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THE INTEGRAL WEIGHT SYSTEM FOR TORUS ACTIONS
ON SPHERES WITH NO FIXED POINT

ELDAR STRAUME

Introduction.

Let G be a compact connected Lie group and T a maximal torus. If ¢ is
a representation of G on R", then it is well known that ¢ is determined by its
restriction ¢|T, the latter being completely described by its weight system,
() = (|T). In the case of acyclic G-manifolds X, one obtains an analogous
invariant, Q(X), defined to be the weight system of the local representation of T at
a fixed point. It is called the geometric weight system of (X, G), cf. Hsiang [4]. In
a similar manner, if X is a (cohomology) sphere and T has fixed point, then one
obtains such an invariant by local linearity, and it is a global invariant (i.e.,
independent of x € F(T); a result due to Atiyah and Bott when F(T) = S°).

Now, assume H*(X;Z) = H*(S";Z) and F(T) = &. From Borel’s formula, [1,
p. 182], there is still a “connected” version (p = 0) as well as a p-version (p prime),
Q,(X), of the geometric weight system. An alternative definition follows from the
“splitting principle” in equivariant cohomology, see Hsiang [3]. In Q,(X) the
weights are just directions in the weight lattice of T. In the past, efforts have been
made to associate length to the weights in 2,(X), in a way which is consistent with
local representations of subtori, see e.g. Sullivan [9]. Truly, the existence of such
an integral weight system would be very pleasant, as it would simplify a lot of
calculations of the orbit structural data, cf. Hsiang [3].

The cohomological method actually gives 2,(X) together with an “integral
content” CeZ. When F(T) + &, C is the product of the coefficients of all
nonzero weights, when they are expressed as multiples of primitive weights. In
the opposite direction, however, one cannot always find a “good” integral weight
system, as a refinement of 2,(X), by factorizing C and distributing the factors as
coefficients of weights. The reason is that the above mentioned consistency
condition may fail. This is actually an interesting phenomenon which explains
some of the exotic character of the action in question, see Sec. 4.
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The purpose of this paper is to understand what is the “correct” notion of an
integral weight system, (X), and to establish some basic properties and its
limitations. In Sec. 1 we review the definitions of 2,(X) and Q,(X), in Sec. 2-3 we
discuss (X). Applications of geometric weight systems, such as 24(X), 2,(X)
(and to some extent (X)), can be found in the literature, we refer to [4], [5], [7],
[8]. In a forthcoming paper, Hsiang, Straume [ 6], Q(X) is needed to its full extent,
and is playing the key role.

As anillustrative application of Q(X) we shall classify all actions of §* x SO(n),
n = 2k + 1,onspaces X ~, 82"~ ! with F(S') = (¥. This will also cover a case left
out by Wang [10] in his classification of actions of compact connected Lie groups
on spheres with one-dimensional orbit space. The calculations are presented in
Sec. 4.

1. The rational weight system and the p-weight system.

Let X ~, S" be a compact cohomology sphere and T a torus acting on X. (We
assume differentiability if necessary). The well known Borel formula (cf. [1])
gives

k
1) dim X — dim X7 = Y (dim X% — dim X7) = ¥ m(H,),
i=1

where H; = T runs over all corank 1 subtori, and m(H;) may be called the
multiplicity of H;. The multiset of those H; contributing to the sum,

0(X) = {H;; mult. of H; = m(H;) > 0},
is called the (reduced) rational weight system of the T-space X. The “zero weight”
(0) is given multiplicity m, = dim X” + 1 = 0, and we write
) Qo(X) = Q4(X) + m{0} (non-reduced)

Similarly, let T, ~ (Z,)" be a p-torus, p prime, acting on a space X ~ ,S". Then
there is a Borel formula analogous to (1)

?) dim X — dim X7 = ¥ (dim X% — dim X7»),

where K; < T, runs over subgroups =~ (Z,y ~'. Those K; with multiplicity
m(K;) = (dim X*: — dim X”») > O are called the nonzero p-weights, and the total
multiset of p-weights, Q,(X), is the p-weight system.

Let T be a torus of rank r and let T, = T denote its p-torus of rank r. Now, if
H < T is a subtorus of rank r — 1, then H n T, = K is a p-torus of rank r — 1.
Hence there is a well defined restriction map

@ QX) > 2%X)|T,, HoHNT,=K
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between multisets. Here the multiplicity of K is m(K) = Y m(H), sum over all
Hsuchthat HN T, = K.

Lemma 1.1, Q(X) = Q4(X)| T, (inclusion of multisets), if X ~,S".

PRrOOF. (i) Suppose K < T, is a corank 1 p-torus which is not of type H; N T,,,
H; e Q,(X). We shall show K ¢ Q,(X).

By assumption, KH; = T,H;,V H;e2y(X), and Borel’s formula for the action
of T on XX gives

dim X* — dim X7 =} [dim (X*)#' — dim X7],
where we can assume H;eQy(X), since otherwise X = XT and hence
(X*)H = (XH)K = XT. But (X¥)# = XXHi = (XT#)"i and so
dim X* — dim X7 =} [dim (X"#)"* — dim(X"»)"]
< [dim XT» — dim XT]

This implies dim X* = dim X”», so XX = XT» and K is not a p-weight.

(i) Let KeQ,(X), and let H;, i = 1,2,...,q, be those HeQ,(X) satisfying

q
H;nT,= K. We show m(K) < Y m(H,):
i=1

Apply Borel’s formula as follows. First, the T-action on X* gives

dim X¥ — dim X7 = ¥ [dim X*: — dim X7]

isq

+ ¥ [dim (X®) — dim X]

i>q
= Y [dimX# — dimX"] + } [dim(XT»)#: — dim X7]
isq i>gq
Next, the T-action on XT» gives
dim X™» — dim X" =} [dim(X"7)"/ — dim XT].
J
Combining the two formulas we find

©) m(K) = (dim X* — dim X77) = ¥ (dim X* — dim X*T7)

isq

< Y [dim X" — dimX"] = Z m(H,).

isq isq
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REMARK 1.2. If we had X7» = ¥ then Q,(X) = Q(X)| T,.

Let T, be a torus (p = 0) or p-torus (p prime). If T, = T, is a p-subtorus (or
torus, p = 0), then we can calculate from Q,(X) its restriction to T,, Q,(X)| T,
similar to (4). Another application of the Borel formula gives the following
identity '

(6) QX | T) = Q(X)| T,

where (X | T,) means X regarded as T,-space.

2. On the definition of the integral weight system €' (X).
The weight lattice of the torus T is
I'(T) ~ H\(T;2) ~ H*(B1; Z) = Z[t,,t5,...,t,].

Let Q be a multiset of weight pairs ( + w;), each of multiplicity m;, and possibly the
zero weight of multiplicity m,, say,

Q=m{tw,} +m{tw,}+... + m{tw} + m,{0}.

The restriction of Q, Q| T', where T’ = T, is the “projection” of Q, as multiset, into
the weight lattice I'(T"). For example, the multiplicity of {0} in Q| T’ is
mqy + 2 m;, where j runs over indices such that w;| T' = 0.

We shall also regard the rational weight system Q,(X) of a T-space X ~ S" as
an integral weight collection

Qo =m{+d} +m{ta,} +... + m{td} + my{0},

where (+@,) is the unique pair of primitive weights such that @&; = H,, and
m; = $(dim X** — dim XT) is its multiplicity.

We shall arrive at an appropriate definition of integral weight system by
following the cohomological description of €,(X) (or 2,(X)). Recall the Borel
construction of a fibration X —» X; » B, X; = E; X1 X, and consider the
Leray-Serre spectral sequence of

(X,X") - (X7,By x XT)—> By,

where X ~, 8", XT ~,8"(r 2 —1). Letxe H"(X) = H"(X, XT),dfe H"* 1 (X, XT)
be generators (rational cohomology). The E,-term H*(B;) ® H*(X, XT) has two
lines:
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A

df

Y

H*(By)

[T

, the transgression of x is
dx = Ex(X)® df e H" "(B;) ® H' " (X, X 7).

By the well known splitting principle (cf. [3]) the so-called Euler class splits as
follows

k
Ef(X)= [] (@)™ (mod constant factor),

i=1
and so we recover Qo(X) =Y m{+®,;}.
Now, assume X ~, §" and take cohomology with Z as coefficients in the above
spectral sequence. Then we obtain the (equivariant) Euler class

k
Er(X) = £Cy- n (@)™, Cx€Z+,
i=1

and we shall call Cy the integral content. It contains information beyond €4(X).
Infact, we can do better, since Cx has a canonical splitting into k factors, as will be
explained below.

Regard the spaces X", H,=®;, as T-spaces, and observe that
Qo(X*) = m{ + &}, using Borel’s formula. Therefore Er(X?) = + C (@)™ for
some C;eZ", and in Section 3 it will be seen that Cy = [|C,.

DEerFINITION 2.1. Assume X ~,S" is a T-space. The (reduced) integral weight
system, denoted Q'(X), consists of its components, each component is an Euler
class, namely

QLX) = {ET(XHi)}Ll = { t Ci(a_)i)'"i}'
In particular, X" regarded as T-space, has only one (nonzero) component
QXM = Ex(X™) = £ Cy(@)™.
C; € Z™ is the integral content of the i-th component €'(X®) of Q'(X).
(In general, let my = dim X7 + 1. Then Q(X)is Q'(X) plus a “zero-component”

mo{0}. This is the full (or unreduced) weight system. In particular, '(X) = Q(X)
iff XT = )
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REMARK 2.2. If Tacts linearly on X = $" = R"*! via the representation ¢ or if
T acts smoothly on X ~ $" with X7 4 @f and ¢ = ¢, is the local representation
at xe X7, then

Er(X) = t[]w,
where Q'(¢) = {+ w,} is the (reduced) weight system of ¢.
REMARK 2.3. Let X ~,8" be a G-space, and G is a compact Lie group with
maximal torus T and Weyl group W. Then W acts on H*(B;) and it is easily seen

that W permutes the classes + E(X"i), that is, the integral weight system is
W-invariant.

We now turn to the special case where T has fixed point. In view of Remark 2.2
the following definition is consistent with Definition 2.1, and is clearly a “refine-
ment” of the latter.

DEFINITION 2.4. Assume the action of T on X ~ §" is differentiable, and
XT ~ 5271 £ 0. Let ¢, be the local representation of T at a fixed point x, and
denote its weight system by Q(¢,). Then the collection

QX) = Q¢5) + {0} = (o) + d{0}

is defined to be the integral weight system.
Let X be a G-space as above. Then Q,(X) = ) m;{ + &;) splits into W-orbits
J

() Qu(X) = s Ay + Ha Ay + .+ Ay,

where the multiplicity y, is the common multiplicity m; of all (+ &;) € A;. Suppose
now XT % (¥, and the action of G is differentiable. Then the integral weight
system '(X) = Q'(¢,), where ¢, is the local representation of T at some x € X7, is
a “refinement” of Q(X) which is clearly W-invariant (as multiset in the weight
lattice I'(T)), namely

(8) QX)=6,Z,+6,Z,+...+ 6,2, (s=9),
where X; = I'(T) is a W-orbit of pairs (3 w).

If T = G,, G, is an isotropy group, then the following identity holds
9 QXIT)=Q0|T)+ QI T)=4(G|T)— 4G T) + (&)

where i, is the isotropy representation of G/G, 4'(G|T) = Q@ (Adg| T) is the
nonzero root system of G (with respect to T) and %, is the slice representation of
G,. There is an analogous formula for p-weights and p-roots, p = 0 or prime.
Application of formula (9) is demonstrated in and Sec. 4.
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Clearly, one obtains 4 (X) from €'(X) by identifying weights which are
colinear, and €'(X) is a “refinement” of Q(X), both in Definition 2.1 and 2.4. In
the case of 2.1, where F(T) is empty, one may wonder if it is possible to do
something better, say, by somehow associate appropriate length to m; weight
pairs parallel to (+ @;). Then the resulting multiset Q in the weight lattice could
be regarded as the integral weight system Q(X). Problems related to choosing
such a collection, such as the validity of (8), (9), are postponed until §5.

3. Further analysis of 2(X) and equivariant Euler classes.

Consider the family of p-groups T, , = T,a 2 1, where T, , = (Z,.f, T=(S")".
The following result will be useful.

THEOREM 3.1. (Golber [2]). Let X ~,S" be a T-space (assume differentiability
to avoid technical conditions). Let Cy € Z* be the integral content of the Euler class
E(X), and for a fixed prime p write Cx = p°»- C', where p ¥ C'. Then

(10) Y [dim X7+ — dim X7] = 2e,.

a1
THEOREM 3.2. In the above situation, let
Q(X) = {Ef(X")
be the integral weight system (cf. Def. 2.1). Then

k
+Cx n(a-)i)'ni = E(X) = U Ex(X"),

k

namely, Cy = [] C,, where Cy, C; is the integral content of Ex(X), Ep(X"),
i=1

respectively.

PRrROOF. Write C; = p®»i- C;, where p t C; s a fixed prime. Borel’s formula for
the T-action on X"»= gives

dim X7« — dim X7 = ¥ [dim (XT»<)# — dim X7]

=Y [dim (X*)Tr« — dim X7]
Golber’s formula for the T-action on X gives

Y [dim (X#)T»= — dim XT] = 2e,,,

a
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hence
Y Y [dim(X#)Tre —dim X"} =2) e,; =) [dim XT»+ — dim X "]
i a a
Now, comparing with Golber’s formula for the T-action on X, cf. (10), we get

e, = e,,. Consequently Cy =[]C..

In order to study the behavior of the integral weight system with respect to
restriction to subtori T' = T, we shall first look more closely at (equivariant)
Euler classes. Suppose XT < Y § X, where Y ~, §%is T-invariant. In the spectral
sequence of

(X’ Y) i (XT’ YT) - BT,

the transgression of a generator xe H'(X,Y;Z) is dx = Ex(X,Y)®dye
H""%B;) ® H** (X, Y). This gives the Euler class Er(X, Y)e H" %(By;2); it is
uniquely determined up to sign. By definition, E(X,X") = Ep(X).

PROPOSITION 3.3. Let XT = Z ¢ Y = X be T-invariant Z-cohomology spheres.
Then

Er(X,Z) = Ex(X,Y)  E(Y,2).
Proor. Consider the three spectral sequences of the pairs
X7, Yr) > (X7, Z7) > (Y, Z7)
With the previous notation we may write

dx' = Ex(X,Y)®@dy
(1) dx = Ex(X,Z) ® dz
dy = Ef(Y,Z) ® dz'

By the naturality of the above construction, induced mappings and (geometric)
interpretation of transgression, we may identify x and x’, y and y’, z and 2/, and
then

dx' = E;(X,Y)®dy = E(X,Y) [Ex(Y,Z) ® dZ']
=ExX,Y) Ex(Y,Z)®dZz'.

Comparison with the second equation in (11) gives the product formula (essen-
tially!).

COROLLARY 34. If XTc X" < X, T' = T, then
Er(X) = Ex(XT)  Er(X,XT").
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Suppose T' = H;for j < I,and T" ¢ H, for j > I. By Theorem 3.2
Er(XT) = [ Ex(X™),
Jjst
so by Corollary 3.4
Ex(X,X™) = [] Ex(X™),
j>1
Let i*: H*(B;) - H*(B;) be the map induced by the inclusion T’ % T. It follows
that
Er(X) = Ep(X,X") = i*(Ex(X,X™) = [] £ Cj(i* @)™
ji>1

Let H}, 1 £ j £ g, be the different rational weights of the T'-action on X; these are
the corank 1 subtori of T" of type (H,~ T')°, t > I. We also know Er.(X) splits

into the product of all E1.(X*), by Theorem 3.2.

COROLLARY 3.5. Let T' 5 T, X ~,8" a T-space. Then the integral weight
system of the T'-space X

Q(X|T) = {Ep.(X")}1_,
can be calculated from Q' (X) = {Ep(X")}*_, by

Ep(X™) = [Ti*(E¢(X") = £ ] Cli* @)™,

where t runs over indices such that (H,n T')° = H), for each fixed j.
COROLLARY 3.6. Suppose all m; = 1, and hence we may write
QX) ={tw, tw,,..., tw} + me{0},my 2 0.
If w;| T" and w;| T' are colinear when i + j, then by Corollary 2
QX |T)=2X)|T.

4. Exotic actions on spheres of cohomogeneity one.

In this section we shall illustrate the usefulness of the integral weight system by
studying some actions on spheres with 1-dimensional orbit space. The actions
considered in Theorem 4.1 will also lead to more insight with regard to the
integral weight system. We also refer to § 5.

Consider the following orthogonal representation of G = S' x SO(n),
n=2k+123,

¢ = [u]a ® (1) ®c p§la: COH C" = R*"*2 5§27 1,
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Let (+6) be the unit weights for S, and Q(p,) = {+ 7;; i £ k} + {0}, so
Q> 1) = Q(¢) = {£ 20} + {£ 1} + {£ (6 £ 7))}.
Consider the Brieskorn variety 22"~ ! < §2"*! defined by

mo1. Zo+Zi+ ... +22=0

12 :
(12) zol? + |21 + oo + Jzaf? = 1.

It is clearly G-invariant, and as is well known, 22"~ ~, 82"~ ! when [ is odd.
(This does not hold if ! is even, see proof of 4.1.) It is easily seen that
Qo(Z* 1) = {4 (0 £+ 7;)} + {£ 0}, and consequently

(13) Q> = {£q(0 £ 1)} + (£ db}, cf. (8).

By restriction to SO(n) we first find g=1. Let Z!'= (X" )Y x§!,
H = 6* = SO(n). Then Q(2') = {+ d6} and

Shzy=2z,=...=2,_,=0
1,2 _ 2 _
zZo+2z5=0, Z|z|]*=1.

Let Z, = S' = T/H, and observe that (£')** = @, so p ¥ d and hence d = 1,
(14) Q) ={£0} + {00 £ 1)}

Further analysis of this action will appear in Example 5.12.
In the remainder of this section we shall give a detailed proof of the following
theorem.

THEOREM 4.1. Let G=S' x SO(n), n=2k + 1= 3, and let X ~,5"" ! be
a faithful smooth G-manifold, and assume X5' = 5. Then
(i) The integral weight system is

(15) Q(X) = Q(Z*"1), as in (14),

lis odd, and X is homeomorphic to §*" 1.
(ii) X can be imbedded G-equivariantly

X 2n—1 2n+1 2n+2
X523 cS <R s

where (G, R*"*2) is the linear group described above, and Z*"~ ' is the Brieskorn
variety, (12). [In particular, X is the Kervaire sphere if | = +3(mod8) and
bP,, ~Z, (i.e., the Kervaire invariant is trivial), and X is the standard sphere
otherwise.]

REMARK 4.2. (i) The theorem also gives that the Brieskorn variety 22"~ ! is not
an integral cohomology sphere when [ is even (well known, of course!).

(i) The major part of the proof consists of establishing (15). Knowing Q2(X) we
can determine precisely the isotropy types. Moreover, dim X/G = 1 (X/G is an
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interval), and the associated triple of isotropy groups, (K, o H < K,), is unique-
ly determined modulo simultaneous conjugation in G. It follows that X and
2"~ 1 are isomorphic as smooth G-manifolds.

First of all, since F(S') = &, every rational weight is of type + (s + w), where
w is a SO(n)-weight, possibly w = 0. By Weyl group invariance, and since
¥ Q(X) = 2n, it follows easily that

(16) Q(X) = {£q(10 + mz,)} + {£d6}, cf. (8)

for suitable positive integers, g, I, m, d.
T =8' x T* = §! x SO(2k) < G is the maximal torus in question, and

Q(X)|SO(m) = Q(X)| T* = { £(g*m*)(x)* }i-1 + 2{0},

ie., (gm?) = ab is the integral content of { +ar;, +br,;} in the local representa-
tion of T* (F(T*) ~ §). If n 2 5 then it is not too difficult to see, e.g., by (9), that
Qo(X | SO(n)) = Qo(2p,) implies (X |SO(n)) = R(2p,). If n = 3 then the SO(3)-
action has weight system { +at, +bt} + 2{0}, and we can show a=b =1 or
a=1,b=2(cf. [6]). In any case, g = m = 1in (16), so

17 QX) = {£760 £ 7)} + {£df}, @) =1

To see why (d,) = 1, observe that Q,(X) is calculable from Q(X) (Lemma 5.4,
Prop. 5.5), showing that Z, = S* would act trivially if p| (d, I), cf. also Prop. 5.8.

LetT, = (160 — t,)* < G, =K. K9 is calculated precisely as in Example 5.11,
using the corresponding formula (35). Now, the only multiple of (+6) in 4(G) | T,
is (+1,) = (£16), and A(K,) cannot contain {+16) since SO(n) ¢ K,. Conse-
quently, {(+16),(1+2d60)} = Q(X | T;) and hence also by (34) (with X instead of
22" - 1)

(18) Q) = {+2d6}, (&, = slice repr. at x,).
LemMmA A. K, is connected.

Proof. 1-K{>K,—>E -0

Nl
NK‘l’ =8 x SO(2) x SO(n — 2).

Suppose Z, = E, with pprime. ThenK, o T, = Z, x T, where(Z,)* ~ T} = T*
Therefore X7» ~ S! and p|d by (17). On the other hand, by (9), (17)

(19) XTr XT’; = XT" = XS0k
Consequently, X*! < X520 and K, > SO (2k), and this is a contradiction.

The slice representation of K, is [u2%]y, cf. (18), and therefore the principal
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isotropy group is

0 SO(n—

We note that Z,, sits “diagonally”, namely, &' % 1if ¢ = exp(2ni/2d), except in the
cased = 1 and / even, cf. (17).

Next, let K, = H be the other isotropy group of singular type; we can assume
6+ = T* < K,, by the “Torus Algorithm” (cf. [5]), and (19) implies K = SO(2k),

(21 1-SO(2k)-» K, »E,—~>1

NI

NSO(2k) = S* x S[0(2k) x 0(1)].

¢ 0
(20) H= {((é), ( 2))); g = 1} ~Z;; x SO(n — 2).

Now,
Hc K,=[3heZ"*: 2d|h, K, o Z, x SO(2k) = §* x SO(2k)].

The slice representation &, of K, has restriction &,|SO(2k) = p,, and &,,
having cohomogeneity one, is also irreducible

{yzlzh x SO(2k) = ¢, @rpar,dim @, = 1

152,,-2,%2,-1

(22)
Suppose p | d with p an odd prime. We see from &,. (22), that this does not give

the “diagonal” group Z,, = H. Hence, the only possibility is d = 2° (s = 0).
LEMMA B. d = 1.

Proor. Consider the 2-weight system €,(X), with respect to the maximal
2-torus of G

23) S=2Z,x8=Z,x2y 1= {(s, & ); €16 = + 1}.

Since Q(X | SO(n)) = 2(2p,), we can show (see e.g. [7])
Q,(X|SO(n) = 2,2p,) = 2{e; 1 S i < n}.
If we write
Q,(X) = a{e} + b{ee;} + c{&;} + 6(0)
then restriction to SO(n) impliesb + c=2,a+ 6 =0, so
24 Q,(X) = b{eg;} + cle;}, b+c=2

Moreover, we can show d > 1=b = 1 (by considering the “nonplitting” iso-
tropy groups H and K,). From (24)

X5 =X5%=g.
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Consider the 2-torus §” = Z, x T% = S! x T* = §! x SO(2k). It is given by
€1 = €3, 63 = €4y .- -5 Exk_1 = Ezp &, = 1. We can calculate dim X5” in two days:

" 1
From Q(X): dim X5 ={_l’ jil
-1, b=2
From Q,(X): dim X5" = 0,b=1
,b=0

As observed above, b = 0 is impossible if d > 1, so the only possibility is d = 1,
b=2.

Suppose | were even. Then H n§’ = Z, acts trivially. This is impossible, so -
I must be odd.

Finally, it is easily seen that E, in (21) is a 2-group, and in fact E, ~ Z,.
Assuming H < K, we have more precisely

K,= {(s, (g 0 (no_ 1)))} ~ S[O(1) x O(n — 1)] =~ O(n — 1).
This completes the proof of Theorem 4.1, cf. Remark 4.2.

REMARKS 4.3. (a) In the case of n = 7, Theorem 4.1 also holds when SO(7) is
replaced by the subgroup G,.

(b) The above actions are exotic (i.e., nonlinear) actions on homotopy spheres
of cohomogeneity one. A complete discussion will appear in [6]. Wang [10]
claims that such actions on spheres are of linear type, assuming dim X = N > 31
if N is odd, or N > 4 and is even. However, this is not true, and the above cases
with G = S! x SO(n) or S! x G, are missing in [10].

S. Integral liftings and the consistency of 2(X).

Let I' be a multiset consisting of k different pairs of primitive weights + @; of
multiplicity m;, and suppose each + @; is associated with some integer C; > 0.
Then we write

(25) I ={+Cy@,)™ +... + C(@)™}.

Ci is called the integral content along + &;, and C = IIC; is the total integral
content. If we choose m; integers c;; with product C;, and replace + Cy(@;)™ in (25)
b_y {+ @, + iy, .. .}, then we obtain a multiset I in the weight lattice, and
I' is called an integral lifting of T

Suppose T acts on X with X7 = @, with @'(X) = Q(X) defined as in Definition
2.1. Then Q(X) is an object of type (25), with total integral content Cy. By
definition, we also request that an integral lifting Q of 2(X) must be W-invariant;
i[l particular © may be presented as in (8). In the special case where each m; = 1,
Q2 is clearly unique and we may write € = ©(X) without ambiguity. (In fact, we
did so in §4.)
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Now we turn to the following central problem.

PROBLEM. Suppose X ~,S"is a T-space with X7 = 0. Is it possible to obtain
a suitable integral lifting & of Q(X) containing additional information about the
orbit structure, similar to those of €'(X) in the case X7 #+ §?

REMARK 5.1. It turns out that in general there is no unique “best possible”
candidate Q(X) of integral lifting of Q(X). In fact, even when it is unique it may
still fail to fulfill certain consistency conditions which are known to hold if
XT % @, see below.

Let Q(X) = {+ 0y, T w,,...} + my{0} be the weight system of an orthogonal
action on R"*! o §" = X. Then all representations ¢ |K, K = T can be cal-
culated. In particular, VK = T

(26) dim XX = # {(+ ;) @;|K =0} + (m — 1).

Clearly, if X ~ S"is a differentiable T-space and XT & J, then the same formula
(26) also holds (at least locally at xe XT).

Henceforth, assume X ~, 8", XT = @ (i.e., m, = 0). Among the various inte-
gral liftings Q of Q(X) we hope to find a “good” candidate from which invariants
like dim XX can be calculated. So, we say dim X is calculable from £ if formula
(26) holds. The question is whether such a Q actually exists.

DEFINITION 5.2. Let Q be an integral lifting of Q(X).

(i) Q is O-consistent if for each subtorus T' = T with XT' + &, QX |T') =
QT.

(ii) Q is p-consistent if all numbers dim (X#:)Tr« o > 1, H; = &; a rational
weight, are calculable from Q.

(iii) Qis consistent if all numbers dim X* are calculable from @ whenever K/K°
has prime power order, K < T a closed subgroup.

Write € = @(X), and for T’ = T a subtorus, define
27 QXT) = {(£w)eQX); w;| T" = 0}.
Clearly, @(XT') is an integral lifting of Q(X ™).

LemMa 5.3. (i) If @ = Q(X) is O-consistent, then (X ™) is also O-consistent.

(ii) €(X) is O-consistent if and only if Q(X | H;) = 2(X)|H, for each rational
weight H;.

PRrOOF. (i) Let T” < T be another torus and assume (X7)T" + 5. Then

S=T-T"cTis a torus and X5 % @. Hence, if € is O-consistent, then
Q(X |S) = 2|8, and from the local representation of S

QX" |T) = QX" |8)|T" = AXT)|S|T"
=QX™)|T".

(ii) This is clear since X7 4 ¢ implies T" = H; for some i.
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LEMMA 5.4. If Q = Q(X)isO-consistent, then Q,(X) is calculable from Q, namely
Q,(X)=QX)|T, Vp(T, < T)
In particular, dim X "p is calculable from Q.

Proof. By Lemma 1.1 each p-weight K; < T, is a group of type H;n T, for
some rational weight H;. Therefore dim X*is calculable from Q|H = QX | H)).
Borel’s formula gives

dimX — dim X™ =) (dim X*/°T» — dim X7),
j

and this gives dim X as well.
Now we turn to p-consistency (p fixed prime).

LEMMA 5.5. Suppose Q = Q(X) is p-consistent. Then Q,(X) is calculable from Q,
namely

Q,(X) = Q(X)|T,.
ProOF. There is a decomposition
k k
QAX)= ) QX"y=3 Y P,
i=1 i=1a20

where P, = {(+ w)e Q(X™);, w is divisible by p* but not by p**'}, and we put
Pix = (3)*# P;, (number of pairs).
(i) We show dim X7 is calculable from £: We claim

k k
(28) dmXT + 1= Y [dimXx* " +1]1=2Y ¥ p,,.

i=1 i=1a>0

The first equality follows from Borel’s formula, the second from the fact that
dim X#+ T is calculable. The “outer” identity just means that dim X7 is calcu-
lable.

NoTE. In the same manner, each dim X7 is calculable cf. section 3.

(i) Let K = T, bea p-weight. By Lemma 1.1, K = H; n T, for some i, and K is
a nonzero p-weight if and only if (dim X* — dim X#) = m(K) > 0. We need to
show that the numbers m(K) are calculable.

Fix K, and we may re-index {H;} so that
iéq:K:HinT;” (XK)H1=XHi
i>q K+ HnT, (X¥)Hi = XHi Ty,
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Using Borel’s formula for the T-action on XX:

dimX* +1 = Z (dim X*: + 1) + Z (dim X*#:Tr 4 1)

i=1 i=q+1

22m+2 Z Y. Pia-

i=q+1a>0

Now, K < H;fori < g, and the double sum gives the number of pairs (+ w) such
that @+ + H, and o | K = 0. Consequently, dim XX is calculable.

PROPOSITION 5.6. For each fixed prime p, Q'(X) has a p-consistent integral
lifting Q. Moreover, Q is unique modulo divisors of weights which are relatively
prime to p.

PRrOOF. Let C; = p®»- C)and p| C;, where C; is the integral content of Q'(X*).
By Golber’s formula (10)

(29) €pi = Z Z Dip = Z %°Dia

a2l fp2a a21
Define Q(X*1) by taking m; copies of (+ @;) and let p; ; of them have coefficient p’.

Thisis possible sincem; 2 Y. p; - Inorder to have the integral content of Q(xH
ﬁZl
equal to C;, we need only choose any factorization of C; and distribute the factors

as additional factors of coefficients of any chosen weights.
Finally, put

Q=3 0(x™).

It is easily checked that dim (X*#)™»« is calculable from €. The uniqueness of
@ (modulo non-p-primary factors) is also obvious.

EXAMPLE 5.7. Let X = SO(3)/I ~; S be the Poincaré sphere with the transi-
tive SO(3) action. The icosahedral group I has order 60 = 4-3-5. T = SO(2) has
no fixed point, whereas Z%> ~ §', X% ~ §*, X% ~ §!, X%* = Qffor p prime. We
infer from (10),

Q(X) = £30-(y%), y = unit weight of T.

REMARK 5.8. In general, one cannot tell from Q'(X) whether T,, = T acts
trivially, or what is dim X7»=, However, if each integral content C; of the
components of '(X) satisfies p ¥ C;, then dim X"« is clearly calculable. So, in
the above example, knowledge of the content C = 30 gives all dim X %*. It is also
not generally possible to decide which of the groups (T, H;) are actually
p-weights # (0). The following proposition gives some partial results.
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PROPOSITION 5.9. Let Q' (X") = 4+ C{(®,)™ be the components of '(X),i =1,
2, ..., k. (We assume X7 = (&, so Q(X) = Q(X).

(i) Suppose eachm; = 1. If p*|C;, Vi, then T, , acts trivially on X.

(i) If for some i, the highest power of p dividing C;is p* and q < m;, then T, does
not act trivially on X. Furthermore, K = T, H; is a p-weight + (0).

Proor. (i) Clearly X#* ~ S' and from formula (10) we deduce X#i'Tr.s = XH:
that is, X#i = XTr< Using Borel’s formula for the T-action on X and X7r=,

dlmX -+ 1= Z(dlmXH' + 1) = dimXTp,a + 1’

consequently XTre = X,
(ii) If T, = T, acts trivially on X", then

(30) 2m; = (dim X" + 1) £ Y (dim XH: Tox 4 1)

a1
=2e,; =29 <2m,

a contradiction. Hence, T, acts nontrivially on X"+,

It remains to show m(K) = (dim X¥ — dim X7») > 0. But this number satisfies
the relations in (5), and since there exists i < g such that T, acts nontrivially on
X", we infer m(K) > 0.

LetG = G, x G, x ... x G, k > 1, be acompact connected Lie group acting
almost effectively on X, T=T, x T, x ... X T; = G a maximal torus. A sub-
group K < Gis splitting if K = K; x K, x ... K;,K; = G;. In general, a closed
subgroup K is contained in a unique smallest splitting subgroup K, called the
splitting closure of K.

Observe that each T;-weight may be regarded as a T-weight, in view of the
projection T — T; given by the above decomposition of 7. We say the weight
system Q4(X) is splitting if

k
(1) olX) = ‘_Zl Qo(X;) = 2 (X | T)),

where X; = XT“, T,=T, x...T; x ... x T;. X, can be regarded as a T;-space.
Hence each weight has “support” in one of the T,. By Corollary 3.5 we also have

(32) QX)) = ZQ’(Xi) (cf. Definition 2.1).

On the other hand, X 4 @ since k > 1, and therefore €'(X;) has a well
defined integral lifting given by the nonzero weights of the local representation,;
this lifting is also denoted €'(X;). Hence Q2 = @'(X) in (32) may be regarded as
a“naturally” defined integral lifting of £'(X), via representation theory, although
T itself has no fixed point.
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THEOREM 5.10. Assume G = HG,- acts on X ~,S" with splitting weight system
Q(X), ¢f. (32), and assume (X) is consistent (cf. Definition 5.2, (iii)). Then all
isotropy groups are splitting subgroups.

REMARK 5.11. The consistency assumption on 2(X) in the above theorem is
not really necessary; the complete proof is based upon Lemma 1.1, but we omit
more details. Note that Q(X)is consistent if X7 # @. The corresponding theorem
for acyclic G-spaces X is proved in Hsiang [4], and the proof below is similar to
this since, at the technical level, “consistency” plays the role of having

XT +.

ProoOF. Suppose there is some nonsplitting isotropy group G,. Then 3ke G,
with 7;(k) ¢ G, where n;: G — G;. Let K = <k be the closed subgroup generated
by k, hence

K=K°x2Z, mnK)¢G,

Let K? = Z,, be the p-primary subgroup, and note that for some p (p prime or
zero) K? ¢ G,, and denote this group K? by Q. We may assume ke T, so
Q < Q = T, where Q is the splitting closure of Q.

Now, observe that X¢ ¢ X© since x¢ X2. On the other hand, Q and @ are
either tori or p-groups, so dim X¢ < dim X2 by Smith theory. However, both
numbers are calculable from ©(X), and since the latter is splitting it is easy to see
that the subgroup Q and its splitting closure ¢ have dim X2 = dim X. This is
a contradiction.

We conclude this section with a closer look at the concept of 0-consistency.

QUESTION. Suppose all multiplicity coefficients m; = 1, so in particular Q(X)
has a unique integral lifting @ = Q(X). Is £ O-consistent?

Perhaps, the intuitive answer to the above question is “yes”. However, as will
be demonstrated below, the answer is generally “no”.

To explain the situation, let H; be a (rational) weight in Q4(X), and let Q; be the
multiset of all nonzero weights in | H;. For a fixed weight direction (i.e. rational
weight) £ p in 2, let m, be the number of pairs in £ whose image in &; has the
direction of + p, and let C, be the integral content of these image vectors. As
a consequence of Corollary 3.5, Q will be 0-consistent if for each H; and choice of
+ p one of the two conditions holds:

i) m, = 1(cf. Coroll. 3.6)
(i) C, =1 or a prime.

In contrast to the above, the following example has some m, = 2 and the
corresponding C, = 2I, [ odd. Explicit calculations show Q(X) is not 0-consist-
ent.
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ExaMPLE 5.12. Consider again the linear group (S! x SO(n), ¢) described in the
beginning of §4, and its restriction to the Brieskorn variety £2" !, see (12) and (14).

Let T, = wt = T, w; = (10 — t,). T, is a maximal torus of some isotropy group
G,, since w, ¢ 4'(G) (= root system), according to the “Torus Algorithm”, cf. [5].
From (14) we calculate weights £ 0 mod T;,

(33) QZ*" Y| Ty: £6, £(0+ 7)) = +210
tl0t1)= +(r; £7), i>1

Hence, by Corollary 3.5, (X"~ !| T,) coincides with the collection in (33), except
that the subset {46, +2/60} may be replaced by some {+af, +b6}, ab = 2.
However, by formula (9)

(34) QE* T = 4(G| Ty — 4(G,) + (),

with 4'(G) = {£(r; £ 7))} + {7}, we find 4'(G) > {+(r; + 7)) 1 <i<j} +
{+1;,i > 1}, and from this

P
* %

(35) Gy =~ {(e", (0 .

>)} ~ SO(2) x SO(n — 2)

Now, 4'(G| T,) — 4'(G,) contains +1, = +16,s0 a = 2, b = |, consequently
Q™ T) £ QE* Y| T,.
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