1 - Ta(Ho)"Pa(Ho)
_ 2
A =ro)” _ gn(ralito)) < gn (Lr:{—i)

"n(lio)" 1
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1 . . 1
Since r,,(po)e[l,—::—iT) there exists an unique re[1,r,(u,)) < [1, : + 1 ) such

that 6%g,(p) = g,(r). From the above we see that

Bi=0/(r/p)" < du(po)n/(ralto)/ Pa(ko))" = Ho.

This implies p, (1) < p,(4o) = p and hence as we have seen in Proposition 5 the
inequality (15). Using Theorem 1 we see that for J € [0, 6,(p))

. 1 - .
M,(p,0) = E,(p,0; 1) = sin (n arcsin (. /1 — pu? n z) + arcsin u) <1

We notice that for 6 = 6,(p) = d,(uo), o €(0, 1), we get

329,(0) = ga(ra(o))
such that

Ho = 0/(ra(Ho)/Palto))" € (0, 1)

and

narcsin (. /1 — ud i ; Z) + arcsin py = m/2.
According to Theorem 1 this implies
M, (p,d,(p)) = E,(p, 5,(p); 1) = 1.
If 6 €(3,(p), 1] we consider

1-9¢ 0 — d,(p)
1—6,(p) 1—36,0p)

and verify E,(p, ;)€ Z,(p, 8) and E,(p,5;1) = 1 = M,(p, ).

E(p,5;2):= E,(p,6,(0);2) +

+1
re[1,1/p) of 6%g,(p) = g.(r) is guaranteed by Proposition 4. u = 6, /(r/p)" < 1
n—1

-1
Now let pe[: ,1). If 6€[0,p") the existence of an unique solution

follows from r < 1/p. (15) is fulfilled since p =

o > p,(u) for all uel0,1).

Again we conclude from Theorem 1

M,(p,8) = E,(p,5;1) = sin (n arcsin (, /1 —pu? 1= p) + arcsin y) <1

1+p

For d e[p", 1] we consider

~ . 1=6 . é-p"
E.(p,0;2) = 1_p,.z + 1—p

and verify E,(p, 6;")€ 2,(p,d) and E,(p,5;1) = 1 = M,(p, §).
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REMARK. As we have seen in the proof of Theorem 3 for any pair (p, ) with
M,(p,0) < 1 there exists a polynomial E,(p,d;) from the class described in
Theorem B such that M,(p, ) = E,(p,; 1).

One should conjecture that the same holds true for all paars (zq,6) with
M,(z,,6) < 1. The author wants to express his hope that the contents of the
present article may be helpful for the identifying of the “right” members of the
said class if this conjecture is true.
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