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ORDER PROPERTIES OF COMPACT MAPS ON L*-SPACES
ASSOCIATED WITH VON NEUMANN ALGEBRAS

ERWIN NEUHARDT

1. Introduction.

Compact operators on Banach lattices were studied by several mathema-
ticians (see [9], Chap. 18). Prominent examples for Banach lattices are the spaces
I?(u), where p is some measure. Therefore it is natural to investigate also compact
maps on non-commutative I?-spaces. In this paper we show that the completely
positive compact maps from If(#) into I4(A4"), # and 4" von Neumann alge-
bras, form an order ideal whenever p > 1 and g < oco. This means that every
completely positive map which is dominated by a compact map is itself compact.
Since a positive map from I?(.#)into I?(4") is already completely positive if # or
A is abelian, this includes the abelian result. The main idea to the non-com-
mutative extension consists in replacing formulas for the infimum of two linear
operators by representation theorems for algebras and linear functionals. The
order ideal of completely positive compact maps from .# into I4(A"), g < o0, is
monotone closed. Hence every completely positive map from .# into I4(4") is the
unique sum of two completely positive maps of which one is compact and the
other dominates no nonzero compact map. This can be considered as
a non-commutative analogue of the band decomposition ([9], Thm. 123.5).

2. Convergence of Cauchy sequences in I?-spaces.

There are different ways of constructing IP-spaces associated with a von
Neumann algebra. In relation with order properties, Haagerup’s construction
seems to be the most useful. Therefore we give a short description of this
construction. The details can be found in [8].

For von Neumann algebras and linear operators on a Hilbert space we use the
definitions and notations of [6]. Let # < %(5¢) be a von Neumann algebra with
a semifinite normal faithful weight ¢ and the corresponding modular group ¢*.
M, denotes the crossed product (A, 0%) = B(I*(R, H#)). #, has a semifinite
normal faithful trace u naturally associated with ¢ ([2], Lemma 5.2). The set

Received November 18, 1988



ORDER PROPERTIES OF COMPACT MAPS ON L?-SPACES 111

L(#,, ) of all u-measurable operators has a topology which is generated by the
0-neighbourhoods

Y N(e,0) = {ae L(#\, )| Ipe #,, |ap| S & u(l - p) < 6}

For the calculus of these neighbourhoods we refer to [4]. In [8], Chap. I, Lemma
7, it is shown that for a e L(#,, u)

@ aeN(&0) < Ut o lah) = 6.

With this topology L(.#,, u) is a complete Hausdorff topological *-algebra. The
spaces I?(.#) are realized as subspaces of L(.#,, ). We denote the norm on I?(.#)
by || - |, and the duality between I?(.#) and Li(.#)for 1/p + 1/g = 1 by (-, >. We
identify .# with L*(#) and .#, with L'(#). For p < co and a, § > 0 we have

C) E(#) N N(@, p) = {ac ()| l|all, < «p'?},

thus the norm topology on If(.#) is equivalent to the relative topology of the
u-measurable operators.

For ne N M,(C) denotes the complex n x n matrices. An element f = [f;;]e
I’(#) ® M,(C) can be considered as a densely defined preclosed linear operator
on I2(R, #)". In fact, its closure is uniquely determined, and identifying f with its
closure we get an identification of I/(.#)® M,(C) with I!(# ® M,(C)). If
1/p + 1/q = 1, this furnishes a duality between I¥(.#)® M,(C) and I4(#)®
M,(C) given by

@) Sfgy= Y Sfipgi>» f=1fleZ(#)® M,C)
i,j=1
g= [gij] e li(#) ® M,(C).

I’(#)® M,(C) is naturally ordered by the cone of the positive operators
(Z(A#)® M,(C)),,and fe’(#) ® M,(C) is positive if and only if {f,g> = 0 for
all ge (I4(#) ® M,(C)),, where 1/p + 1/q = 1.

Now we investigate the convergence of sequences in I?(.#). We denote the
lattice of projections in .#; by 2, . If a sequence (e,);~, in .#; converges
monotone to 0, we write e, | 0.

2.1. LeMMA. Letp < oo, fe I’(#),and (e,),-1 = Py €, 1 0. Then lim e,f =0
in L‘(‘/”b ﬂ)- e

Proor. We may assume that f is positiveand | f||, = 1. For0 < « < f we put

J1= Mo 2 =Man(Dh f3 = o) (f) €= Xap f)-

Then (3) implies u(e) < a~?. For g, 6 > 0 there exist «, § such that e, f}, e,f3 €
N (e, d) for all ne N. Hence we have to show that lim e, f, = 0. Now

n— o
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Hllenf2)* < ple) plenfy) < B? ule) plene) >0 as n — co.

Since the convergence in the trace norm implies the convergence in L(.#,, u), the
assertion is proved.

2.2. DEFINITION. A subset o < IP(#)is called uniformly u-continuous, if for
every sequence (e,),~ , in 2, , e, | 0, the sequences (e, fe,),- , converge uniformly
to 0 in L(.#,, ), i.e. for every ¢, & > O there exists ke N such that ¢, fe, € N(, 9),
nxk, fed.

2.3. LeMMA. Letp < oo,/ < I?(M), bounded and (e,);- | = Py ,e,10. Then
there are equivalent:

i) The sequences (e, fe,)r- 1, f € &, converge uniformly to 0.

ii) The sequences (e, f):- 1, f € o, converge uniformly to 0.

Proor. The implication ii) = i) is obvious.
i) = ii): Let ||f]l, <1 for all feo/. By (3), feN(k,k™?) and hence f'*e
N(k'?,k™P) for all keN. If e,fe,e N(e, ), then e,f = e,f'/*f1?e N((ek)'?,
5+ k).

2.4. LEMMA. Letl <p < o0,1/p + 1/q = 1,and (f,) -, be a bounded sequence
in I?(M) . Then there are equivalent:

i) (f,)®, is a Cauchy sequence in I'(H).

i) The set {f,|neN} is uniformly p-continuous and (hf,h)., is a Cauchy
sequence in L}(#) for all he 2 MH),.

ili) The set {f,|neN} is uniformly p-continuous and (hf,h)-, is a Cauchy
sequence in L}(.#) for some he I>A(#)., such that s(h) = s(f,) for all ne N.

Proor. It suffices to prove the convergence of all sequences in the topology of
L(-/”p /‘)'

i) = ii): For he I?%(.#). the convergence of the sequence (hf,h)<., follows
from the continuity of the multiplication in L{.#,, u). Since (f,) , has a limit in
I?(#), Lemma 2.1 implies that {f,|ne N} is uniformly u-continuous.

ii) = iii) is obvious.

iii) = i). By considering the reduced algebra s(h).#s(h) we may assume that
s(h) = 1. Then we put e, = X(1k,«)(h), ke N. For every m, ne N we have

B S Sa= A=)y — fu) + alfe = L) — &) + elfy — Suder-

By Lemma 2.3 the first two summands of (5) are small if k is large enough.
Therefore we have only to show: If ke N is fixed then (e f,e,)s-, is a Cauchy
sequence. But this is easily seen by writing

(©) el(f — fudex = (e )h(f, — f)h(h ™ ey)

and observing that h ™ 'e, is a bounded operator in a natural way.
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3. Compact maps.

Let .4/ be another von Neumann algebra with a semifinite normal faithful weight
v, M = RN d¥), and v the canonical trace on A4]. Let 1 <p, q, ¢ < o,
1/q + 1/q¢' = 1. For he L(A4},v) we define

M(h): L(A},v) = L(A}, V), a — h*ah.
3.1. DEFINITION. Let T:I?(#)— I4(A") be a linear map. We define
T,: (M) ® M,(C) - L(AN) @ M,(C), [f;;] — [Tf;].
T is completely positive (T ;2; 0), if T,((A)® M,(C)), < (I(AN)® M,(C)), for
allne N. CP(IZ(#), I!(.4")) denotes the cone of all completely positive maps from
IP(M) into [4(A"). SeCP(IP(A), [4(A)) is dominated by T if T — S 3>‘§ 0. Tis

uniformly v-continuous if {Tf| fe I?(.#), || f||, £ 1} is uniformly v-continuous.

3.2. PROPOSITION. Let 1 < q < o0, and T: I?(M) — (AN be a positive linear
map. Then there are equivalent:

i) T is compact.

it) T is uniformly v-continuous and M(h)T: IZ(#) — L'(N") is compact for all
he2 (A),.

PROOF. i) = ii): The compactness of M(h)T follows from the compactness of
T. Suppose T is not uniformly v-continuous. Then there exist a sequence () , in
Py, €10, and a > 0 such that for every ne N there exist k(n)e N, k(n) = n and
Jn€ (M) 4, I full, = 1, with

7 ek(n)(T.fn)ek(n) ¢ N(, ).

By considering a subsequence of (f,);- ; we may assume that (Tf,) -, converges
to ge IY(4"). Then

@®) exm(Th)exm = exm(Thh — 9)exm + exm9eumy

If n is large enough, the right side of (8) is an element of N(a, «) which contradicts
.

ii) = i): Let (f,)2>, be a bounded sequence in I’(.#),. We choose
he 29 (), with s(h) = s(T,) for all ne N. Then the set { Tf, | ne N} is uniformly
v-continuous and (h(Tf,)h);>- , has a convergent subsequence. Hence Lemma 2.4
implies that (Tf,)*., has a convergent subsequence.

3.3. PROPOSITION. Let 1 < q < oo, T: M — I¥(A") be a positive linear map,
he 29(A),,s(h) = s(T1). Then T is compact if and only if M(h)T: M — L}(N) is
compact.
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ProOOF. For xe #,0 < x = 1, and ee#,, we have eT(x)e < eT(1)e. Hence
T is uniformly v-continuous. Clearly the compactness of T implies the compact-
ness of M(h)T. Conversely if (x,)-, is a bounded sequence in .#,, then
s(h) = s(Tx,). Hence by Lemma 2.4 (Tx, ) , has a convergent subsequence if and
only if (h(Tx,)h);> , has a convergent subsequence.

A°P denotes the opposite algebra which has the same elements as .4 and its
vector space structure but reversed order of multiplication. We attach a° to the
elements of A"°P. To each T e CP(.#, }(./")) we assign the positive linear func-
tional

o MONPSC, Y a;® b; >
i=1

i

<Tai,bi>'
i=1

13

Let {#y, np, Er} denote the cyclic representation of # ® A4"°° induced by ¢. By
[7], Chap. 1V, Prop. 3.10, the map

©: {SeCP(M,L'(N))|S ;p AT, 2 2 0} » np(M ® N°P),
given by
(&) Sx,y) =[x ®y)OS)Sr|&r), xeM,ye N

is bijective, additive, and monotone.
Now we can prove the main theorem of this paper.

3.4. THEOREM. Letp > 1,q < oo,and S, T: I¥(M) — L(N") be linear maps such
that 0 < S X T. If T is compact, then S is compact.
cp cp

Proor. First we reduce to the case p = co and g = 1. Suppose thatg > 1. T'is
uniformly v-continuous because it is compact. Since 0 < S < T, Sis also uniform-
ly v-continuous. Hence by Prop. 3.2, it suffices to show that M(h)S:
IP(M) - L}(AN) is compact for all he [27(A),. Since 0 % M(h)S ;p M(WT, we
may assume that g = 1. Considering the adjoint maps and repeating the above
arguments we may also assume p = 0.

Now we put y = O(S)/2e np (A ® A °P),. Since &y is a cyclic vector, we can
find a sequence (y,);-, in # ® AP such that

(10 yér = lim ny(y,)¢r.

n— o

k(n)

Fory,= Y ¢, ® d, we define
i=1

k(n)
(11) Sy M > L(N),x — Y dET(ckxc;)djp,

ij=1
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Then all S, are completely positive compact maps. For ae .#, be A" we have

12) (8,a,b> = (nr(a ® b°) my(y,) & | wr(yn)Er)

and

(13) [<Sa = S,a,b>| = Iy&r — mr(ya)ell lall 161 (IyEzll + Imr(ya)Erll)-

Hence lim ||S — §,|| = 0 and S is compact.

For p =1 or q = oo this theorem does not hold even in the abelian case.
Counterexamples can be found in [9], p. 522f.

We close this section with the decomposition of a completely positive map
from .# into I4(A), g < o0, into a compact map and a map which dominates no
nonzero compact map.

An order ideal 3 of .# is a subset of .#, which has the property:

a,be3,cel,,cLa+b = ce3.
3 is monotone closed if 0 < y; T ye A, y,e3J for all i implies ye 3.

3.5. LeMMA. Let 1<g< oo, T: H# - L(A) be completely positive,
h = T(1)"?, and S: M — L}(A") such that 0 < § < M(h'¥)T. Then there exists
cp cp

a unique map S: M — I3(N) such that 0 < S < T and M(h'7)S = §.
cp cp

ProOF. By [5], Lemma 2.2, there exists for each xe .#, 0 < x £ 1, a unique
ye N0 £ y < s(h), such that §(x) = hyh. We define S(x) = h'/4yh'/4, Since y is
unique, S is additive and positive homogeneous. Hence it can be extended to
alinear map S: 4 — I9(4). Clearly M(h'/4)S = §. For xe .# ® M,(C) we have
s(S,(x)) < s(h) ® 1, and (M(h'/7)S),(x) = S,(x). Again [5], Lemma 2.2, implies
0 < S,(x) £ T,(x). The uniqueness of S follows from the same lemma.

3.6. THEOREM. Let q < oo and T: # — I3(A") be completely positive. Then
T has a unique decomposition T = K + Lwhere K, L: # — I}(N') are completely
positive, K is compact, and L dominates no nonzero compact map.

ProoF. We first prove the case ¢ = 1. By Theorem 3.4, the set 3 = {K:
M - L'(A))0 <K AT, A 2 0, K compact} is an order ideal. Hence O(3J) =
cp cp

(M @ A°P), is an order ideal. f O(K;) T O(K) e n (M ® N°P),, K;e TFforall
i, then

(14) lim [K — Ki|| = 41lim(O(K) — @(K))¢r|&r) = 0.
i i
Hence J is monotone closed and there exists a projection e € n(# ® A°P) such

that O(3) = eny(H# ® AP, e. Let K: M — [}(A) be the map with O(K) = e
and L= T — K. Then T = K + L is the desired decomposition.
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If ¢ > 1, we put h = T(1)%2, Then M(h*)T = K + L by the first part of the
proof. Let K and L be the maps according to Lemma 3.5. Then T = K + L. By
Prop. 3.2, K is compact. If L would dominate a nonzero compact map, then
L would dominate a nonzero compact map which is impossible.

3.7. COROLLARY. Let p> 1 and T: I?(#)— L}(A) be completely positive.
Then T has a unique decomposition T = K + L, where K, L: I?(#) — L}(A") are
completely positive, K is compact, and S dominates no nonzero compact map.
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