ANTIAUTOMORPHISMS OF B(H)

P. J. STACEY

1. Introduction.

Let H be a complex Hilbert space and let B(H) be the algebra of all bounded linear operators on H. The main results of the present paper provide a description of the conjugacy classes of *-antiautomorphisms of B(H) and relate the conjugacy of two *-antiautomorphisms Φ and Ψ to that of Φ^2 and Ψ^2 . More precisely, it is shown in Theorems 3.4 and 3.5 that the conjugacy classes of *-antiautomorphisms of B(H) for some H are classified by pairs (X, m) where X is a closed subset of the unit circle S^1 with $\overline{X} = X$ and m is a multiplicity function on the finite measures on X, with $m(\mu) = m(\mu \circ id)$ for each μ , such that $m(\delta_{-1})$ is even (possibly zero) or infinite. If Φ is a periodic *-antiautomorphism it is shown in Theorem 4.3 that there is at most one non-conjugate *-antiautomorphism Ψ for which Φ^2 is conjugate to Ψ^2 ; Example 4.4 shows however that for aperiodic *-antiautomorphisms there may be infinitely many non-conjugate *-antiautomorphisms with conjugate squares.

The proofs are based on the fact, proved in Lemma 3.6 of [4], that any *-antiautomorphism Φ of B(H) is of the form $\Phi(x) = \Phi_J(x) = Jx^*J^*$ for some antilinear isometry J on H. It is easy to show that two *-antiautomorphisms Φ_J and Φ_K are conjugate if and only if J is unitarily equivalent to K: hence it is required to find a unitary classification of such antilinear isometries. This will be obtained from a generalization to the real case of the classification, up to unitary equivalence, of bounded normal operators on a complex Hilbert space, as described in [1].

To complete this introduction we prove the simple connections between the unitary equivalence of J and K and the conjugacy firstly of Φ_J and Φ_K and secondly of Φ_J^2 and Φ_K^2 .

Proposition 1.1. Φ_J is conjugate to Φ_K if and only if J is unitarily equivalent to K.

PROOF. Φ_I is conjugate to Φ_K if and only if there exists a unitary U such that

$$Jx^*J^* = UKU^*x^*UK^*U^*$$

for all $x \in B(H)$. This holds if and only if $J = \lambda UKU^*$ for some $\lambda \in S^1$ and, replacing U by μU where $\mu^2 = \lambda$, we can assume that $J = UKU^*$ for some unitary U.

PROPOSITION 1.2. Φ_J^2 is conjugate to Φ_K^2 if and only if J^2 is unitarily equivalent to λK^2 for some $\lambda \in S^1$.

PROOF. Φ_J^2 is conjugate to Φ_K^2 if and only if there exists a unitary U such that $J^2xJ^{*2} = UK^2U^*xUK^{*2}U^*$ for each $x \in B(H)$, from which the result follows immediately.

2. Orthogonal equivalence of real-linear normal operators.

In this section we will parallel the spectral multiplicity theory and classification up to unitary equivalence of bounded normal operators on a complex Hilbert space, to obtain a classification up to orthogonal equivalence of bounded normal operators on a real Hilbert space. The proofs are fairly routine modifications of those for the complex case.

Let T be a real-linear bounded normal operator on a real Hilbert space H and let \tilde{T} be the complexification of T on the complexification $\tilde{H} = H \otimes_R \mathbb{C}$ of H. Recall that \tilde{H} possesses an antilinear involution C, defined by $C(h_1 \otimes 1 + h_2 \otimes i) = h_1 \otimes 1 - h_2 \otimes i$, such that H is isomorphic to $\{h \in \tilde{H}: Ch = h\}$ and such that $\tilde{T}C = C\tilde{T}$. The first simple consequence of this fact is that the spectrum σ_T of \tilde{T} is invariant under complex conjugation.

LEMMA 2.1. $\lambda \in \sigma_T$ if and only if $\overline{\lambda} \in \sigma_T$.

PROOF. An operator S in $B(\tilde{H})$ satisfies $(\tilde{T} - \lambda 1)S = 1$ if and only if $C(\tilde{T} - \lambda 1)SC = 1$ and hence if and only if $(\tilde{T} - \bar{\lambda}1)CSC = 1$.

The remaining results in this section will all be concerned with the spectral measure P_T of \tilde{T} . An algebraic way to define this is by extending the functional calculus $f \mapsto f(\tilde{T})$ for continuous functions f on σ_T to a sequentially normal *-homomorphism from the bounded Borel functions on σ_T into B(H) (as described in 4.5.9 and 4.5.14 of [3]). The value $P_T(E)$ of the spectral measure P_T on the Borel set E can then be defined to be the image $\chi_E(\tilde{T})$ of the characteristic function χ_E of E.

LEMMA 2.2. For each Borel set E in σ_T , $CP_T(E)C = P_T(\bar{E})$, where $\bar{E} = \{\bar{\lambda}: \lambda \in E\}$.

PROOF. The map $\Phi: f \mapsto f \circ \overline{\mathrm{id}}$ defines a sequentially normal *-automorphism of the Borel functions on σ_T and, by considering its effect on polynomials, it can be seen that $(\Phi f)(\tilde{T}) = Cf(\tilde{T})^*C$ for each Borel function f. Hence $P_T(\bar{E}) = (\Phi \chi_E)(\tilde{T}) = C\chi_E(\tilde{T})C = CP_T(E)C$, as required.

The next collection of results will use Lemma 2.2 to obtain information about the canonical description of \tilde{T} as a direct sum of multiplication operators on L^2 spaces. The treatment and notation will be closely modelled on that of [1]. In particular, for each $x \in \tilde{H}$, Z_x will denote the projection onto the closed subspace generated by the vectors $P_T(E)x$, where E is a Borel subset of σ_T , and ρ_x^T will denote the finite measure on σ_T defined by $\rho_x^T(E) = \langle P_T(E)x, x \rangle$ for each Borel subset E of σ_T .

PROPOSITION 2.3. (i) For each $x \in \tilde{H}$, $CZ_xC = Z_{Cx}$.

- (ii) For each $x \in \tilde{H}$ and each Borel subset E of σ_T , $\rho_x^T(E) = \rho_{Cx}^T(\bar{E})$.
- (iii) For each $x \in \widetilde{H}$ there is a unitary map U_x from $L^2(\sigma_T, \rho_x^T)$ onto $Z_x\widetilde{H}$ such that, for each bounded Borel function f on σ_T , $U_x([f]) = f(\widetilde{T})x$ and $U_{Cx}^*CU_x([f]) = \lceil \overline{\operatorname{id}} \circ f \circ \overline{\operatorname{id}} \rceil$.

PROOF.(i) From Lemma 2.2 $CZ_xCP_T(E)Cx = CZ_xP_T(\bar{E})x = CP_T(\bar{E})x = P_T(E)Cx$, so that $CZ_xC \ge Z_{Cx}$. The result follows by symmetry.

- (ii) This is immediate from Lemma 2.2.
- (iii) Apart from the formula for $U_{Cx}^*CU_x([f])$ this is just 60.1 of [1]. However, using the map Φ introduced in the proof of Lemma 2.2, $U_{Cx}^*CU_x([f]) = U_{Cx}^*Cf(\tilde{T})x = U_{Cx}^*C(\overline{\mathrm{id}}\circ f)(\tilde{T})^*x = U_{Cx}^*(\Phi(\overline{\mathrm{id}}\circ f))(\tilde{T})Cx = [\Phi(\overline{\mathrm{id}}\circ f)] = [(\overline{\mathrm{id}}\circ f\circ \overline{\mathrm{id}}].$

Still following the terminology of [1], we will let the column $C_T(P)$ generated by a projection P in the commutant $\{\tilde{T}\}'$ of \tilde{T} be defined to be the least projection in $\{\tilde{T}\}''$ which majorizes P. The column $C_T(Z_x)$, for $x \in \tilde{H}$, will be denoted for short by $C_T(x)$.

LEMMA 2.4. (i) For each projection $P \in \{\tilde{T}\}'$, $CC_T(P)C = C_T(CPC)$.

(ii) For each $x \in \tilde{H}$, $CC_T(x)C = C_T(Cx)$.

PROOF. (i) Let P be a projection in $\{\tilde{T}\}'$. Then $CC_T(P)C$ belongs to $\{\tilde{T}\}''$ and $CPC \leq CC_T(P)C$, so that $C_T(CPC) \leq CC_T(P)C$. The result then follows by symmetry.

(ii) This follows immediately from part (i) and Proposition 2.3 (i).

Persisting with the notation of [1], we define a row R to be a projection in $\{\tilde{T}\}'$ such that, for each projection P in $\{\tilde{T}\}'$,

$$P \leq R \Rightarrow P = C_T(P)R$$
.

It is proved in 63.1 of [1] that, for any projection F in $\{\tilde{T}\}''$, the cardinality of a maximal orthogonal family $\{R_j\}$ of rows with $C_T(R_j) = F$ for all j is an invariant of F, known as its multiplicity $m_T(F)$. A projection F is said to have uniform multiplicity if $m_T(F_0) = m_T(F)$ for each non-zero projection $F_0 \leq F$. The following proposition shows how \tilde{H} can be decomposed into pieces of uniform multiplicity, in a manner compatible with C.

PROPOSITION 2.5. For each cardinal number m not exceeding the Hilbert space dimension of \tilde{H} let F_m^T be the supremum of the projections F in $\{\tilde{T}\}^m$ which have uniform multiplicity $m_T(F) = m$. Then $\{F_m^T\}$ is an orthogonal family of sum 1 and, for each m, $F_m^TC = CF_m^T$ and either $F_m^T = 0$ or F_m^T has uniform multiplicity m.

PROOF. Apart from the claim that $F_m^TC = CF_m^T$, this is exactly 64.5 of [1]. To establish this claim, note that if $\{R_j\}$ is a maximal orthogonal family of rows with $C_T(R_j) = F$ then, by Lemma 2.4, $\{CR_jC\}$ is a maximal orthogonal family of rows with $C_T(CR_jC) = CFC$: hence $m_T(F) = m_T(CFC)$ for each projection F in $\{\tilde{T}\}^m$. For each non-zero projection F_0 , $F_0 \leq F$ if and only if $CF_0C \leq CFC$ so that F is of uniform multiplicity m if and only if CFC is, from which the result follows.

COROLLARY. There exists an orthogonal family $\{F_j^T\}$ of separable projections of uniform multiplicity in $\{\tilde{T}\}^T$ such that $\sum F_i^T = 1$ and $CF_i^T = F_i^T C$ for each j.

PROOF. For each m let $\{F_{jm}^T\}$ be a maximal orthogonal family of non-zero separable projections in $\{\tilde{T}\}^m$ with $CF_{jm}^TC=F_{jm}^T$ and $F_{jm}^T\leq F_m^T$ for each j. Unless $\sum F_{jm}^T=F_m^T$ there exists a non-zero separable projection $F\leq F_m^T$ in $\{\tilde{T}\}^m$ which is orthogonal to each F_{mj}^T and a contradiction to maximality is obtained by considering the least upper bound of F and CFC.

PROPOSITION 2.6. Let $F \in \{\tilde{T}\}^n$ be a projection of uniform multiplicity such that CF = FC, Then there exists an orthogonal family $\{R_k\}$ of $m_T(F)$ rows such that $R_kC = CR_k$ for each k, $C_T(R_k) = F$ for each k and $F = \sum_{k} R_k$.

PROOF. Apart from the claim that $R_kC=CR_k$ for each k this is contained in 64.4 of [1]. As in the proof of that result, a simple maximality argument shows that it is sufficient to demonstrate the existence of a non-zero projection $F_0 \leq F$ in $\{\tilde{T}\}^m$ with $CF_0 = F_0C$ and an orthogonal family of rows obeying the conditions of the Proposition with F replaced by F_0 . To that end, following 62.4 of [1], let $\{Q_k\}$ be a maximal orthogonal family of rows such that $C_T(Q_k) = F$ and $Q_kC = CQ_k$ for each k, let $P = F - \sum_k Q_k$ and let $F_0 = F - C_T(P)$, for which it is easy to see that $F_0C = CF_0$.

If $F_0 = 0$ then, following 61.3 of [1], let $\{S_j\}$ be a maximal orthogonal family of rows such that $S_j \leq P$ and $S_jC = CS_j$ for each j and $C_T(S_j)C_T(S_k) = 0$ for each $j \neq k$. Unless $P \leq \sum_j C_T(S_j)$ there exists a vector x in $P\tilde{H}$ with Cx = x and $C_T(S_j)x = 0$ for all j. By 55.2 and 60.2 of [1], Z_x is then a row with $C_T(S_j)C_T(Z_x) = C_T(C_T(S_j)Z_x) = 0$ for each j and, by Proposition 2.3 (i), $Z_xC = CZ_x$ so that a contradiction to the maximality of $\{S_j\}$ is obtained. Hence $\sum S_j \leq P \leq \sum_j C_T(S_j) \leq C_T(\sum_j S_j)$ and so $C_T(P) = C_T(\sum_j S_j)$. However, by 61.2 of [1], $\sum_j S_j$ is a row with $\sum_j S_j \leq P$ and, since $C\sum_j S_j = \sum_j S_j C_j$, this contradicts the maximality of the family $\{Q_k\}$. Hence $F_0 \neq 0$.

Now consider the orthogonal family $\{R_k\}$ of rows defined by $R_k = F_0 Q_k$. Then $R_k C = C R_k$ for each k, $C_T(R_k) = F_0 C_T(Q_k) = F_0$ for each k and $\sum_k R_k = F_0 \sum_k Q_k = F_0(F - P) = F_0$. The last property implies that $\{R_k\}$ is a maximal orthogonal family of rows with $C_T(R_k) = F_0$ for each k and so, by definition, the cardinality of the index set for k is $m_T(F_0) = m_T(F)$, as required.

PROPOSITION 2.7. Let P be a projection in $\{\tilde{T}\}'$ such that $C_T(P)$ is separable and PC = CP. Then there exists $x \in P\tilde{H}$ with Cx = x and $C_T(P) = C_T(x)$.

PROOF. Apart from the claim that x can be chosen to satisfy Cx = x this results from 58.3 of [1]. The extra claim can be obtained by modifying the proof of 58.3 in [1] in the following way. By imposing the condition $Cx_j = x_jC$, obtain a vector $x = \sum x_j$ such that Cx = x. Note, using Lemma 2.4, that

$$C(C_T(P) - C_T(x))P = (C_T(P) - C_T(x))PC$$

so that, unless $C_T(P) = C_T(x)$, there exists a non-zero vector y with Cy = y in the range of $(C_T(P) - C_T(x))P$. Then, as in the proof of 58.3 of [1], a contradiction to the maximality of the family $\{x_i\}$ is obtained unless $C_T(P) = C_T(x)$.

COROLLARY. Let R be a row in $\{\tilde{T}\}'$ with RC = CR such that $C_T(R)$ is separable. Then there exists $x \in R\tilde{H}$ with Cx = x, $Z_x = R$ and $C_T(R) = C_T(x)$.

PROOF. Apply Proposition 2.7 to R and note that, since R is a row, $Z_x = C_T(x)R = C_T(R)R = R$.

LEMMA 2.8. Let $v = v \circ \overline{id}$ be a finite measure on σ_T which is equivalent to ρ_y^T for some $y \in \widetilde{H}$ with Cy = y. Then there exists $x \in Z_y \widetilde{H}$ with Cx = x and $v = \rho_x^T$.

PROOF. Apart from the claim that Cx = x, this follows from 65.3 of [1], with $x = U_y f$ where $f \ge 0$, f^2 is the Radon-Nikodym derivative of ρ_y^T with respect to v and U_y is the unitary of Proposition 2.3 (iii). From Cy = y it follows using Proposition 2.3 (iii) that $U_y^*CU_y f = \overline{\mathrm{id}} \circ f \circ \overline{\mathrm{id}}$, which is equal to $f \circ \overline{\mathrm{id}}$ since $f \ge 0$. However, by Proposition 2.3 (ii) and the assumption $v = v \circ \overline{\mathrm{id}}$, $f = f \circ \overline{\mathrm{id}}$ so $Cx = CU_y f = x$, as required.

PROPOSITION 2.9. Let $F \in \{\tilde{T}\}^m$ be a separable projection of uniform multiplicity such that FC = CF and let $x = Cx \in F\tilde{H}$ be a vector satisfying $F = C_T(x)$ (whose existence is guaranteed by Proposition 2.7). Then there exists a family $\{x_k\}$ of $m_T(F)$ vectors with $Cx_k = x_k$ and $\rho_{x_k}^T = \rho_x^T$ for each k such that the corresponding cyclic projections form an orthogonal family of sum F.

PROOF. By Proposition 2.6 and the corollary to Proposition 2.7 there exists a family $\{y_k\}$ of $m_T(F)$ vectors with $C_T(y_k) = F$ and $Cy_k = y_k$ for each k, such that the corresponding cyclic projections Z_{y_k} form an orthogonal family of rows of

sum F. By 65.2 of [1], $\rho_{y_k}^T$ is equivalent to ρ_x^T so, by Lemma 2.8, there exists $x_k \in Z_{y_k} \tilde{H}$ with $Cx_k = x_k$ and $\rho_{x_k}^T = \rho_x^T$ By 65.2 of [1] $C_T(x_k) = C_T(y_k)$ so $Z_{x_k} = C_T(x_k)Z_{y_k} = C_T(y_k)Z_{y_k} = Z_{y_k}$, as required.

THEOREM 2.10. Let T be a normal real-linear operator on a real Hilbert space H, let \tilde{T} be the complexification of T on \tilde{H} , the complexification of H, and let σ_T denote the spectrum of \tilde{T} . Then there exists a family $\{x_j\}$ of vectors in \tilde{H} such that $\{C_T(x_j)\}$ is an orthogonal family of sum 1 and, for each j,

- (i) $CC_T(x_i) = C_T(x_i)C$,
- (ii) $C_T(x_i)$ is of uniform multiplicity m_i and
- (iii) there exists an isomorphism U_j from $C_T(x_j)\widetilde{H}$ onto $\bigoplus_k L^2(\sigma_T, \rho_{x_j}^T)$ such that $U_j\widetilde{T}U_j^* = \bigoplus_k M_{id}$ and $U_jCU_j^*([f_k]) = ([\overline{id} \circ f_k \circ \overline{id}])$, where k ranges over an index set of cardinality m_i and where $M_{id}[f] = [\overline{id} \cdot f]$ for each $[f] \in L^2(\sigma_T, \rho_{x_j}^T)$.

PROOF. By the corollary to Proposition 2.5 there exists an orthogonal family $\{F_j^T\}$ of separable projections of uniform multiplicity in $\{\tilde{T}\}''$ such that $\sum F_j^T = 1$ and $CF_j^T = F_j^T C$ for each j. By Proposition 2.9, for each F_j there exists a vector $x_j \in F_j \tilde{H}$ such that $C_T(x_j) = F_j$ and a family $\{x_{jk}\}$ of m_j vectors in $F_j \tilde{H}$ such that $F_j \tilde{H} = \bigoplus_k Z_{x_{jk}} \tilde{H}$ and such that, for each k, $\rho_{x_{jk}}^T = \rho_{x_j}^T$ and $Cx_{jk} = x_{jk}$. Then, by Proposition 2.3, there exist isomorphisms U_{jk} from $L^2(\sigma_T, \rho_{x_j}^T)$ onto $Z_{x_{jk}} \tilde{H}$ such that $U_{jk}^* \tilde{T} U_{jk} [f] = [\mathrm{id} \cdot f]$ and $U_{jk}^* C U_{jk} [f] = [\mathrm{id} \circ f \circ \mathrm{id}]$. The result follows by letting $U_j = \bigoplus_k U_{jk}$.

Theorem 2.10 is the basic tool in the classification of real-linear normal operators up to orthogonal equivalence; the extra step needed is to show that the measures $\rho_{x_j}^T$ can be defined solely in terms of the orthogonal equivalence class of T. To do this we use the *multiplicity function* associated with \tilde{T} , which is a function from finite measures on σ_T to cardinal numbers defined by

$$m_T(\mu) = \min\{m_T(C_T(\nu)): 0 \neq \nu \leqslant \mu\},\$$

where $C_T(v)$ is the projection (in $\{\tilde{T}\}^n$) onto the subspace $\{x: \rho_x^T \leqslant v\}$. In an analogous manner to the situation for projections, a measure μ is said to be of uniform multiplicity if $m_T(\mu) = m_T(v)$ for each $0 \neq v \leqslant \mu$.

Note that the notation $C_T(\mu)$ (taken from [1]) is consistent with the notation $C_T(P)$ for P a projection in $\{\tilde{T}\}'$ in the sense that $C_T(\rho_x^T) = C_T(Z_x)$ for each $x \in \tilde{H}$ (as shown in 66.2 of [1]).

LEMMA 2.11. For each finite measure μ on σ_T ,

- (i) $CC_T(\mu)C = C_T(\mu \circ \overline{id}),$
- (ii) $m_T(C_T(\mu)) = m_T(C_T(\mu \circ \overline{\mathrm{id}})),$
- (iii) $m_T(\mu) = m_T(\mu \circ \overline{\mathrm{id}}).$

PROOF. (i) Note that $CC_T(\mu)Cx = x$ if and only if $\rho_{Cx}^T \leqslant \mu$. By Proposition 2.3 (ii) this holds if and only if $\rho_x^T \leqslant \mu \circ \overline{\mathrm{id}}$ and hence if and only if $C_T(\mu \circ \overline{\mathrm{id}})x = x$.

- (ii) This is a direct consequence of (i) (using the result $m_T(F) = m_T(CFC)$ for each projection F in $\{\tilde{T}\}^n$, established in the proof of Proposition 2.5).
- (iii) From (ii), $m_T(\mu) = \min\{m_T(C_T(\nu)): 0 \neq \nu \leqslant \mu\} = \min\{m_T(C_T(\nu \circ id)): 0 \neq \nu \leqslant \mu\} = m_T(\mu \circ id).$

The notion of the multiplicity function m_T associated with \tilde{T} can be abstracted to an axiomatically defined multiplicity function m defined on the finite measures on a compact subset X of C. (See § 49 of [1] for details.) The following lemma shows that if m has the property in Lemma 2.11 (iii), then any measure μ with $\mu = \mu \circ id$ can be decomposed into measures of uniform multiplicity, each having this property. The decomposition is described in terms of the lattice operations \vee and \wedge on the set of finite measures on X, ordered by absolute continuity. (See § 48 of [1] for details.)

LEMMA 2.12. Let X be a compact subset of \mathbb{C} , invariant under complex conjugation, and let m be a multiplicity function on the finite measures on X such that $m(\mu) = m(\mu \circ \overline{\mathrm{id}})$ for each μ . Then there exists an orthogonal family $\{\mu_j\}$ of finite measures of uniform multiplicity on X such that $\mu_j = \mu_j \circ \overline{\mathrm{id}}$ for each j and such that, for each finite measure μ on X satisfying $\mu = \mu \circ \overline{\mathrm{id}}$, μ is equivalent to $\vee_j (\mu \wedge \mu_j)$.

PROOF. Let $X^+ = \{\lambda \in X : \operatorname{Im} \lambda > 0\}$, $X^0 = \{\lambda \in X : \operatorname{Im} \lambda = 0\}$ and $X^- = \{\lambda \in X : \operatorname{Im} \lambda < 0\}$. The restriction of m to the finite measures supported on $X^+ \cup X^0$ is a multiplicity function and hence, by 49.3 of [1], there exists an orthogonal family $\{v_j\}$ of non-zero finite measures of uniform multiplicity on $X^+ \cup X^0$ such that v is equivalent to $\vee_j (v \wedge v_j)$ for each finite measure v on $X^+ \cup X^0$. Let μ_j^+ be the restriction of v_j to X^+ , let μ_j^0 be the restriction of v_j to X^0 and let $\mu_j = \mu_j^+ + \mu_j^0 + \mu_j^+ \circ \overline{\operatorname{id}}$. By construction, $\{\mu_j\}$ is an orthogonal family of finite measures on X such that $\mu_j = \mu_j \circ \overline{\operatorname{id}}$ for each j and such that μ is equivalent to $\vee_j (\mu \wedge \mu_j)$ whenever $\mu = \mu \circ \overline{\operatorname{id}}$. To see that each μ_j is of uniform multiplicity, let $0 \neq v \ll \mu_j$ and let $v = v^+ + v^0 + v^-$ with $v^+ \ll \mu_j^+$, $v^0 \ll \mu_j^0$, $v^- \ll \mu_j^+ \circ \overline{\operatorname{id}}$. Note that at least one summand v^+ , v^0 , v^- is non zero; in the following argument terms involving zero arguments are to be omitted. By hypothesis, $m(\mu_j^+) = m(\mu_j^+ \circ \overline{\operatorname{id}})$ and $m(v^-) = m(v^- \circ \overline{\operatorname{id}})$. Therefore, since v_j (and hence μ_j^+ and μ_j^0) are of uniform multiplicity,

$$m(v^+) = m(\mu_j^+), m(v^0) = m(\mu_j^0), m(v^-) = m(v^- \circ \overline{\mathrm{id}}) = \mathrm{m}(\mu_j^+) = \mathrm{m}(\mu_j^+ \circ \overline{\mathrm{id}})$$

from which it follows that

$$m(v) = \min\{m(v^-), m(v^0), m(v^+)\} = \min\{m(\mu_j^+ \circ \overline{id}), m(\mu_j^0), m(\mu_j^+)\} = m(\mu_j)$$
 as required.

The next lemma applies Lemma 2.12 to the multiplicity function m_T on σ_T .

LEMMA 2.13. There exists a family $\{\mu_j\}$ of orthogonal measures of uniform multiplicity on σ_T , defined solely in terms of the multiplicity function m_T , such that $\mu_j = \mu_j \circ \overline{\mathrm{id}}$ for each j and such that $\{C_T(\mu_j)\}$ forms an orthogonal family of projections of uniform multiplicity with sum 1 and $CC_T(\mu_j) = C_T(\mu_j)C$ for each j. Furthermore, for each j there exists $x_j \in C_T(\mu_j)\widetilde{H}$ such that $Cx_j = x_j$ and $\mu_j = \rho_{x_j}^T$.

PROOF. Let $\{\mu_j\}$ be the family of orthogonal measures on σ_T given by Lemma 2.12. By 66.3 of [1] $\{C_T(\mu_j)\}$ is an orthogonal family, by 67.3 of [1] each $C_T(\mu_j)$ has uniform multiplicity and, by Lemma 2.11 (i), $CC_T(\mu_j)C = C_T(\mu_j \circ id) = C_T(\mu_j)$ for each j. To see that $\sum C_T(\mu_j) = 1$ let σ_T^+ , σ_T^0 , σ_T^- , μ_j^+ , μ_j^0 be as defined in Lemma 2.12 and note that, by §68 of [1] applied to the restriction of \widetilde{T} to $P_T(\sigma_T^+ \cup \sigma_T^0)\widetilde{H}$, $\sum C_T(\mu_j^0) = P_T(\sigma_T^0)$ and $\sum C_T(\mu_j^+) = P_T(\sigma_T^+)$, from which it follows that $\sum C_T(\mu_j^+ \circ id) = CP_T(\sigma_T^+)C = P_T(\sigma_T^-)$ and hence $\sum C_T(\mu_j) = 1$.

By Proposition 2.7 and Lemma 2.11 (i) there exists $y_j \in C_T(\mu_j)\tilde{H}$ with $Cy_j = y_j$ and $C_T(y_j) = C_T(\mu_j)$. By the second paragraph of the proof of 67.3 of [1], μ_j is equivalent to $\rho_{y_j}^T$ and hence, by Lemma 2.8, there exists x_j as required.

We can now restate Theorem 2.10 in a way which makes clear the invariance of the decomposition under orthogonal equivalence.

THEOREM 2.14. (i) Let T be a normal real-linear operator on a real Hilbert space H, let \widetilde{T} be the complexification of T on \widetilde{H} , the complexification of H, and let σ_T denote the spectrum of \widetilde{T} . Then there exists an orthogonal family $\{\mu_j\}$ of finite measures of uniform multiplicities m_j on σ_T , defined solely in terms of the multiplicity function m_T of \widetilde{T} , such that T is orthogonally equivalent to $\bigoplus_j \bigoplus_k M_{id}$ on $\bigoplus_j \bigoplus_k \{ [f] \in L^2(\sigma_T, \mu_j) : [f] = [id \circ f \circ id] \}$, where k ranges over an index set of cardinally m_j .

- (ii) Two normal real-linear operators T, S on a real Hilbert space H are orthogonally equivalent if and only if their complexifications \tilde{T} , \tilde{S} are unitarily equivalent.
- PROOF. (i) Let $\{\mu_j\}$ be the family given by Lemma 2.13 and let $x_j \in C_T(\mu_j)\widetilde{H}$ satisfy $Cx_j = x_j$ and $\mu_j = \rho_{x_j}^T$. Then, by Proposition 2.9, there exists a family $\{x_{jk}\}$ of m_j vectors with $Cx_{jk} = x_{jk}$ and $\rho_{x_{jk}}^T = \rho_{x_j}^T$ for each k, such that the corresponding cyclic projections form an orthogonal family of sum $C_T(\mu_j)$. The result follows from Proposition 2.3, on identifying

$$\bigoplus_{j} \bigoplus_{k} \{ U_{j}h: h \in Z_{x_{jk}} \widetilde{H}, Ch = h \} \text{ with}$$

$$\bigoplus_{j} \bigoplus_{k} \{ f \in L^{2}(\sigma_{T}, \mu_{j}): [f] = [\overline{\mathrm{id}} \circ f \circ \overline{\mathrm{id}}] \}.$$

(ii) It is clear that if T, S are orthogonally equivalent then \tilde{T} , \tilde{S} are unitarily equivalent. Conversely, if \tilde{T} , \tilde{S} are unitarily equivalent then, by §68 of [1], $m_T = m_S$ so that, by part (i), T is orthogonally equivalent to S.

Theorem 2.15. Let X be a compact subset of the complex plane which is invariant under complex conjugation and let m be a multiplicity function on the finite measures on X such that $m(\mu) = m(\mu \circ \overline{\mathrm{id}})$ for each finite measure μ on X. Then there exists a normal real-linear operator T on a real Hilbert space for which $\sigma_T = X$ and $m = m_T$, where σ_T and m_T denote the spectrum and multiplicity functions of the complexification \tilde{T} of T.

PROOF. By Lemma 2.12 there exists an orthogonal family $\{\mu_j\}$ of finite measures of uniform multiplicities m_j on X such that μ is equivalent to $\vee_j (\mu \wedge \mu_j)$ for each finite measure μ on X with $\mu = \mu \circ \overline{\mathrm{id}}$. Define $H = \bigoplus_j \bigoplus_k \{ [f] \in L^2(X, \mu_j) : [f] = [\overline{\mathrm{id}} \circ f \circ \overline{\mathrm{id}}] \}$, where k ranges over an index set of cardinality m_j , and define $T = \bigoplus_j \bigoplus_k M_{\mathrm{id}}$. Then \widetilde{T} can be identified with $\bigoplus_j \bigoplus_k M_{\mathrm{id}}$ on $\bigoplus_j \bigoplus_k L^2(X, \mu_j)$, from which the result follows.

3. Unitary equivalence of antilinear isometries.

Let J be an antilinear isometry on a complex Hilbert space H and let \tilde{J} be the (complex-linear) complexification of J on \tilde{H} (for which the complex scalar multiplication does not extend that on H). Let I be the multiplication operator by i on H (with respect to the original scalar multiplication), let \tilde{I} be its complexification on \tilde{H} and, as in § 2, let C be the antilinear involution on \tilde{H} associated with H. Note that both \tilde{J} and \tilde{I} commute with C but, by the antilinearity of J, $\tilde{J}\tilde{I}+\tilde{I}\tilde{J}=0$.

LEMMA 3.1. (i) σ_J is symmetric (i.e. $\sigma_J = \{-\lambda : \lambda \in \sigma_J\}$).

(ii) For each Borel set E in σ_I , $\tilde{I}P_I(E) = P_I(-E)\tilde{I}$.

PROOF. (i) An operator S in $B(\tilde{H})$ satisfies $(\tilde{J} - \lambda 1)S = 1$ if and only if $\tilde{I}(\tilde{J} - \lambda 1)S\tilde{I} = -1$ and hence if and only if $(\tilde{J} + \lambda 1)\tilde{I}S\tilde{I} = 1$.

(ii) The map $\Phi: f \mapsto f \circ (-\operatorname{id})$ defines a sequentially normal *-automorphism of the Borel functions on σ_J and, by considering its effect on polynomials, it can be seen that $(\Phi f)(\tilde{J}) = -\tilde{I}f(\tilde{J})\tilde{I}$ for each Borel function f. Hence $P_J(-E) = (\Phi \chi_E)(\tilde{J}) = -\tilde{1}\chi_E(\tilde{J})\tilde{1} = -\tilde{1}P_J(E)\tilde{1}$, as required.

In a similar manner to that used in the proof of Lemma 2.12 where a subset X of \mathbb{C} was divided into parts X^- , X^0 , X^+ according to the sign of the imaginary part, we will now divide the spectrum σ_J of \widetilde{J} into parts σ_+^J , σ_0^J and σ_-^J corresponding to the sign of the real parts. We define $\widetilde{H}_+^J = P_J(\sigma_+^J)\widetilde{H}$ and $H_+^J = P_J(\sigma_+^J)H$ (where H is identified with $\{h \in \widetilde{H}: Ch = h\}$), which is a subspace of H by Lemma 2.2, with similar definitions of \widetilde{H}_0^J , \widetilde{H}_-^J , H_0^J and H_-^J . Note that, since $\sigma_J \subseteq S^1$, $\sigma_0^J \subseteq \{i, -i\}$ so \widetilde{H}_0^J is either zero or is the direct sum of the eigenspaces of \widetilde{J} associated with the eigenvalues $\pm i$. Note also that H_0^J is a complex subspace of H but, by Lemma 3.1, $\widetilde{I}H_+^J = H_+^J$.

LEMMA 3.2. There exists a unitary map V from H_0^J onto a direct sum $\bigoplus_k \mathbb{C}^2$ (taken to be zero if the index set is empty) such that $(VJV^*)((\lambda_k, \mu_k)) = ((-\bar{\mu}_k, \bar{\lambda}_k))$ for each $\lambda_k, \mu_k \in \mathbb{C}$.

PROOF. Since $\tilde{J}h = \pm ih$ for each $h \in \tilde{H}_0^J$, $J^2 = -1$ on H_J^0 . Then, as proved in Lemma 7.5.6 of [2], H_0^J is a direct sum of complex subspaces $\{\lambda e_\alpha + \mu J e_\alpha : \lambda, \mu \in \mathbb{C}\}$ on which the action of J is given by $J(\lambda e_\alpha + \mu J e_\alpha) = -\bar{\mu}e_\alpha + \bar{\lambda}Je_\alpha$, as required.

PROPOSITION 3.3. There exists an orthogonal family $\{\mu_j\}$ of measures of uniform multiplicities m_j on σ_+^J , constructed in terms of the multiplicity function m_j^+ of the restriction of \widetilde{J} to \widetilde{H}_+^J , and a unitary map U from $H_+^J \oplus H_-^J$ onto $\bigoplus_j \bigoplus_k L^2(\sigma_+^J, \mu_j)$, where k ranges over an index set of cardinality m_j , such that $UJU^*([f_{jk}]) = ([\operatorname{id} \cdot \operatorname{id} \circ f_{jk} \circ \operatorname{id}])$ for each $([f_{jk}]) \in \bigoplus_j \bigoplus_k L^2(\sigma_+^J, \mu_j)$.

PROOF. By Theorem 2.14 applied to the restriction of J to H_+^J there exists an orthogonal family $\{\mu_j\}$ of measures on σ_+^J , defined in terms of m_J^+ , and an orthogonal isomorphism U_+ from H_+^J onto $\bigoplus_j \bigoplus_k \{[f] \in L^2(\sigma_+^J, \mu_j): [f] = [\overline{\mathrm{id}} \circ f \circ \overline{\mathrm{id}}]\}$ such that $U_+JU_+^* = \bigoplus_j \bigoplus_k M_{\mathrm{id}}$. The equations $\widetilde{I}P_J(\sigma_\pm^J) = P_J((\sigma_\mp^J)\widetilde{I})$ imply that $IH_\pm^J = H_\mp^J$; hence the orthogonal map U_+ can be extended to a unitary map $U: H_+^J \bigoplus_J H_-^J \to \bigoplus_j \bigoplus_k L^2(\sigma_+^J, \mu_j)$ by $U(h_1 + Ih_2) = U_+h_1 + iU_+h_2$. A simple calculation then shows that $UJU^*([f_{jk}]) = ([\mathrm{id} \cdot \overline{\mathrm{id}} \circ f_{jk} \circ \overline{\mathrm{id}}])$.

COROLLARY. Let $(\sigma_+^J)^2 = \{\lambda^2 \colon \lambda \in \sigma_+^J\}$ and let v_j be defined on $(\sigma_+^J)^2$ by $v_j(E) = \mu_j(\{\lambda \in \sigma_+^J \colon \lambda^2 \in E\})$. Then $\{v_j\}$ is an orthogonal family of measures of uniform multiplicity such that J^2 is unitarily equivalent to $\bigoplus_j \bigoplus_k M_{id}$ on $\bigoplus_j \bigoplus_k L^2((\sigma_+^J)^2, v_j)$.

PROOF. From Proposition 3.3 it follows that J^2 is unitarily equivalent to $\bigoplus_j \bigoplus_k M_{\mathrm{id}^2}$ on $\bigoplus_j \bigoplus_k L^2(\sigma_+^J, \mu_j)$. However $V: L^2((\sigma_+^J)^2, \nu_j) \to L^2((\sigma_+^J)^2, \mu_j)$ defined by $V[f] = [f \circ \mathrm{id}^2]$ is a unitary with $VM_{\mathrm{id}}V^* = M_{\mathrm{id}^2}$, yielding the required result.

THEOREM 3.4. Let J, K be antilinear isometries on a complex Hilbert space H. Then J is unitarily equivalent to K if and only if J^2 is unitarily equivalent to K^2 .

PROOF. If J^2 is unitarily equivalent to K^2 , then their eigenspaces associated with the eigenvalue -1 have the same dimension (possibly 0). Hence, by Lemma 3.2, the restriction of J to H_0^K is unitarily equivalent to the restriction of K to H_0^K .

Let $\{\mu_j\}$ be a family given by Proposition 3.3, let μ be a measure on σ_+^J and, for each Borel set E in $(\sigma_+^J)^2$, let $\nu(E) = \mu((\mathrm{id}^2)^{-1}(E))$ and $\nu_j(E) = \mu_j((\mathrm{id}^2)^{-1}(E))$. Then, using Proposition 3.3 and its corollary, $m_j^+(\mu) = \min\{m_j: \mu \wedge \mu_j \neq 0\} = \min\{m_j: \nu \wedge \nu_j \neq 0\} = m_{J^2}(\nu)$. Hence, if J^2 is unitarily equivalent to K^2 then $m_J^+ = m_K^+$ and therefore, by Proposition 3.3, the restriction of J to $H_-^J \oplus H_+^J$ is unitarily equivalent to the restriction of K to $H_-^K \oplus H_+^K$.

Theorem 3.5. Let X be a closed subset of S^1 invariant under complex conjugation and let m be a multiplicity function on the finite measures on X such that $m(\mu) = m(\mu \circ \overline{\mathrm{id}})$ for each finite measure μ on X and $m(\delta_{-1})$ is even or infinite (but

may be zero). Then there exists an antilinear isometry J on a Hilbert space H such that X is the spectrum of J^2 and m is its multiplicity function.

PROOF. Let $Y = \{\lambda \in S^1 : \text{Re } \lambda \ge 0, \lambda^2 \in X\}$ and define a multiplicity function m_+ on the finite measures on Y by $m_+(\delta_i) = m_+(\delta_{-i}) = \frac{1}{2}m(\delta_{-1})$ and, for v singular to δ_i and δ_{-i} , by $m_+(v) = m(\mu)$ where $\mu(E) = v(\{\lambda \in S^1 : \text{Re } \lambda \ge 0, \lambda^2 \in E\})$. Let $\{v_j\}$ be an orthogonal family of finite measures of uniform multiplicities m_j on Y (with respect to m_+), such that $v_j = v_j \circ \overline{\text{id}}$ for each j and v is equivalent to $v_j(v \wedge v_j)$ for each finite measure v on Y with $v = v \circ \overline{\text{id}}$. (Such a family exists by Lemma 2.12.) Define $H = \bigoplus_j \bigoplus_k L^2(Y, v_j)$, where k ranges over an index set of cardinality m_j , and define $J = \bigoplus_j \bigoplus_k M_{\text{id}} \circ C_j$, where $C_j f = \overline{\text{id}} \circ f \circ \overline{\text{id}}$ for each f. Then f is an antilinear isometry with the properties required.

4. Conjugacy of antiautomorphisms.

Let Φ_J and Φ_K be *-antiautomorphisms of B(H), where J and K are antilinear isometries on H. Then, by Proposition 1.1 and Theorem 3.4, Φ_J is conjugate to Φ_K if and only if J^2 is unitarily equivalent to K^2 (henceforth written $J^2 \sim K^2$). Moreover, by Theorem 3.5, isometries of the form J^2 are characterized up to unitary equivalence by a closed subset X of S^1 which is invariant under complex conjugation and by a multiplicity function m such that $m(\mu) = m(\mu \circ id)$ for each finite measure μ on X and such that $m(\delta_{-1})$ is even or infinite. This, in one sense, provides a complete answer to the conjugacy problem but it does not establish the number of non-conjugate pairs Φ_J , Φ_K for which Φ_J^2 is conjugate to Φ_K^2 . We will now tackle this problem, bearing in mind Proposition 1.2, and then illustrate our results by some simple examples.

Lemma 4.1. Let J, K be antilinear isometries with $J^2 \sim \lambda K^2$. Then $J^2 \sim \lambda^2 J^2$.

PROOF. Let U be a unitary with $UJ^2U^* = \lambda K^2$. Then

$$(JU^*KU)J^2(U^*K^*UJ^*) = JU^*K(\lambda K^2)K^*UJ^*$$
$$= \lambda JU^*K^2UJ^*$$
$$= \lambda J(\bar{\lambda}J^2)J^*$$
$$= \lambda^2 J^2.$$

LEMMA 4.2. Let J be an antilinear isometry of finite order. Then $G = \{\lambda : J^2 \sim \lambda^2 J^2\}$ is a finite cyclic subgroup of S^1 .

PROOF. Let J have order n (which must be even since J is antilinear). Then G is a subgroup of the group of nth roots of unity.

Theorem 4.3. Let Φ_1 be a periodic *-antiautomorphism of B(H). Then there is, up

to conjugacy, at most one *-antiautomorphism Φ_K of B(H) with Φ_K^2 conjugate to Φ_I^2 but Φ_K not conjugate to Φ_I .

PROOF. Let λ be a generator of the group G of Lemma 4.2. If Φ_K^2 is conjugate to Φ_J^2 then there exists $m \ge 0$ such that $K^2 \sim \lambda^m J^2$ (by Proposition 1.2 and Lemmas 4.1 and 4.2). Thus $K^2 \sim \lambda^{m+2k} J^2$ for each k and hence either $K^2 \sim J^2$ or $K^2 \sim \lambda J^2$. In the first case Φ_K is conjugate to Φ_J ; the second case gives the unique possibility for which Φ_K may not be conjugate to Φ_J .

The following example shows that the conclusion of Theorem 4.3 does not persist for aperiodic antiautomorphisms.

EXAMPLE 4.4. Let $\{r_j: j \in \mathbb{N}\}$ be a family of distinct irrationals in (0,1) such that $\{1\} \cup \{r_j: j \in \mathbb{N}\}$ is linearly independent over \mathbb{Q} , for each $j \geq 0$ let $X_j = \{\pm e^{\pi i r_j} e^{2\pi i (m_1 r_1 + \dots + m_n r_n)}: n \in \mathbb{N}, \ m_1, \dots, m_n \in \mathbb{Z}\} \cap \{\lambda: \operatorname{Re} \lambda > 0, \operatorname{Im} \lambda > 0\}$ (where $r_0 = 0$) and, for each $j \geq 0$, let J_j be defined on $\bigoplus_{x \in X_j} \mathbb{C}^2$ by $J_j = \bigoplus_x J_j^x$, where $J_j^x(\lambda, \mu) = (x\bar{\mu}, \bar{x}\bar{\lambda})$. Then each J_j can be regarded as an antilinear isometry on a separable Hilbert space H. We will show that, for each j, k, the point spectrum of J_j^2 is distinct from that for J_k^2 , so that J_j^2 and J_k^2 are not unitarily equivalent and hence correspond to distinct antiautomorphisms Φ_{J_j} and Φ_{J_k} . We will also show that, nevertheless, $J_j^2 \sim e^{2\pi i r_j} J_0^2$ so that, for each j, $\Phi_{J_j}^2$ is conjugate to $\Phi_{J_0}^2$.

By construction, the point spectrum (or set of eigenvalues) of J_j^2 is equal to $Y_j = \{e^{2\pi i r_j} e^{4\pi i (m_1 r_1 + \dots + m_n r_n)}: n \in \mathbb{N}, m_1, \dots, m_n \in \mathbb{Z}\}$ and, from the independence of $\{1, r_1, r_2, \dots\}$ over \mathbb{Q} , it follows that $e^{2\pi i r_j}$ does not belong to the point spectrum of J_k^2 for $j \neq k$ but does belong to the point spectrum of J_j^2 . To see that $J_0^2 \sim e^{2\pi i r_j} J_j^2$, define $\beta: Y_0 \to Y_j$ by $\beta(t) = e^{2\pi i r_j} t$ and define $U: \bigoplus_{x \in Y_0} \mathbb{C} \to \bigoplus_{y \in Y_j} \mathbb{C}$ by $(Uf)_{\beta(x)} = f_x$. Then $J_j^2 \sim \bigoplus_{y \in Y_j} M_y \sim U^*(\bigoplus_{y \in Y_j} M_y) U$. However, for $f \in \bigoplus_{x \in Y_0} \mathbb{C}$, $(U^* \bigoplus_{y \in Y_j} M_y Uf)_x = (\bigoplus_y M_y Uf)_{\beta(x)} = M_{\beta(x)}(Uf)_{\beta(x)} = \beta(x)(Uf)_{\beta(x)} = \beta(x)($

EXAMPLE 4.5. The simplest example (which is, of course, well-understood) occurs when $\Phi_J^2 = \mathrm{id}$, for which $J^2 = \pm 1$ and the set X of Theorem 3.5 is either $\{1\}$ or $\{-1\}$. The multiplicity $m(\delta_1)$ in the first case can be any number (giving the dimension of the Hilbert space on which J operates) but $m(\delta_{-1})$ must be even or infinite in the second case. In both cases the group G of Lemma 4.2 is $\{1, -1\}$, reflecting the fact that, for any J, K with $\Phi_J^2 = \Phi_K^2 = \mathrm{id}$, $K^2 = \pm J^2$.

EXAMPLE 4.6. Another simple example occurs when $\Phi_J^4 = \text{id}$ (but $\Phi_J^2 \neq \text{id}$), for which $J^4 = \pm 1$ and the set X of Theorem 3.5 is either $\{1, -1\}$ (in the case $J^4 = 1$) or $\{i, -i\}$ (in the case $J^4 = -1$). In the first case the possible multiplicities are an arbitrary non-zero $m(\delta_1)$ and an arbitrary even or infinite non-zero $m(\delta_{-1})$, with

the sum of these giving the Hilbert space dimension of the space on which J operates. In the second case $m(\delta_{-i})$ must equal $m(\delta_i)$ which can be an arbitrary non-zero cardinal, giving half the Hilbert space dimension of the space on which J operates.

When $X = \{i, -i\}$ or $X = \{1, -1\}$ and $m(\delta_{-1}) = m(\delta_1)$ then $J^2 \sim -J^2$ and the group G of Lemma 4.2 is equal to $\{1, -1, i, -i\}$. The isometry J^2 is either a symmetry S = 1 - 2p, where p is a projection of dimension 2m on a space of dimension 4m for some m, or $J^2 = iS' = i(1 - 2p')$ where p' is a projection of dimension m' on a space of dimension 2m'. If m' is even or infinite then J^2 and iJ^2 are both squares of antilinear isometries and two conjugacy classes correspond to Φ_J^2 ; otherwise Φ_J^2 corresponds to a single antiautomorphism.

When $X = \{1, -1\}$ and $m(\delta_1) \neq m(\delta_{-1})$ (but both are non-zero) then the group G of Lemma 4.2 is $\{1, -1\}$. The isometry J^2 is a symmetry S = 1 - 2p. If the dimensions of both p and 1 - p are even or infinite (corresponding to both $m(\delta_1)$ and $m(\delta_{-1})$ being even or infinite) then both J^2 and J^2 are squares of antilinear isometries and two conjugacy classes correspond to Φ_J^2 ; otherwise Φ_J^2 corresponds to a single antiautomorphism.

If, for example, H is of odd finite dimension 2k+1 then B(H) possesses k conjugacy classes of *-antiautomorphisms of period 4, corresponding to $X = \{1, -1\}$ with $m(\delta_{-1}) \in \{2, ..., 2k\}$, $m(\delta_1) = 2k+1-m(\delta_{-1})$; the corresponding squares are of the form Ad(1-2p), where p is a projection of dimension 2, 4, ..., or 2k, and the projections are pairwise non-conjugate.

REFERENCES

- P. R. Halmos, Introduction to Hilbert space and the Theory of Spectral Multiplicity, Chelsea, New York, 1951.
- 2. H. Hanche-Olsen and E. Størmer, Jordan Operator Algebras, Pitman, 1984.
- 3. G. K. Pedersen, C*-algebras and their Automorphism Groups, Academic Press, 1979.
- 4. E. Størmer, On antiautomorphisms of von Neumann algebras, Pacific J. Math. 21 (1967), 349-370.

DEPARTMENT OF MATHEMATICS LA TROBE UNIVERSITY BUNDOORA 3083, VICTORIA AUSTRALIA.

Einde H37933