ORDER PROPERTIES OF COMPACT MAPS ON L'-SPACES ASSOCIATED WITH VON NEUMANN ALGEBRAS

ERWIN NEUHARDT

1. Introduction.

Compact operators on Banach lattices were studied by several mathematicians (see [9], Chap. 18). Prominent examples for Banach lattices are the spaces $L^{\mu}(\mu)$, where μ is some measure. Therefore it is natural to investigate also compact maps on non-commutative E-spaces. In this paper we show that the completely positive compact maps from $L^p(\mathcal{M})$ into $L^q(\mathcal{N})$, \mathcal{M} and \mathcal{N} von Neumann algebras, form an order ideal whenever p > 1 and $q < \infty$. This means that every completely positive map which is dominated by a compact map is itself compact. Since a positive map from $L^p(\mathcal{M})$ into $L^q(\mathcal{N})$ is already completely positive if \mathcal{M} or \mathcal{N} is abelian, this includes the abelian result. The main idea to the non-commutative extension consists in replacing formulas for the infimum of two linear operators by representation theorems for algebras and linear functionals. The order ideal of completely positive compact maps from \mathcal{M} into $L^q(\mathcal{N})$, $q < \infty$, is monotone closed. Hence every completely positive map from \mathcal{M} into $L^2(\mathcal{N})$ is the unique sum of two completely positive maps of which one is compact and the other dominates no nonzero compact map. This can be considered as a non-commutative analogue of the band decomposition ([9], Thm. 123.5).

2. Convergence of Cauchy sequences in *L*-spaces.

There are different ways of constructing *L*^p-spaces associated with a von Neumann algebra. In relation with order properties, Haagerup's construction seems to be the most useful. Therefore we give a short description of this construction. The details can be found in [8].

For von Neumann algebras and linear operators on a Hilbert space we use the definitions and notations of [6]. Let $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ be a von Neumann algebra with a semifinite normal faithful weight φ and the corresponding modular group σ^{φ} . \mathcal{M}_1 denotes the crossed product $\mathcal{R}(\mathcal{M}, \sigma^{\varphi}) \subset \mathcal{B}(L^2(\mathbb{R}, \mathcal{H}))$. \mathcal{M}_1 has a semifinite normal faithful trace μ naturally associated with φ ([2], Lemma 5.2). The set

 $L(\mathcal{M}_1, \mu)$ of all μ -measurable operators has a topology which is generated by the 0-neighbourhoods

(1)
$$N(\varepsilon,\delta) = \{ a \in L(\mathcal{M}_1,\mu) \mid \exists \ p \in \mathcal{M}_1, \ \|ap\| \le \varepsilon, \ \mu(1-p) \le \delta \}.$$

For the calculus of these neighbourhoods we refer to [4]. In [8], Chap. I, Lemma 7, it is shown that for $a \in L(\mathcal{M}_1, \mu)$

(2)
$$a \in N(\varepsilon, \delta) \Leftrightarrow \mu(\chi_{(\varepsilon, \infty)}(|a|)) \leq \delta.$$

With this topology $L(\mathcal{M}_1, \mu)$ is a complete Hausdorff topological *-algebra. The spaces $L^p(\mathcal{M})$ are realized as subspaces of $L(\mathcal{M}_1, \mu)$. We denote the norm on $L^p(\mathcal{M})$ by $\|\cdot\|_p$ and the duality between $L^p(\mathcal{M})$ and $L^p(\mathcal{M})$ for 1/p + 1/q = 1 by $\langle\cdot,\cdot\rangle$. We identify \mathcal{M} with $L^\infty(\mathcal{M})$ and \mathcal{M}_* with $L^1(\mathcal{M})$. For $p < \infty$ and $\alpha, \beta > 0$ we have

$$(3) E^{p}(\mathcal{M}) \cap N(\alpha, \beta) = \{a \in E^{p}(\mathcal{M}) \mid ||a||_{p} \leq \alpha \beta^{1/p}\},$$

thus the norm topology on $L^p(\mathcal{M})$ is equivalent to the relative topology of the μ -measurable operators.

For $n \in \mathbb{N}$ $M_n(\mathbb{C})$ denotes the complex $n \times n$ matrices. An element $f = [f_{ij}] \in L^p(\mathcal{M}) \otimes M_n(\mathbb{C})$ can be considered as a densely defined preclosed linear operator on $L^2(\mathbb{R}, \mathcal{H})^n$. In fact, its closure is uniquely determined, and identifying f with its closure we get an identification of $L^p(\mathcal{M}) \otimes M_n(\mathbb{C})$ with $L^p(\mathcal{M} \otimes M_n(\mathbb{C}))$. If 1/p + 1/q = 1, this furnishes a duality between $L^p(\mathcal{M}) \otimes M_n(\mathbb{C})$ and $L^p(\mathcal{M}) \otimes M_n(\mathbb{C})$ given by

(4)
$$\langle f, g \rangle = \sum_{i,j=1}^{n} \langle f_{ij}, g_{ji} \rangle, \qquad f = [f_{ij}] \in L^{p}(\mathcal{M}) \otimes M_{n}(C)$$

$$g = [g_{ij}] \in L^{q}(\mathcal{M}) \otimes M_{n}(C).$$

 $L^p(\mathcal{M}) \otimes M_n(C)$ is naturally ordered by the cone of the positive operators $(L^p(\mathcal{M}) \otimes M_n(C))_+$, and $f \in L^p(\mathcal{M}) \otimes M_n(C)$ is positive if and only if $\langle f, g \rangle \geq 0$ for all $g \in (L^p(\mathcal{M}) \otimes M_n(C))_+$, where 1/p + 1/q = 1.

Now we investigate the convergence of sequences in $L^p(\mathcal{M})$. We denote the lattice of projections in \mathcal{M}_1 by $\mathcal{P}_{\mathcal{M}_1}$. If a sequence $(e_n)_{n=1}^{\infty}$ in \mathcal{M}_1 converges monotone to 0, we write $e_n \downarrow 0$.

2.1. LEMMA. Let $p < \infty$, $f \in L^p(\mathcal{M})$, and $(e_n)_{n=1}^{\infty} \subset \mathscr{P}_{\mathcal{M}_1}, e_n \downarrow 0$. Then $\lim_{n \to \infty} e_n f = 0$ in $L(\mathcal{M}_1, \mu)$.

PROOF. We may assume that f is positive and $||f||_p = 1$. For $0 < \alpha < \beta$ we put

$$f_1 = f\chi_{[0,\alpha]}(f), f_2 = f\chi_{(\alpha,\beta]}(f), f_3 = f\chi_{(\beta,\infty)}(f), e = \chi_{(\alpha,\beta]}(f).$$

Then (3) implies $\mu(e) \le \alpha^{-p}$. For ε , $\delta > 0$ there exist α , β such that $e_n f_1$, $e_n f_3 \in N(\varepsilon, \delta)$ for all $n \in \mathbb{N}$. Hence we have to show that $\lim_{n \to \infty} e_n f_2 = 0$. Now

$$\mu(|e_n f_2|)^2 \le \mu(e) \, \mu(e_n f_2^2) \le \beta^2 \, \mu(e) \, \mu(e_n e) \to 0 \text{ as } n \to \infty.$$

Since the convergence in the trace norm implies the convergence in $L(\mathcal{M}_1, \mu)$, the assertion is proved.

- 2.2. DEFINITION. A subset $\mathscr{A} \subset L^p(\mathscr{M})$ is called uniformly μ -continuous, if for every sequence $(e_n)_{n=1}^{\infty}$ in $\mathscr{P}_{\mathscr{M}_1}$, $e_n \downarrow 0$, the sequences $(e_n f e_n)_{n=1}^{\infty}$ converge uniformly to 0 in $L(\mathscr{M}_1, \mu)$, i.e. for every ε , $\delta > 0$ there exists $k \in \mathbb{N}$ such that $e_n f e_n \in N(\varepsilon, \delta)$, $n \geq k$, $f \in \mathscr{A}$.
- 2.3. LEMMA. Let $p < \infty$, $\mathcal{A} \subset L^p(\mathcal{M})_+$ bounded and $(e_n)_{n=1}^{\infty} \subset \mathcal{P}_{\mathcal{M}_1}, e_n \downarrow 0$. Then there are equivalent:
 - i) The sequences $(e_n f e_n)_{n=1}^{\infty}$, $f \in \mathcal{A}$, converge uniformly to 0.
 - ii) The sequences $(e_n f)_{n=1}^{\infty}$, $f \in \mathcal{A}$, converge uniformly to 0.

PROOF. The implication ii) \Rightarrow i) is obvious.

- i) \Rightarrow ii): Let $||f||_p \le 1$ for all $f \in \mathcal{A}$. By (3), $f \in N(k, k^{-p})$ and hence $f^{1/2} \in N(k^{1/2}, k^{-p})$ for all $k \in \mathbb{N}$. If $e_n f e_n \in N(\varepsilon, \delta)$, then $e_n f = e_n f^{1/2} f^{1/2} \in N((\varepsilon k)^{1/2}, \delta + k^{-p})$.
- 2.4. LEMMA. Let 1 , <math>1/p + 1/q = 1, and $(f_n)_{n=1}^{\infty}$ be a bounded sequence in $L^p(\mathcal{M})_+$. Then there are equivalent:
 - i) $(f_n)_{n=1}^{\infty}$ is a Cauchy sequence in $L^p(\mathcal{M})$.
- ii) The set $\{f_n | n \in \mathbb{N}\}$ is uniformly μ -continuous and $(hf_nh)_{n=1}^{\infty}$ is a Cauchy sequence in $L^1(\mathcal{M})$ for all $h \in L^{2q}(\mathcal{M})_+$.
- iii) The set $\{f_n | n \in \mathbb{N}\}$ is uniformly μ -continuous and $(hf_nh)_{n=1}^{\infty}$ is a Cauchy sequence in $L^1(\mathcal{M})$ for some $h \in L^{2q}(\mathcal{M})_+$ such that $s(h) \geq s(f_n)$ for all $n \in \mathbb{N}$.

PROOF. It suffices to prove the convergence of all sequences in the topology of $L(\mathcal{M}_1, \mu)$.

- i) \Rightarrow ii): For $h \in L^{2q}(\mathcal{M})_+$ the convergence of the sequence $(hf_n h)_{n=1}^{\infty}$ follows from the continuity of the multiplication in $L(\mathcal{M}_1, \mu)$. Since $(f_n)_{n=1}^{\infty}$ has a limit in $L^p(\mathcal{M})$, Lemma 2.1 implies that $\{f_n \mid n \in \mathbb{N}\}$ is uniformly μ -continuous.
 - ii) ⇒ iii) is obvious.
- iii) \Rightarrow i): By considering the reduced algebra $s(h) \mathcal{M} s(h)$ we may assume that s(h) = 1. Then we put $e_k = \chi_{(1/k,\infty)}(h)$, $k \in \mathbb{N}$. For every $m, n \in \mathbb{N}$ we have

(5)
$$f_n - f_m = (1 - e_k)(f_n - f_m) + e_k(f_n - f_m)(1 - e_k) + e_k(f_n - f_m)e_k.$$

By Lemma 2.3 the first two summands of (5) are small if k is large enough. Therefore we have only to show: If $k \in \mathbb{N}$ is fixed then $(e_k f_n e_k)_{n=1}^{\infty}$ is a Cauchy sequence. But this is easily seen by writing

(6)
$$e_k(f_n - f_m)e_k = (h^{-1}e_k)h(f_n - f_m)h(h^{-1}e_k)$$

and observing that $h^{-1}e_k$ is a bounded operator in a natural way.

3. Compact maps.

Let \mathcal{N} be another von Neumann algebra with a semifinite normal faithful weight ψ , $\mathcal{N}_1 = \mathcal{R}(\mathcal{N}, \sigma^{\psi})$, and ν the canonical trace on \mathcal{N}_1 . Let $1 \leq p$, q, $q' \leq \infty$, 1/q + 1/q' = 1. For $h \in L(\mathcal{N}_1, \nu)$ we define

$$M(h): L(\mathcal{N}_1, v) \to L(\mathcal{N}_1, v), a \mapsto h^*ah.$$

3.1. DEFINITION. Let $T: L^p(\mathcal{M}) \to L^q(\mathcal{N})$ be a linear map. We define

$$T_n: L^p(\mathcal{M}) \otimes M_n(\mathbb{C}) \to L^q(\mathcal{N}) \otimes M_n(\mathbb{C}), \ [f_{ij}] \mapsto [Tf_{ij}].$$

T is completely positive $(T \geq 0)$, if $T_n(L^p(\mathcal{M}) \otimes M_n(C))_+ \subset (L^p(\mathcal{N}) \otimes M_n(C))_+$ for all $n \in \mathbb{N}$. $CP(L^p(\mathcal{M}), L^p(\mathcal{N}))$ denotes the cone of all completely positive maps from $L^p(\mathcal{M})$ into $L^p(\mathcal{N})$. $S \in CP(L^p(\mathcal{M}), L^p(\mathcal{N}))$ is dominated by T if $T - S \geq 0$. T is uniformly v-continuous if $\{Tf \mid f \in L^p(\mathcal{M}), \|f\|_p \leq 1\}$ is uniformly v-continuous.

- 3.2. PROPOSITION. Let $1 < q < \infty$, and $T: L^p(\mathcal{M}) \to L^q(\mathcal{N})$ be a positive linear map. Then there are equivalent:
 - i) T is compact.
- ii) T is uniformly v-continuous and $M(h)T: L^p(\mathcal{M}) \to L^1(\mathcal{N})$ is compact for all $h \in L^{2q'}(\mathcal{N})_+$.

PROOF. i) \Rightarrow ii): The compactness of M(h)T follows from the compactness of T. Suppose T is not uniformly ν -continuous. Then there exist a sequence $(e_l)_{l=1}^{\infty}$ in $\mathscr{P}_{\mathcal{N}_1}$, $e_l \downarrow 0$, and $\alpha > 0$ such that for every $n \in \mathbb{N}$ there exist $k(n) \in \mathbb{N}$, $k(n) \geq n$ and $f_n \in L^p(\mathcal{M})_+$, $||f_n||_p \leq 1$, with

(7)
$$e_{k(n)}(Tf_n)e_{k(n)} \notin N(\alpha, \alpha).$$

By considering a subsequence of $(f_n)_{n=1}^{\infty}$ we may assume that $(Tf_n)_{n=1}^{\infty}$ converges to $g \in L^q(\mathcal{N})$. Then

(8)
$$e_{k(n)}(Tf_n)e_{k(n)} = e_{k(n)}(Tf_n - g)e_{k(n)} + e_{k(n)}ge_{k(n)}.$$

If n is large enough, the right side of (8) is an element of $N(\alpha, \alpha)$ which contradicts (7).

- ii) \Rightarrow i): Let $(f_n)_{n=1}^{\infty}$ be a bounded sequence in $L^p(\mathcal{M})_+$. We choose $h \in L^{2q'}(\mathcal{N})_+$ with $s(h) \geq s(Tf_n)$ for all $n \in \mathbb{N}$. Then the set $\{Tf_n \mid n \in \mathbb{N}\}$ is uniformly ν -continuous and $(h(Tf_n)h)_{n=1}^{\infty}$ has a convergent subsequence. Hence Lemma 2.4 implies that $(Tf_n)_{n=1}^{\infty}$ has a convergent subsequence.
- 3.3. PROPOSITION. Let $1 < q < \infty$, $T: \mathcal{M} \to L^1(\mathcal{N})$ be a positive linear map, $h \in L^{2q'}(\mathcal{N})_+$, $s(h) \geq s(T1)$. Then T is compact if and only if $M(h)T: \mathcal{M} \to L^1(\mathcal{N})$ is compact.

PROOF. For $x \in \mathcal{M}$, $0 \le x \le 1$, and $e \in \mathcal{P}_{\mathcal{N}_1}$ we have $eT(x)e \le eT(1)e$. Hence T is uniformly v-continuous. Clearly the compactness of T implies the compactness of M(h)T. Conversely if $(x_n)_{n=1}^{\infty}$ is a bounded sequence in \mathcal{M}_+ , then $s(h) \ge s(Tx_n)$. Hence by Lemma 2.4 $(Tx_n)_{n=1}^{\infty}$ has a convergent subsequence if and only if $(h(Tx_n)h)_{n=1}^{\infty}$ has a convergent subsequence.

 \mathcal{N}^{op} denotes the opposite algebra which has the same elements as \mathcal{N} and its vector space structure but reversed order of multiplication. We attach \mathbf{a}° to the elements of \mathcal{N}^{op} . To each $T \in \mathrm{CP}(\mathcal{M}, L^1(\mathcal{N}))$ we assign the positive linear functional

$$\varphi_T \colon \mathscr{M} \otimes \mathscr{N}^{\mathrm{op}} \to \mathsf{C}, \ \sum_{i=1}^n a_i \otimes b_i^{\circ} \mapsto \sum_{i=1}^n \langle Ta_i, b_i \rangle.$$

Let $\{\mathcal{H}_T, \pi_T, \xi_T\}$ denote the cyclic representation of $\mathcal{M} \otimes \mathcal{N}^{op}$ induced by φ_T . By [7], Chap. IV, Prop. 3.10, the map

$$\Theta\colon \big\{S\in \operatorname{CP}(\mathcal{M},L^1(\mathcal{N}))\,\big|\,S\underset{\text{cn}}{\leq}\lambda T,\,\lambda\geqq 0\big\}\to \pi_T(\mathcal{M}\otimes\mathcal{N}^{\operatorname{op}})'_+$$

given by

(9)
$$\langle Sx, y \rangle = (\pi_T(x \otimes y^\circ) \Theta(S) \xi_T | \xi_T), \quad x \in \mathcal{M}, y \in \mathcal{N}$$

is bijective, additive, and monotone.

Now we can prove the main theorem of this paper.

3.4. THEOREM. Let p > 1, $q < \infty$, and $S, T: L^p(\mathcal{M}) \to L^q(\mathcal{N})$ be linear maps such that $0 \le S \le T$. If T is compact, then S is compact.

PROOF. First we reduce to the case $p=\infty$ and q=1. Suppose that q>1. T is uniformly ν -continuous because it is compact. Since $0 \le S \le T$, S is also uniformly ν -continuous. Hence by Prop. 3.2, it suffices to show that M(h)S: $L^p(\mathcal{M}) \to L^1(\mathcal{N})$ is compact for all $h \in L^{2q'}(\mathcal{N})_+$. Since $0 \le M(h)S \le M(h)T$, we may assume that q=1. Considering the adjoint maps and repeating the above arguments we may also assume $p=\infty$.

Now we put $y = \Theta(S)^{1/2} \in \pi_T(\mathcal{M} \otimes \mathcal{N}^{op})'_+$. Since ξ_T is a cyclic vector, we can find a sequence $(y_n)_{n=1}^{\infty}$ in $\mathcal{M} \otimes \mathcal{N}^{op}$ such that

(10)
$$y\xi_T = \lim_{n \to \infty} \pi_T(y_n)\xi_T.$$

For $y_n = \sum_{i=1}^{k(n)} c_{in} \otimes d_{in}^{\circ}$ we define

(11)
$$S_n: \mathcal{M} \to L^1(\mathcal{N}), x \mapsto \sum_{i,j=1}^{k(n)} d_{in}^* T(c_{in}^* x c_{jn}) d_{jn}.$$

Then all S_n are completely positive compact maps. For $a \in \mathcal{M}$, $b \in \mathcal{N}$ we have

$$\langle S_n a, b \rangle = (\pi_T(a \otimes b^\circ) \pi_T(y_n) \xi_T | \pi_T(y_n) \xi_T)$$

and

$$(13) \quad |\langle Sa - S_n a, b \rangle| \leq ||y\xi_T - \pi_T(y_n)\xi_T|| \, ||a|| \, ||b|| \, (||y\xi_T|| + ||\pi_T(y_n)\xi_T||).$$

Hence $\lim_{n\to\infty} ||S - S_n|| = 0$ and S is compact.

For p = 1 or $q = \infty$ this theorem does not hold even in the abelian case. Counterexamples can be found in [9], p. 522f.

We close this section with the decomposition of a completely positive map from \mathcal{M} into $\mathcal{L}(\mathcal{N})$, $q < \infty$, into a compact map and a map which dominates no nonzero compact map.

An order ideal \Im of \mathcal{M} is a subset of \mathcal{M}_+ which has the property:

$$a, b \in \mathfrak{I}, c \in \mathcal{M}_+, c \leq a + b \Rightarrow c \in \mathfrak{I}.$$

 \Im is monotone closed if $0 \le y_i \uparrow y \in \mathcal{M}$, $y_i \in \Im$ for all *i* implies $y \in \Im$.

3.5. LEMMA. Let $1 < q < \infty$, $T: \mathcal{M} \to L^q(\mathcal{N})$ be completely positive, $h = T(1)^{q/2}$, and $\widetilde{S}: \mathcal{M} \to L^1(\mathcal{N})$ such that $0 \leq \widetilde{\mathbb{S}} \leq M(h^{1/q'})T$. Then there exists a unique map $S: \mathcal{M} \to L^q(\mathcal{N})$ such that $0 \leq \widetilde{\mathbb{S}} \leq T$ and $M(h^{1/q'})S = \widetilde{S}$.

PROOF. By [5], Lemma 2.2, there exists for each $x \in \mathcal{M}$, $0 \le x \le 1$, a unique $y \in \mathcal{N}$, $0 \le y \le s(h)$, such that $\widetilde{S}(x) = hyh$. We define $S(x) = h^{1/q}yh^{1/q}$. Since y is unique, S is additive and positive homogeneous. Hence it can be extended to a linear map $S: \mathcal{M} \to L^q(\mathcal{N})$. Clearly $M(h^{1/q'})S = \widetilde{S}$. For $x \in \mathcal{M} \otimes M_n(\mathbb{C})$ we have $s(S_n(x)) \le s(h) \otimes 1_n$ and $(M(h^{1/q'})S)_n(x) = \widetilde{S}_n(x)$. Again [5], Lemma 2.2, implies $0 \le S_n(x) \le T_n(x)$. The uniqueness of S follows from the same lemma.

3.6. THEOREM. Let $q < \infty$ and $T: \mathcal{M} \to \mathcal{L}(\mathcal{N})$ be completely positive. Then T has a unique decomposition T = K + L where $K, L: \mathcal{M} \to \mathcal{L}(\mathcal{N})$ are completely positive, K is compact, and L dominates no nonzero compact map.

PROOF. We first prove the case q=1. By Theorem 3.4, the set $\mathfrak{I}=\{K: \mathcal{M}\to L^1(\mathcal{N})|0\leqq_{\overline{cp}}K\leqq_{\overline{cp}}\lambda T,\,\lambda\geqq0,\,K\text{ compact}\}$ is an order ideal. Hence $\Theta(\mathfrak{I})\subset\pi_T(\mathcal{M}\otimes\mathcal{N}^{\mathrm{op}})'_+$ is an order ideal. If $\Theta(K_i)\uparrow\Theta(K)\in\pi_T(\mathcal{M}\otimes\mathcal{N}^{\mathrm{op}})'_+,\,K_i\in\mathfrak{I}$ for all i, then

(14)
$$\lim_{i} \|K - K_{i}\| \leq 4 \lim_{i} ((\Theta(K) - \Theta(K_{i})) \xi_{T} | \xi_{T}) = 0.$$

Hence \Im is monotone closed and there exists a projection $e \in \pi_T(\mathcal{M} \otimes \mathcal{N}^{\text{op}})'$ such that $\Theta(\Im) = e\pi_T(\mathcal{M} \otimes \mathcal{N}^{\text{op}})'_+e$. Let $K \colon \mathcal{M} \to L^1(\mathcal{N})$ be the map with $\Theta(K) = e$ and L = T - K. Then T = K + L is the desired decomposition.

- If q > 1, we put $h = T(1)^{q/2}$. Then $M(h^{1/q'})T = \tilde{K} + \tilde{L}$ by the first part of the proof. Let K and L be the maps according to Lemma 3.5. Then T = K + L. By Prop. 3.2, K is compact. If L would dominate a nonzero compact map, then \tilde{L} would dominate a nonzero compact map which is impossible.
- 3.7. COROLLARY. Let p > 1 and $T: L^p(\mathcal{M}) \to L^1(\mathcal{N})$ be completely positive. Then T has a unique decomposition T = K + L, where $K, L: L^p(\mathcal{M}) \to L^1(\mathcal{N})$ are completely positive, K is compact, and S dominates no nonzero compact map.

REFERENCES

- 1. N. Dunford and J. T. Schwartz, Linear Operators I, Interscience Publisher Inc., New York, 1958.
- U. Haagerup, Operator valued weights in von Neumann algebras II, J. Funct. Anal. 33 (1979), 339-361.
- M. Krasnoselskii et al., Integral Operators in Spaces of Summable Functions, Nordhoff International Publishing, Leyden, 1976.
- 4. E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 103-116.
- L. M. Schmitt, The Radon-Nikodym theorem for B-spaces of W*-algebras, Publ. Res. Inst. Math. Sci. 22 (1986), 1025–1034.
- S. Stratila and L. Zsidó, Lectures on von Neumann Algebras, Abacus Press, Tunbridge Wells, Kent, 1979.
- M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, Berlin, Heidelberg, New York, 1979.
- M. Terp, L'-spaces associated with von Neumann algebras, Københavns Universitet, preprints no. 3a) and 3b) (1981).
- A. C. Zaanen, Riesz Spaces II, North-Holland Publishing Company, Amsterdam, New York, Oxford, 1983.

UNIVERSITÄT DES SAARLANDES FACHBEREICH 9 MATHEMATIK D-6600 SAARBRÜCKEN WEST GERMANY