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ANTIAUTOMORPHISMS OF B(H)

P. ). STACEY

1. Introduction.

Let H be a complex Hilbert space and let B(H) be the algebra of all bounded
linear operators on H. The main results of the present paper provide a description
of the conjugacy classes of *-antiautomorphisms of B(H) and relate the con-
jugacy of two x-antiautomorphisms @ and ¥ to that of @2 and ¥2. More
precisely, it is shown in Theorems 3.4 and 3.5 that the conjugacy classes of
x-antiautomorphisms of B(H) for some H are classified by pairs (X, m) where X is
aclosed subset of the unit circle S* with X = X and mis a multiplicity function on
the finite measures on X, with m(u) = m(u o id) for each y, such that m(5 _,)is even
(possibly zero) or infinite. If @ is a periodic *-antiautomorphism it is shown in
Theorem 4.3 that there is at most one non-conjugate *-antiautomorphism ¥ for
which &2 is conjugate to ¥2; Example 4.4 shows however that for aperiodic
x-antiautomorphisms there may be infinitely many non-conjugate *-anti-
automorphisms with conjugate squares.

The proofs are based on the fact, proved in Lemma 3.6 of [4], that any
*-antiautomorphism ¢ of B(H) is of the form &(x) = &;(x) = Jx*J* for some
antilinear isometry J on H. It is easy to show that two *-antiautomorphisms &,
and @, are conjugate if and only if J is unitarily equivalent to K: hence it is
required to find a unitary classification of such antilinear isometries. This will be
obtained from a generalization to the real case of the classification, up to unitary
equivalence, of bounded normal operators on a complex Hilbert space, as
described in [1].

To complete this introduction we prove the simple connections between the
unitary equivalence of J and K and the conjugacy firstly of &, and &, and
secondly of % and ®2.

PROPOSITION 1.1. &, is conjugate to @y if and only if J is unitarily equivalent to
K.

PROOF. &, is conjugate to @y if and only if there exists a unitary U such that
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Jx*J* = UKU*x*UK*U*

for all xe B(H). This holds if and only if J = AUKU* for some i1€S! and,
replacing U by uU where u? = 4, we can assume that J = UKU* for some
unitary U.

PROPOSITION 1.2. ®2 is conjugate to @} if and only if J? is unitarily equivalent to
AK? for some €S

PROOF. @7 is conjugate to @3 if and only if there exists a unitary U such that
J*xJ*? = UK*U*xUK*2U* for each x e B(H), from which the result follows
immediately.

2. Orthogonal equivalence of real-linear normal operators.

In this section we will parallel the spectral multiplicity theory and classification
up to unitary equivalence of bounded normal operators on a complex Hilbert
space, to obtain a classification up to orthogonal equivalence of bounded normal
operators on a real Hilbert space. The proofs are fairly routine modifications of
those for the complex case.

Let T be a real-linear bounded normal operator on a real Hilbert space H and
let T be the complexification of T on the complexification H = H ® C of H.
Recall that H possesses an antilinear involution C, defined by C(h, ® 1 +
h, ® i) = h; ®1 — h, ® i, such that H is isomorphic to {he H: Ch = h} and such
that TC = CT: The first simple consequence of this fact is that the spectrum o of
T is invariant under complex conjugation.

LEMMA 2.1. Aeoy ifand only if e ay.

PROOF. An operator S in B(H) satisfies (' — A1)S =1 if and only if
C(T — A1)SC = 1 and hence if and only if (T— 11)CSC = 1.

The remaining results in this section will all be concerned with the spectral
measure P, of T. An algebraic way to define this is by extending the functional
calculus f — f(T) for continuous functions f on g to a sequentially normal
»-homomorphism from the bounded Borel functions on ¢ into B(H) (as de-
scribed in 4.5.9 and 4.5.14 of [3]). The value P;(E) of the spectral measure Py on
the Borel set E can then be defined to be the image xz(T) of the characteristic
function xg of E.

LeEMMA 2.2. For each Borel set E in o1, CPr(E)C = P(E), where E = {1 A€ E}.

ProoF. The map ®: f — f oid defines a sequentially normal *-automorphism
of the Borel functions on g and, by considering its effect on polynomials, it can
be seen that (®f)(T)= Cf(T)*C for each Borel function f Hence
PL(E) = (@ (T) = Cyxe(T)C = CPL(E)C, as required.
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The next collection of results will use Lemma 2.2 to obtain information about
the canonical description of T as a direct sum of multiplication operators on L2
spaces. The treatment and notation will be closely modelled on that of [1]. In
particular, for each x € H, Z, will denote the projection onto the closed subspace
generated by the vectors Py(E)x, where E is a Borel subset of o, and pT will
denote the finite measure on o defined by pT(E) = (P;(E)x, x) for each Borel
subset E of o 7.

PROPOSITION 2.3. (i) For each xe H, CZ,C=2Z,,.

(ii) For each x e H and each Borel subset E of o, p*(E) = pZ (E).

(iii) For each x € H there is aunitary map U, from X6, pT) onto Z H such that,
for each bounded Borel function f on ar, U([f]) = f(T)x and U CU([f]) =
[ido foid].

PROOF.(i) From Lemma 2.2 CZ,CP,(E)Cx = CZ, P(E)x = CPy(E)x =
Pr(E)Cx, so that CZ.C = Z_,. The result follows by symmetry.

(ii) This is immediate from Lemma 2.2.

(iii) Apart from the formula for U¥ CU,([ f]) this is just 60.1 of [1]. However,
using the map @ introduced in the proof of Lemma 2.2, U CU([f]) =
UL Cf(T)x = U&LC(ido N(T)*x = U (®(id o /))(T)Cx = [®(ido f)] =
[(ido foid].

Still following the terminology of [ 1], we will let the column C (P) generated by
a projection P in the commutant {T‘}’ of T'be defined to be the least projection in
{T}” which majorizes P. The column C(Z,), for x € H, will be denoted for short
by Cr(x).

LEMMA 2.4. (i) For each projection Pe {T}', CCr(P)C = C(CPC).
(i) For each xe H, CC(x)C = C4(Cx).

PROOF. (i) Let P be a projection in {T}. Then CC,(P)C belongs to {T}" and
CPC = CC4(P)C, so that C(CPC) £ CC4(P)C. The result then follows by
symmetry.

(ii) This follows immediately from part (i) and Proposition 2.3 (i).

Persisting with the notation of [1], we define a row R to be a projection in { T’}’
such that, for each projection P in {T},

P<R = P=CyP)R.

It is proved in 63.1 of [1] that, for any projection F in {T}", the cardinality of
amaximal orthogonal family {R;} of rows with C1(R;) = Ffor all jis an invariant
of F, known as its multiplicity m(F). A projection F is said to have uniform
multiplicity if my(F,) = m(F) for each non-zero projection F, < F. The follow-
ing proposition shows how H can be decomposed into pieces of uniform multi-
plicity, in a manner compatible with C.



120 P. J. STACEY

PROPOSITION 2.5. For each cardinal number m not exceeding the Hilbert space
dimension of H let FX be the supremum of the projections F in {T}" which have
uniform multiplicity my(F) = m. Then {F}} is an orthogonal family of sum 1 and, for
each m, FIC = CF! and either FX = 0 or FT has uniform multiplicity m.

PROOF. Apart from the claim that FXC = CFT, this is exactly 64.5 of [1]. To
establish this claim, note that if {R;} is a maximal orthogonal family of rows with
Cr(R;) = F then, by Lemma 2.4, {CR;C} is a maximal orthogonal family of rows
with C;(CR;C) = CFC: hence my(F) = m(CFC) for each projection F in {T}".
For each non-zero projection Fy, F, < F if and only if CF,C < CFC so that F is
of uniform multiplicity m if and only if CFC is, from which the result follows.

COROLLARY. There exists an orthogonal family {F[} of separable projections of
uniform multiplicity in {T}" such that Y F] = 1 and CF = FJC for eachj.

ProoF. For each m let {F},} be a maximal orthogonal family of non-zero
separable projections in {T'}” with CF}, C = F}, and FJ, < FJ for each . Unless
Y F}, = F7 there exists a non-zero separable projection F < FJ in {T'}” which is
orthogonal to each F,; and a contradiction to maximality is obtained by

considering the least upper bound of F and CFC.

PROPOSITION 2.6. Let Fe {T}" be a projection of uniform multiplicity such that
CF = FC, Then there exists an orthogonal family {R,} of my(F) rows such that
R,C = CR, for each k, C(R,) = F for eachk and F = Y R,.

k

PrOOF. Apart from the claim that R, C = CR, for each k this is contained in
64.4 of [1]. As in the proof of that result, a simple maximality argument shows
that it is sufficient to demonstrate the existence of a non-zero projection F, < F
in {T}" with CF, = F,C and an orthogonal family of rows obeying the condi-
tions of the Proposition with F replaced by F,. To that end, following 62.4 of [1],
let {Q,} be a maximal orthogonal family of rows such that C(Q,) = F and
Q.C = CQ, foreach k,let P = F — Y Q, and let F, = F — C(P), for which it is

k

easy to see that F,C = CF,,.

If Fy = Othen, following 61.3 of [1], let {S;} be a maximal orthogonal family of
rows such that §; < P and §;C = CS; for each j and C(S;)C(S,) = 0 for each
j # k. Unless P <Y C(S;) there exists a vector x in PH with Cx = x and

Cr(S;)x =0 for allj j. By 552 and 60.2 of [1], Z, is then a row with
Cr(S;))Cr(Z,) = C1(C1(S;)Z,) =0 for each j and, by Proposition 2.3 (i),
Z,C = CZ, so that a contradiction to the maximality of {S;} is obtained. Hence
Y. S;S P <Y Cy(S) £ Cr(}S;) and so C(P) = C(}_ S;). However, by 61.2 of
[11,Y.S;is arow with }_S; < P and, since CY.S; = Y. S;C, this contradicts the
maximality of the family {Q,}. Hence F, # 0.
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Now consider the orthogonal family {R,} of rows defined by R, = F,Q,. Then
R,C = CR, for each k, C(R,) = F,C;(Q,) =F, for each k and ) R, =
k

Fo Y. Q\ = Fo(F — P) = F,,. The last property implies that {R,} is a maximal
k

orthogonal family of rows with C(R,) = F, for each k and so, by definition, the
cardinality of the index set for k is my(F,) = my(F), as required.

PROPOSITION 2.7. Let P be a projection in {T}' such that C1(P) is separable and
PC = CP. Then there exists x e PH with Cx = x and C(P) = Cy(x).

PRrROOF. Apart from the claim that x can be chosen to satisfy Cx = x this results
from 58.3 of [1]. The extra claim can be obtained by modifying the proof of 58.3
in[1]in the following way. By imposing the condition Cx; = x;C, obtain a vector
X = Zx ; such that Cx = x. Note, using Lemma 2.4, that

C(Cr(P) = Cr(x))P = (C1(P) — Cr(x))PC

so that, unless C4(P) = Cy(x), there exists a non-zero vector y with Cy = yin the
range of (C(P) — C4(x))P. Then, as in the proof of 58.3 of [ 1], a contradiction to
the maximality of the family {x;} is obtained unless C1(P) = C(x).

COROLLARY. Let R be arow in { T}’ with RC = CR such that C1(R) is separable.
Then there exists xe RH with Cx = x, Z, = R and C(R) = Cp(x).

PrOOF. Apply Proposition 2.7 to R and note that, since R is a row,
Z,=Cp(x)R = Cr(R)R =R.

LEMMA 2.8. Let v = void be a finite measure on o which is equivalent to pf for
some ye H with Cy = y. Then there exists erYﬁ with Cx = x and v = pT.

PROOF. Apart from the claim that Cx = x, this follows from 65.3 of [1], with
x = U, fwhere f = 0, f2 is the Radon-Nikodym derivative of p] with respect to
v and U, is the unitary of Proposition 2.3 (iii). From Cy = y it follows using
Proposition 2.3 (iii) that U¥CU, f = ido f oid, which is equal to f oid since
f = 0. However, by Proposition 2.3 (ii) and the assumption v = void, f = foid
so Cx = CU, f = x, as required.

PROPOSITION 2.9. Let F e {T}" be a separable projection of uniform multiplicity
such that FC = CF and let x = Cx € FH be a vector satisfying F = Cy(x) (whose
existence is guaranteed by Proposition 2.7). Then there exists afamily {x, } of my(F)
vectors with Cx; = x, and pY, = pT for each k such that the corresponding cyclic
projections form an orthogonal family of sum F.

Proor. By Proposition 2.6 and the corollary to Proposition 2.7 there exists
afamily {y,} of m(F) vectors with C1(y,) = F and Cy, = y, for each k, such that
the corresponding cyclic projections Z, form an orthogonal family of rows of
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sum F. By 65.2 of [1], p!_is equivalent to p so, by Lemma 2.8, there exists
x€Z, H with Cx, =x, and pl, = pJ" By 65.2 of [1] Cr(x;) = C(y) so0
Z, =Crx)Z, = Cr(yoZ,, = Z,, as required.

THEOREM 2.10. Let T be a normal real-linear operator on a real Hilbert space H,
let T be the complexification of T on H, the complexification of H, and let o denote
the spectrum of T. Then there exists a family {x;} of vectors in H such that {Cp(x )
is an orthogonal family of sum 1 and, for each j,

(i) CCrlx;) = Crlx))C,

(i) Cr(x;) is of uniform multiplicity m; and

(m) there exists an isomorphism U, from CT(xJ)H onto @, L¥or, Px, T such that
U; TU = ®Mand U;CUX[£]) = ([id o £, 0id]), where k ranges over an index
set of cardmallty m; and where My,[ f] = [id- f] for each [ f]1e ¥, pxj).

PrOOF. By the corollary to Proposition 2.5 there exists an orthogonal family
{FT} of separable projections of uniform multiplicity in {T}" such that )’ F] = 1
and CFT = F]C for each j. By Proposition 2.9, for each F; there exists a vector
x;€ F;H such that Cr(x;) = F; and a family {x},‘} of m; vectors in F;H such that
F H= @kZ ﬁ and such that for each k, pT = =pT ) and Cxj, = xj. Then, by
Proposmon 2 3, there exist isomorphisms Uy, from L¥oy, px Jonto Z, H such
that U TU,[f] =[id- f] and UL CU,[f] = [ido foid]. "The result follows
by letting U; = @, Uj.

Theorem 2.10 is the basic tool in the classification of real-linear normal
operators up to orthogonal equivalence; the extra step needed is to show that the
measures px can be defined solely in terms of the orthogonal equlvalence class of
T.Todo thls we use the multiplicity function associated with T, which is a function
from finite measures on o to cardinal numbers defined by

my(u) = min {m(C1(v)::0 + v < u},

where C(v) is the projection (in {T}") onto the subspace {x: pT < v}. In an
analogous manner to the situation for projections, a measure u is said to be of
uniform multiplicity if m(u) = my(v) for each 0 v < pu.

Note that the notation Cr(u) (taken from [1]) is consistent with the notation
C1(P)for P a projection in { T}’ in the sense that C1(pf) = Cr(Z,) for each xe H
(as shown in 66.2 of [1]).

LEMMA 2.11. For each finite measure y on o,
@) CCr(w)C = Crluoid),

(i) mp(Cr(w) = mr(Cr(uoid)),

(iii) mr(y) = my(poid).

PrOOF. (i) Note that CC,(u)Cx = X ifand only if pT, < u. By Proposition 2.3
(ii) this holds if and only if pT < uoid and hence if and only if Cr(uoid)x = x.
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(i) This is a direct consequence of (i) (using the result m,(F) = m;(CFC) for
each projection F in {T}", established in the proof of Proposition 2.5).

(iii) From (i), m(1) = min{my(Cz(v)): 0 + v < u} = min{my(C(v o id)):
04 v <pub =mppoid).

The notion of the multiplicity function m, associated with T can be abstracted
to an axiomatically defined multiplicity function m defined on the finite measures
on a compact subset X of C. (See §49 of [1] for details.) The following lemma
shows that if m has the property in Lemma 2.11 (iii), then any measure u with
4 = poid can be decomposed into measures of uniform multiplicity, each having
this property. The decomposition is described in terms of the lattice operations
v and A on the set of finite measures on X, ordered by absolute continuity. (See
§48 of [1] for details.)

LEMMA 2.12. Let X be a compact subset of C, invariant under complex conjuga-
tion, and let m be a multiplicity function on the finite measures on X such that
m(u) = m(uoid) for each p. Then there exists an orthogonal family {u;} of finite
measures of uniform multiplicity on X such that u; = p;o id for each j and such that,

Jor each finite measure yu on X satisfying u = poid, u is equivalent to v;(u A p;).

ProoF. Let X*={1eX:Imi>0}, X°={leX:Imi=0} and
X~ = {AeX:Im A < 0}. The restriction of m to the finite measures supported on
X* U X°is a multiplicity function and hence, by 49.3 of [1], there exists an
orthogonal family {v;} of non-zero finite measures of uniform multiplicity on
X* U X° such that v is equivalent to v;(v A v)) for each finite measure v on
X* U X° Let yj be the restriction of v;to X *, let uf be the restriction of v; to X°
andlet y; =y + pf + pjf oid. By construction, {u ;} is an orthogonal family of
finite measures on X such that y; = p;01d for each j and such that u is equivalent
to v;(p A pj) whenever p = u oid. To see that each u ; is of uniform multiplicity,
let 0+ v<p andlet v=v*++°+ v withvt <p’, W0 <puf v <pfoid
Note that at least one summand v*,v°, v~ is non zero; in the following argument
terms involving zero arguments are to be omitted. By hypothesis,
mu;’) = m(uf o id)and m(v™) = m(v~ oid). Therefore, since v;(and hence y;' and
45) are of uniform multiplicity,

m(v*) = m(u}), m(v°) = m(ud), m(v~) = m(v~ 0id) = m(y}') = m(u} oid)
from which it follows that

m(v) = min {m(v"), m(v°), m(v*)} = min {m(y;" oid), m(u$), m(u;")} = m(u;)
as required.

The next lemma applies Lemma 2.12 to the multiplicity function m; on o7.
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LEMMA 2.13. There exists a family {u;} of orthogonal measures of uniform
multiplicity on o, defined solely in terms of the multiplicity function my, such that
p; = p;joid for each j and such that {Cy(u;)} forms an orthogonal family of
projections of uniform multiplicity with sum 1 and CCr(u;) = Cr(u;)C for each j.
Furthermore, for each j there exists x;€ C(p j)H~ such that Cx; = x; and p; = p,fj.

PROOF. Let {y;} be the family of orthogonal measures on o given by Lemma
2.12. By 66.3 of [1] {Cy(u;)} is an orthogonal family, by 67.3 of [1] each Cr(y;)
has uniform multiplicity and, by Lemma 2.11 (i), CCr(y;)C = CT(ujoi(—i) =
Cr(u;) for each j. To see that ). Cr(u;) = lletof, 6%, 07, uj, uf be as defined in
Lemma 2.12 and note that, by §68 of [1] applied to the restriction of T to
Pr(oF VeH, Y Cr(1?) = Pr(09) and Y Cr(u]) = Pr(o7), from which it fol-
lows that Y Cr(u; 0id) = CPr(67)C = Pr(c7) and hence Y Cr(y;) = 1.

By Proposition 2.7 and Lemma 2.11 (i) there exists y;e Cr(u;)H with Cy; = y;
and Cr(y;) = Cr(u;). By the second paragraph of the proof of 67.3 of [1], u; is
equivalent to pyT)_ and hence, by Lemma 2.8, there exists x; as required.

We can now restate Theorem 2.10 in a way which makes clear the invariance of
the decomposition under orthogonal equivalence.

THEOREM 2.14. (i) Let T be a normal real-linear operator on areal Hilbert space
H, let T be the complexification of T on H, the complexification of H, and let o
denote the spectrum of T. Then there exists an orthogonal family {u;} of finite
measures of uniform multiplicities m; on o , defined solely in terms of the multiplicity
function my of T, such that T is orthogonally equivalent to @ @M,y on
@;®{[f] el op, w) [f]= [id o f 0id]}, where k ranges over an index set of
cardinally m;.

(ii) Two normal real-linear operators T, S on a real Hilbert space H are or-
thogonally equivalent if and only if their complexifications T, S are unitarily
equivalent.

PrOOF. (i) Let {u;} be the family given by Lemma 2.13 and let x;€ Cr(u j)ﬁ
satisfy Cx; = x;and u; = pJ . Then, by Proposition 2.9, there exists a family {x }
of m; vectors with Cxj = x; and p,fjk = p,’;j for each k, such that the correspond-
ing cyclic projections form an orthogonal family of sum C(u;). The result follows
from Proposition 2.3, on identifying

®;®{U;h: he Z, H, Ch = h} with
@j@k{fELz(aT’ W) Lf1= [ido foid]}.

(i) It is clear that if T, § are orthogonally equivalent then T, § are unitarily
equivalent. Conversely, if T, § are unitarily equivalent then, by §68 of [1],
my = mg so that, by part (i), T is orthogonally equivalent to S.
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THEOREM 2.15. Let X be a compact subset of the complex plane which is invariant
under complex conjugation and let m be a multiplicity function on the finite
measures on X such that m(u1) = m(u oid) for each finite measure yon X. Then there
exists a normal real-linear operator T on a real Hilbert space for whicho = X and
m = my, where o and my denote the spectrum and multiplicity functions of the
complexification T of T.

Proor. By Lemma 2.12 there exists an orthogonal family {x;} of finite
measures of uniform multiplicities m; on X such that pis equivalentto v;(u A ;)
for each finite measure y on X with y = poid. Define H = @ Ol f1e (X, w):
[f] = [id o f 0id]}, where k ranges over an index set of cardinality m ;, and define
T= @;®M,. Then T can be identified with ®;DiM,g0n ®;®, LA(X, p;), from
which the result follows.

3. Unitary equivalence of antilinear isometries.

Let J be an antilinear isometry on a complex Hilbert space H and let J be the
(complex-linear) complexification of J on H (for which the complex scalar
multiplication does not extend that on H). Let I be the multiplication operator by
i on H (with respect to the original scalar multiplication), let I'be its complexifica-
tion on H and, asin § 2, let C be the antilinear involution on H associated with H.
Note that both J and I commute with C but, by the antilinearity of J,
JI+1IJ=o0.

LEMMA 3.1. (i) g is symmetric (i.e. 6; = {—A: Aea,}).

(i) For each Borel set E in 6, IP,(E) = P,(—E)I.

PROOF. (i) An operator S in B(H) satisfies (J — A1)S =1 if and only if
I(J — 21)ST = —1 and hence if and only if (J + ADIST = 1.

(i) The map @: f — f o(—id) defines a sequentially normal x-automorphism
of the Borel functions on ¢, and, by considering its effect on polynomials, it can
be seen that (&f)(J) = —If(J)I for each Borel function f. Hence P,(—E) =
(Dxp)J) = —TyeMI = —TP,(E), as required.

In a similar manner to that used in the proof of Lemma 2.12 where a subset
X of C was divided into parts X ~, X°, X * according to the sign of the imaginary
part, we will now divide the spectrum o, of J into parts ¢”, , ¢ and ¢’ correspond-
ing to the sign of the real parts. We define A, = P,(¢”,)H and H’, = P,(c’,)H
(where H is identified with {he H: Ch = h}), which is a subspace of H by Lemma
2.2, with similar definitions of HJ, H” , H} and H’ . Note that, since g, < S?,
‘[{J) € {i, —i} so Hj is either zero or is the direct sum of the eigenspaces of
J associated with the eigenvalues +i. Note also that Hj is a complex subspace of
H but, by Lemma 3.1, [H%, = H%.

LEMMA 3.2. There exists a unitary map V from Hj onto a direct sum @, C* (taken
to be zero if the index set is empty) such that (VJV*)(Ae, t)) = ((— fs 4x)) for each
> i € C.
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PROOF. Since Jh = +ih for each he HJ, J> = —1 on H,°. Then, as proved in
Lemma 7.5.6 of [2], H] is a direct sum of complex subspaces {de, + ule,:
4, ue C} on which the action of J is given by J(le, + uJe,) = —jie, + LJe,, as
required.

PROPOSITION 3.3. There exists an orthogonal family {u;} of measures of uniform
multiplicities m; on o’ , constructed in terms of the multiplicity function m; of the
restriction of J to H’, , and a unitary map U from H. @ H’. onto ® iDL, 1)),
where k ranges over an index set of cardinality mj, such that
UJUX([f3) = ([id-id o f 0id]) for each ([ fx]) € @ ;@ L(c”, , ).

PrOOF. By Theorem 2.14 applied to the restriction of J to H’, there exists an
orthogonal family {y;} of measures on ¢’,, defined in terms of m;, and an
orthogonal isomorphism U, from H{ onto @®;®,{[f1eL*c’,un):[f]1=
[ido f 0id]} such that U, JU* = @®;®,M,,. The equations [P,(d,) = P,((¢’)I
imply that TH, = H% ; hence the orthogonal map U, can be extended to a unitary
map U:H{ @ H. - ®;®,L*d%,pn) by Ulhy+Ihy))=U,h +iU,h,.
A simple calculation then shows that UJU*([ f;,]) = ([id- ido Sik oid)).

COROLLARY. Let (¢%,)? = {A* Aed’,} and let v; be defined on (¢’,)* by
VAE) = nj{Aec’: A>€E}) Then {v;} is an orthogonal family of measures of
uniform multiplicity such that J? is unitarily equivalent to @;®M;y on

@j @kLz((a»:- )2’ vj)'

ProOF. From Proposition 3.3 it follows that J? is unitarily equivalent to
®;®M4: on @;®, L(c”;, u;). However V: L*((0”, )%, v;) > L*(0”, )%, p;) defined
by V[f]=[foid?] is a unitary with VM,jV* = M,,., yielding the required
result.

THEOREM 3.4. Let J, K be antilinear isometries on a complex Hilbert space H.
Then J is unitarily equivalent to K if and only if J? is unitarily equivalent to K>.

ProoFr. If J? is unitarily equivalent to K2, then their eigenspaces associated
with the eigenvalue — 1 have the same dimension (possibly 0). Hence, by Lemma
3.2, the restriction of J to H} is unitarily equivalent to the restriction of K to H¥.

Let {y;} be a family given by Proposition 3.3, let 4 be a measure on o”; and, for
each Borel set E in (6} )%, let w(E) = p((id?) ™ }(E)) and v/(E) = p;((id?)~ *(E)). Then,
using Proposition 3.3 and its corollary, m; (u) =min{m; u A p; + 0} =
min{m;: v A v; 0} = m;2(v) Hence, if J? is unitarily equivalent to K* then
m; = mg and therefore, by Proposition 3.3, the restriction of J to H. @ H?, is
unitarily equivalent to the restriction of K to HX @ HX.

THEOREM 3.5. Let X be a closed subset of S* invariant under complex conjugation
and let m be a multiplicity function on the finite measures on X such that
m(u) = m(u oid) for each finite measure u on X and m(6 _,) is even or infinite (but
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may be zero). Then there exists an antilinear isometry J on a Hilbert space H such
that X is the spectrum of J* and m is its multiplicity function.

PROOF. Let Y = {ieS*: ReA 2 0, A€ X} and define a multiplicity function
m ., on the finite measures on Y by m,(8;) = m (6 _;) = 3m(6_,) and, for v singu-
lar to &; and & _;, by m . (v) = m(u) where y(E) = W({AeS*: Re A 2 0, 1> € E}). Let
{v;} be an orthogonal family of finite measures of uniform multiplicities m; on
Y (with respect to m.), such that v; = v;0id for each j and v is equivalent to
v j(v A vj)for each finite measure von Y withv = vo id. (Such a family exists by
Lemma 2.12.) Define H = @;®,LX(Y, v;), where k ranges over an index set of
cardinality m;, and define J = @ ;@®, M40 C;, where C;f = id o f oid for each f.
Then J is an antilinear isometry with the properties required.

4. Conjugacy of antiautomorphisms.

Let &, and @ be x-antiautomorphisms of B(H), where J and K are antilinear
isometries on H. Then, by Proposition 1.1 and Theorem 3.4, &, is conjugate to
@, if and only if J? is unitarily equivalent to K2 (henceforth written J? ~ K?).
Moreover, by Theorem 3.5, isometries of the form J?2 are characterized up to
unitary equivalence by a closed subset X of S* which is invariant under complex
conjugation and by a multiplicity function m such that m(u) = m(u oid) for each
finite measure u on X and such that m(é _,) is even or infinite. This, in one sense,
provides a complete answer to the conjugacy problem but it does not establish
the number of non-conjugate pairs @,, & for which @2 is conjugate to ¢z. We
will now tackle this problem, bearing in mind Proposition 1.2, and then illustrate
our results by some simple examples.

LEMMA 4.1. Let J, K be antilinear isometries with J* ~ JK%. Then J* ~ A2J2.
PROOF. Let U be a unitary with UJ2U* = AK?2. Then
(JU*KUMJAU*K*UJ*) = JU*K(AK)K*UJ*
= MJU*K*UJ*
= WJ(TIAJ*
= A2J2,

LEMMA 4.2. Let J be an antilinear isometry of finite order. Then G = {A: J* ~
A%J?} is a finite cyclic subgroup of S*.

PROOF. Let J have order n (which must be even since J is antilinear). Then G is
a subgroup of the group of nth roots of unity.

THEOREM 4.3. Let @, be a periodic »-antiautomorphism of B(H). Then there is, up
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to conjugacy, at most one *-antiautomorphism @y of B(H) with ®% conjugate to
@2 but ®y not conjugate to P,.

PROOF. Let 4 be a generator of the group G of Lemma 4.2. If @7 is conjugate to
@2 then there exists m = 0such that K? ~ A™J2 (by Proposition 1.2 and Lemmas
4.1 and 4.2). Thus K2 ~ Am*2kJ2 for each k and hence either K2 ~ J? or
K? ~ AJ%.In the first case @ is conjugate to @,; the second case gives the unique
possibility for which @, may not be conjugate to @,.

The following example shows that the conclusion of Theorem 4.3 does not
persist for aperiodic antiautomorphisms.

ExAMPLE 4.4. Let {r;:je N} be a family of distinct irrationals in (0, 1) such
that {1} U {r;:jeN} is linearly independent over Q, for each j = 0 let X; =
{Lemirsgmimritotman): ne N, my,...,m,eZ} n{A:Rel>0,Imi>0} (where
ro = 0) and, for each j 2 0, let J; be deﬁned on @cx, C? by J; = @,J;, where
J¥ (A, ) = (xa, x/). Then each J; can be regarded as an antllmear lsometry on
aseparable Hilbert space H. We w1ll show that, for each j, k, the point spectrum of
J? is distinct from that for JZ, so that J? and JZ are not unitarily equivalent and
hence correspond to distinct antlautomorphlsms ®,,and @, . We will also show
that, nevertheless, J? ~ e*™"1J¢ so that, for each j, (DJ is conjugate to @7 .

By construction, the point spectrum (or set of eigenvalues) of J f is equal to
Y, = {e¥mirsgtritmirit o tmarn: pe N, my,...,m,eZ} and, from the independence of
{1,r4,7,,...} over Q, it follows that e>™"/ does not belong to the point spectrum of
JZ for j + k but does belong to the point spectrum of J2. To see that JZ ~ e*™"iJ?,
define B:Y,—Y; by p(t)=e*""t and define U @ier,C = @,ey,C by
U gy = f Then J} ~ @yey,M, ~ UX@,cy,M,)U.  However, for
fe @rer, C(U* @yey M Uf)x (@, M WU gy = Mﬁ(xb(Uf) sy = BONUS pix)
= B(x)f, = e*™rixf, = (ez""f @xer,Msf )x, where M, A = xAforeach 1 e C. Hence
J} ~ UM®yer MU ~ e“'”@xsyo ~ €*™iJ§ and so @7 is conjugate to @7 ,
as required.

ExaMPLE 4.5. The simplest example (which is, of course, well-understood)
occurs when @2 = id, for which J> = 41 and the set X of Theorem 3.5 is either
{1} or { — 1}. The multiplicity m(d,) in the first case can be any number (giving the
dimension of the Hilbert space on which J operates) but m(é _ ;) must be even or
infinite in the second case. In both cases the group G of Lemma 4.2 is {1, — 1},
reflecting the fact that, for any J, K with #7 = &% = id, K* = +J2.

EXAMPLE 4.6. Another simple example occurs when &% = id (but &2 + id), for
which J* = 4 1and the set X of Theorem 3.5iseither {1, —1} (inthe case J* = 1)
or {i, —i} (in the case J* = — 1). In the first case the possible multiplicities are an
arbitrary non-zero m(d,) and an arbitrary even or infinite non-zero m(é _ ), with
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the sum of these giving the Hilbert space dimension of the space on which
J operates. In the second case m(d ;) must equal m(6;) which can be an arbitrary
non-zero cardinal, giving half the Hilbert space dimension of the space on which
J operates.

When X = {i, —i} or X = {1, —1} and m(6_,) = m(J,) then J*> ~ —J? and
the group G of Lemma 4.2 is equal to {1, —1, i, —i}. The isometry J? is either
a symmetry S = 1 — 2p, where p is a projection of dimension 2m on a space of
dimension 4m for some m, or J2 = iS’ = i(1 — 2p’) where p' is a projection of
dimension m’ on a space of dimension 2m’. If m' is even or infinite then J? and iJ?
are both squares of antilinear isometries and two conjugacy classes correspond
to ®%; otherwise @7 corresponds to a single antiautomorphism.

When X = {1, —1} and m(,) + m(6_,) (but both are non-zero) then the
group G of Lemma 4.2 is {1, — 1}. The isometry J? is a symmetry S = 1 — 2p. If
the dimensions of both p and 1 — p are even or infinite (corresponding to both
m(d,) and m(d _,) being even or infinite) then both J* and —J? are squares of
antilinear isometries and two conjugacy classes correspond to ®?; otherwise
@2 corresponds to a single antiautomorphism.

If, for example, H is of odd finite dimension 2k + 1 then B(H) possesses
k conjugacy classes of x-antiautomorphisms of period 4, corresponding to
X = {1, —1} with m(_,)e{2,...,2k}, m(8,) =2k + 1 —m(5_,); the corre-
sponding squares are of the form Ad(1 — 2p), where pis a projection of dimension
2,4,..., or 2k, and the projections are pairwise non-conjugate.
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