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ALGEBRAIC AND GEOMETRIC CONVERGENCE OF
KLEINIAN GROUPS

To the memory of Werner Fenchel

T. JORGENSEN and A. MARDEN

0. Introduction.

A kleinian group G has an algebraic structure when viewed as an abstract
group and a geometric structure when viewed as a discrete group of hyperbolic
3-space H3. Geometrically, G is associated with the hyperbolic 3-manifold
(orbifold) H3/G. The analysis of a sequence {G,} of kleinian groups likewise has
an algebraic aspect, relating to the behavior of the sequence of group generators,
and a geometric aspect, relating to the behavior of the sequence of associated
3-manifolds. The purpose of this paper is to examine questions of convergence of
{G,} from these two points of view. A special goal is to understand the conver-
gence of {G,} in terms of the Carathéodory convergence of the ordinary sets
{Q(G,)} in the sphere of infinity dH>. This is of particular importance when doing
function theory (Poincaré series, etc.) on the ordinary sets.

This joint work began in Copenhagen in 1972. To think about boundaries of
spaces of kleinian groups in the associated representation varieties is to think
about sequences of Dirichlet (Poincaré) fundamental polyhedra. What can
happen? A great deal of the basic theory of kleinian groups can be seen in this
context. The studies [5] of cyclic loxodromic groups and [7] of “reopening”
cusps, which were done at about this time, are of fundamental importance in
understanding what happens in general. From a different direction, joint work
[3] with C. Earle introducing geometric, global complex coordinates for Teich-
miiller space, also begun in 1972 but in Djursholm, made it essential to under-
stand the convergence of ordinary sets on approaching the boundary in a Bers
slice of quasifuchsian space.

Our work is organized as follows. Chapter 2 introduces terminology and
provides background information. Chapter 3 contains the definitions of alge-
braic and geometric convergence and proves a number of basic properties.
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Particularly important is the relation to the convergence of fundamental poly-
hedra (which we will define as “polyhedral convergence”). In our work, it is the
fundamental polyhedra that represent the quotient manifolds and the fact of
polyhedral convergence justifies the adjective in the term “geometric conver-
gence”.

In Chapter 4, the focus is on the convergence of ordinary sets. Our main result,
Proposition 4.7. describes the relation of fundamental polyhedra of the approxi-
mants {G,} to the fundamental polyhedron of their geometric limit H, under the
assumption that H is geometrically finite and that the groups G, are torsion free.
This allows us to also describe the algebraic relation of G, to H. The two
theorems of this paper, Theorems 4.8 and 4.9, give a summary of our principal
results. The first asserts that if ¢, I' - G, is a sequence of isomorphisms
converging algebraically to ¢: I’ — G, then a necessary and sufficient condition
for Carathéodory convergence Q(G,) — Q(G) is that {G,} convergence geomet-
rically to G, provided G is geometrically finite and Q(G) + &. The second
describes in the torsion free case the more general situation that the geometric
limit H of {G,}, while still required to be geometrically finite, is larger than G.

Geometric limits can be dramatically different from their approximants. For
instance, examples are known [8] of algebraic convergent sequences {G,} of
kleinian groups which are free of rank two, converging geometrically to groups
which are not even finitely generated (in fact, are infinite, free amalgamated
products with each factor a free group of rank two).

In our work here, we have tried to develop the insight that the “classical”
methods reveal. Thus we have limited ourselves to the situations which do not
require the powerful techniques of Thurston for dealing with geometrically
infinite ends [16].

The final Chapter 5 consists of an example of the geometric convergence of
particular cyclic loxodromic groups to rank two parabolic groups. The reader
will find explicitly displayed many of the phenomena described in much greater
generality elsewhere in the paper. (From a different point of view, the example is
very helpful in understanding phenomena on the Bers boundary of Teichmiiller
space.)

It is a pleasure to acknowledge the support that has been provided over
various periods by the Danish Mathematical Society, Det Naturvidenskabelige
Forskningsrdd, the National Science Foundation, and the Mathematical
Sciences Research Institute. Above all we are indebted to Professor Werner
Fenchel for his interest and encouragement.
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2. Terminology and background.

2.1. We work with hyperbolic space H? and its visual boundary dH3 = $2. In
the upper half space model our coordinates will be,

H? = {(z,t):zeC, t > 0}.

A kleinian group is a non-elementary discrete subgroup G of PSL(2, C). The
limit set is denoted by A(G), the ordinary set by Q(G), possibly Q(G) = <.
Elementary descrete means that card A(G) < 2.

The notation we use for the associated 3-manifold (orbifold) is,

M(G) = H?>U QGG 0.4(G) = QG)/G.

A geometric model for .#(G) is provided by a fundamental polyhedron #(G).
Given a point O € H3, not a fixed point of G, the (Poincaré or Dirichlet) funda-
mental polyhedron with center at O is,

2(G) = {xeH> d(x,0) £ d(x, TO), V Te G}.

Its euclidean closure in H3 U 0H? is denoted by 2(G)~. The intersection with
Q(G), Z(G)~ N Q(G), which is a union of circular polygons and perhaps isolated
points, contains a fundamental set for the action of G on Q(G).

The Ahlfors finiteness theorem [1] says that if G is finitely generated, then
0.#(G) has a finite number of components, and each component is a compact,
closed surface with at most a finite number of punctures, and with at most a finite
number of points over which Q(G) is branched. It also implies that 2(G) ™ N Q(G)
has a finite number of components, and each component is either a point or
a finite sided circular polygon [2].

Selberg’s lemma [15] says that if G is finitely generated, there is a normal
subgroup G, of finite index in G which contains no elliptic transformations. Thus,
M (G,) is a finite sheeted cover of #(G).

2.2. A group G is said to be geometrically finite (the term was coined by Leon
Greenberg) if G has a finite sided fundamental polyhedron 2(G). It turns out [11]
that if 2(G) is finite sided for one choice of center O € H?, it is finite sided for any
choice of center. An equivalent definition, emphasized in [16], is that G is
geometrically finite if and only if 4(G)/G has finite volume, where ¢(G) is the
hyperbolic hull of A(G) (if G preserves a plane, then #(G) must be taken as the
planar convex hull).

The importance of geometric finiteness lies in the fact that G is geometrically
finite if and only if .#(G) is “essentially” compact, that is, compact once standard
neighborhoods of this “cusps” are removed. We will give a brief description of
these neighborhoods.

Because of Selberg’s lemma, it is sufficient to consider the case that G has no
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elliptic elements. If G is to be geometrically finite, a parabolic fixed point £ must
fall into one of two types. The first holds in any kleinian group, but the second is
special.

The first possibility is that the parabolic subgroup Stab (¢) = {TeG: T¢ = &}
has rank two. There exists a horoball #’ = H3 at ¢ for which T#' N #" + &,
Te G, if and only if T e Stab (£) (in which case T#' = #”). The quotient,

T = #/Stab(¢) = {zeC; 0 < |z| < 1} x S,

is called a cusp torus. It is naturally embedded in Int .#(G).

The other possibility is that Stab (&) is cyclic. Here arises a key criterion for
geometric finiteness. Namely that each such subgroup must correspond to a pair
of punctures p, g on 0.#(G). Two punctures p, q of 0.#(G) are said to be paired if
there are disjoint neighborhoods N, of p, N, of q in 0.#(G), and an associated
pairing tube J in #(G),

T ={z0<|z] <1} x [0,1],

such that N 0.#(G) = N, UN,, and a generator of n,(7) corresponds to
a generator of Stab(¢). Canonical constructions of pairing tubes as well as an
alternate construction of cusp tori will be given in §4.3.

The group G is geometrically finite if and only if there are at most a finite
number of (mutually disjoint) cusp tori and pairing tubes in .#(G) such that their
complement is compact.

2.3. Although we will be referring to other universal properties of kleinian
groups in §3.5, the following result is basic.

Universal Ball. There exists & > 0 such that if G is any kleinian group, there
exists a point O € H? such that for the hyperbolic ball B,(0) of radius ¢ about O,

{TeG: TB,(0) B,(0) + &} = id.

In other words, the ball B, of hyperbolic radius ¢ can be imbedded in any quotient
manifold (orbifold) .#(G), independently of G.

2.4. In this paper we will be dealing with sequences of kleinian groups and will
require the following two fundamental results in the subject.

THEOREM A (Jergensen [6]). Let I' be a group and ¢, I' > G, a sequence of
isomorphisms onto kleinian groups G,. If lim ¢,(y) exists as a Mébius transform-

ation for all ye ', then the set G = {¢(y): ye I'} is a kleinian group and ¢: y+— ¢(y)
an isomorphism of I onto G.

THEOREM B (Jergensen-Klein) [9]). Let G, = {G1ins---»Gmy be a sequence of
r-generator kleinian groups such that lim g,, = g, exists as a Mébius transform-
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ation, 1 Li<r<oo. Then G = {g,,...,9,y is also a kleinian group and the
correspondence \,: g;— g;, extends to a homomorphism ,: G — G, for all large n.

3. Definitions and basic properties.

3.1. Let I' be an abstract group and ¢,: I' = G, a sequence of representations
(homomorphisms) into PSL(2, C).

DErINITION. The sequence of representations {¢,} converges algebraically to
G if lim ¢,(y) = g exists as a Mobius transformation for all ye I' and

G ={g:g =lime,(y), yel}.

I = {yy,...,7, is finitely generated, and {G, = ¢,(I')} are kleinian, then by
the Jorgensen-Klein theorem, the algebraic limit G is kleinian as well and the
correspondence ¥, g; = ¢,(y;), where g; = lim @,(y,), extends to a homomor-
phism y,: G — G, for all large n.

REMARK. Sometimes we will forget the representation and consider only
a sequence of groups G, = {g,, g2 - - - given in terms of presentations. We say
that {G,} converges algebraically to G if limg,, = g; exists for all i and
G= <gl’92,' . >

3.2. If {G,} is a sequence of subgroups of PSL(2, C), define
Env{G,} = {gePSL(2,C). g = limg,, g,€G,}.
It is clear that Env {G,} is itself a group.

LEMMA. Ifeach G, is discrete, then H = Env {G,} is either a kleinian group, or
it is elementary.

PrOOF. According to [6]. H is discrete if and only if every two generator
subgroup is discrete. Here the term elementary is used in the extended sense
(which applies when H is not discrete) that H elementary means that every two
elements of infinite order have a common fixed point on the sphere at infinity.
Thus if H is not elementary, given any element h, of infinite order there is another
h, with distinct fixed points. If (h,, h,> were not discrete, we could find h}, by e
<Chy, hy) with h; close to id such that (h},h,) is non-elementary while k), k)
violate Jorgensen’s inequality [6]. When applied to the approximates g,, and g,,
for large indices n, b, = lim g,,, b, = lim g,,, this gives a contradiction. A similar
argument rules out any two generator, non-discrete subgroup.

DEFINITION. The sequence {G,} of subgroups of PSL(2, C) converges geomet-
rically (to H = Env {G,}) if and only if for every subsequence {G,,} of {G,},
Env {G, } = Env {G,}.
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3.3. REMARK Suppose that the group H and sequence of groups {G,} have the
properties (a) for every he H, h = limg,, g,€G,, and (b) if g, € G, is such that
limg, = hexists, then he H. Then H = Env {G,} and {G,} converges geomet-
rlcally Conversely, if {G,} converges geometrically, then H = Env {G, } satisfies
(a) and (b).

Proor. This is a restatement of the definitions.

In practice, we will only be interested in geometric convergence to a kleinian
group H.

3.4. As a step towards justification of the use of the adjective “geometric”, we
introduce a seemingly different notion of convergence.

DerINITION. The sequence of discrete groups {G,} converges polyhedrally to
the group H if H is discrete and for some point O € H>, the fundamental polyhedra
{2(G,)} centered at O for G, converge to that 2(H) at O for H, uniformly on
compact subsets of H3.

More precisely, the criterion for convergence is this: Given any (large) r > 0 set
= {xeH* d(0,x) <r}

and let #, = 2 N B, denote the truncated polyhedron. We refer to the possibly
truncated faces f N B,, where f is a face of #,. The faces of &, are congruent in
pairs, under elements of the group.

For each r > 0, the requirement for polyhedral convergence is that there exist
N = N(r) with the following properties: (a) for each face pairing transformation
h of Z(H), there exists one g, of #(G,), for alln = N such thatlim g, = h,and (b) if
g, is a face pairing transformation of 2(G,), then the limit h of any convergent
subsequence of {g,} is a face, edge or vertex pairing transformation of Z(H), (in
particular, h & id.).

3.5. PROPOSITION. To any infinite sequence of discrete groups {G,} corresponds
a sequence of conjugates {A,G,A, '} which contains a polyhedrally convergent
subsequence.

ProoF. Given O € H?, choose Mobius transformation {A4,} so that the conju-
gate groups {G, = 4,G,A, '} have the following property (Universal Ball Prop-
erty). For each n, the polyhedron 2(G,) centered at O contains the ball B; of
radius 6 > 0 about O.

Foreach fixed r > §, the number of faces of 2(G},), is uniformly bounded above
as n — o0. The reason for this is that there is an upper bound on the number of
mutually disjoint balls of radius 6 contained in the ball B,, of radius 3r about O.
Therefore there is an upper bound on the number of points in the orbit {G,(0)}
which lie in B,,, and number of corresponding planes that might contain a face of
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2(G,),. A face pairing transformation g, of 2(G,), satisfies d(O, T,(0)) < 2r.
Therefore each sequence {g,} of them has a convergent subsequence. Since also
d(0, g,(0)) > 20, the limit is not the identity.

For fixed r and each n list the face pairing transformations (including inverses)
of #(G,),. There are at most M of these for some M < oo and by repetition we
may assume that there are exactly M, {g;,}, 1 £ i £ M. Take a subsequence and
relabel so that h; = lim g,, exists, 1 < i < M. Corresponding, construct the poly-
hedron,

P, = {xeH3d(0,x) £ d(x,h(0)), 1 <i < M}.

Thus 2, N B, = lim#(G,), and #, > B;, We must allow the possibility that
P2(G.), = B, for all large n and hence that 2, = H3.

Now take a sequence r = r, —» oo and go through this process for each r,. We
get a sequence {h;},i=1,2,..., and correspondingly a nested family of poly-
hedra #, > #, o ... all of which contain Bj.

Let H be the group generated by all {h;} and let 2, = N #, . We claim that
H is discrete and that 2_ is a fundamental polyhedron for it. And furthermore,
that H is the geometric limit of { G, } (now a subsequence of the original sequence).
Possibly H = {id} and 2, = H?, if the groups {G,} blow up completely.

Given s > 0 there exists r = r(s) such that the orbit of 2(G,), under G, covers
the ball B; for all n. The number of polyhedra which meet B, is uniformly
bounded in n. Therefore a list of M transformations W,,,, ..., W,,,, for some
M < o0, can be made for each n such that U W,,(#(G,),) covers B,. Replacing by
another subsequence if necessary, we may assume that lim W, = W, exists,
1 £i < M(s). Necessarily, W.e H. We conclude that U Wi(2,, N B,) covers B,.

Finally, allowing s — oo and passing to more subsequences if necessary, we see
that the orbit of 2, under H covers all of H>.

No two points x, yeInt 2, are equivalent under H. For suppose to the
contrary that y = Wx, W e H. The element Wis a word in the generators {h;}. Let
W, denote the corresponding word in the letters {g;,} so that W, - W and
lim W, (x) = y. That s, if r > max (d(0, x), d(O, y)), then for all large n, x and W,(x)
belong to 2(%,),. This is impossible, unless W, = W = id. We conclude that 2_,
is a fundamental polyhedron for H, so that H necessarily discrete.

3.6. LEMMA. Suppose {G,} is a sequence of kleinian groups converging algebra-
ically to G. Then there is no sequence {S,}, S, €G,, S, + id, withlim S, = id, or with
lim S, = S elliptic of infinite order.

PROOF. Present G, = (g1, 92m»- .. Where limg;, = g; and G = {g;,9,,...).
It suffices to rule out the following three individual cases.

Case 1. S, is elliptic for large n. We claim that (for all large n) no generator g;,
can share exactly one fixed point with S,. Indeed, if this were false for g,,, say,
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then g,, would be parabolic and <S,, g, elementary. But for this to be the case,
the order of S, could not exceed six. Nor is it possible that every generator g,
either shares the same fixed points with S, or is an element of order two and
interchanges them. For if this were the case, then G, would itself be elementary.
Consequently, we may assume that {g,,, S, is not elementary for all large n. But
now we have a contradiction to the Jorgensen-Klein theorem.

Case 2. S, is parabolic for all large n. Not every generator of G, can share the
fixed point of S,; so again, say for g,, <g1n> S»> is not elementary.

Case 3. S, is loxodromic for all large n. Once again not every generator g, of
G, can have either the same fixed points as S, or be an elliptic transformation of
order two that interchanges them.

3.7. LEMMA. Suppose {G,} is an algebraically convergent sequence of kleinian
groups. There exists a point O € H* and & > 0 such that, for a subsequence {Gy\},no
element of G, for any k has a fixed point in the ball B, of radius ¢ about O.

ProOF. The proof relies on two universal properties of kleinian groups:

Universal Elementary Neighborhoods [11]. There exists 6 > 0 such that for any
x € H3? and any kleinian group G, the subgroup generated by

{geG:d(x,gx) < 6}
is elementary.

Isolation of rotation axes [11]. There exists § > 0 such that for any kleinian
group G the distance between any two rotation axes which have no common
point in H3 U 0H3 is at least d, unless both are the axes of rotations of order two.

To prove Lemma 3.7, start with any xe H>. We claim that there exists ¢ > 0
such that any two rotation axes of G, which intersect B,(x) = {ye H:d(x, y) < ¢},
intersect in a point x, € B,(x).

Suppose not. Then there is a sequence ¢, — 0 and rotation axes a,,,a,, of
E,,, E,,€G, which intersect B, (x). We may assume E,, > E,, E,, > E, and
hence that x is fixed by E,, E,. For all large n, (E,,’ E,,) is elementary. Yet
E 1., E;, do not share a common parabolic fixed point on dH? (their commutator
would then be parabolic) nor are they both elliptic of order two with disjoint axes
(E{,E,, would then be loxodromic likewise converging to the identity). Conse-
quently {E,,, E,,» is a finite non-cyclic group with a common fixed point x, € H?,
and <{E,,, E,, is isomorphic to {E,, E, ) for all large n, by Lemma 3.6. It must
also be that lim x, = x.

The argument shows that there exists ¢ > 0 and a point x, € B,(x) such that any
rotation axis of G, that intersects B(x) passes through x,, for all large n.
Moreover, the finite subgroups Stab(x,) = G, are all isomorphic to the limit
group which we will denote by Stab(x).
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Now there are only a finite number of possibilities for Stab(x), unless it is cyclic
or a Z, extension of a cyclic group. We can find y e B,(x) and &; < ¢ such that
1B, (y)n B,,(») = & for all T4 id.eStab(x). This property will persist for
Stab(x,), for sufficiently large n, that is, TB,(y)n B, (y)= for all
T % id e Stab(x,). The proof is complete.

3.8. PROPOSITION. Suppose the kleinian groups {G,} converge algebraically to
G. Then there is a polyhedrally convergent subsequence {G,}. The limit H of any
subsequence contains G. If H is finitely generated, then there is a homomorphism
of H into G, for all large k such that lim y,(h) = h for all he H. If in addition G is
finitely generated, then y,(H) = G,.

PrOOF. Again set G, = {g1,,92n,--.» and G = {g;,d,,...» With g; = lim g,,.
By Lemma 3.6, there is no sequence {S,} with S,€G,, S, # id, yet lim S, = id.
Consequently. if none of the groups G, have elliptic elements, there is a small ball
B, about O which is contained in every polyhedron #(G,). Then {G,} can be
found exactly as in the proof of Proposition 3.5.

When there are elliptic elements, we have to know that for some point O € H3,
such a ball B, exists, at least for a subsequence {G, }. This fact is a consequence of
Lemma 3.7. From this lemma, we deduce that there exists 6 > 0, d < ¢, such that
for all large k,

{SeG,:SB;n B; + &} = {id}.

Here B; is the ball of radius § about O. For suppose this were false. Then
corresponding to a sequence 8, — 0 would be a sequence S, k = k(n), S, € G,
Si #id, with S,B; N B, #+ (. There is a convergent subsequence, say {5}
again, whose limit S fixes O but whose approximants S, have no fixed point in
B; . The only possibility is that S, = id (Lemma 3.6).

So in all cases we can find a subsequence {G,} converging geometrically to
a discrete group H.

Given a compact set K in H?3, there exists r > 0 and N with the following
property: K is covered by the images of the truncated polyhedron £(G,), under
all words of length < N in the face pairing transformations of #(G,),, for all large
k.

To see why, choose a larger compact set K’ containing K in its interior. For
large enough r and N, the orbit 2% of 2(H), under words of length < N in its face
pairing transformations covers K'. When k is large, 2(G,), is close to #(H), and its
orbit 2% under words of length < N in its face pairing transformation covers K.

This implies that H contains G. For given Se G, take r > d(0, SO) and set
K = B, . We know S = lim §,, S, € G, and for large k, S,(O) € K. Therefore S, is
a word of length < N in the face pairing transformations of 2(G,),. In the limit
then, Se H.
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Finally, assume that H is finitely generated and hence by the theorem of
Scott-Shalen [14], finitely presented. Fix a presentation. Each generator Wis
a word in the face pairing transformations of 2(H). Thus for sufficiently large k,.
let y,(W) designate the element of G, which is the same word in the corresponding
face pairing transformations of 2(G,), k = ko; lim y (W) = W.

The correspondence i, determines a homomorphism of H into G, for
k = k; = kq. Forif R(W) = lis arelation in H, then by Lemma 3.6, /,(R(W) = 1
must also hold for all large k.

Now return to the correspondence ¢,: g; — g; determined by algebraic con-
vergence. The generator g,, say, of G is a word @,(W) in the generators { W} of H.
Because lim ¢,(g,) ™ ¢, @,(W) = id, for all sufficiently large k, ¥, @ (W) = ¢(gy).
If G has only a finite number of generators, G = {g,,....4,, then for sufficiently
large k,, we can insure that Y, ®(W) = ¢,(g;), | <j < r, generates Gy, k 2 k.

REMARK. There arc many examples, for instance of fuchsian groups, which
show that polyhedral convergence does not imply algebraic convergence.

3.9. Our proofabove thaty,: H — G, is a homomorphism into did not require
that {G,} have an algebraic limit. We state this result separately as follows.

COROLLARY. Suppose that the sequence of kleinian groups {G,} converges
polyhedrally to a finitely generated kleinian group H. Then there is a homomor-
phism i, of H into G, for all large k such that lim \,(h) = h for all he H.

3.10. We can now justify use of the term “geometric convergence”.

PROPOSITION. (i) The sequence {G,} of kleinian groups converges geometrically
to a kleinian group if and only if {G,} converges polyhedrally to a kleinian group.
The geometric and polyhedral limits of {G,} are the same.

(i) Suppose ¢,:T" — G, is a sequence of isomorphisms of a group I onto kleinian
groups G, converging algebraically to ¢:I' - G = @(I'). Then {G,} also converges
geometrically to G if and only if to every subsequence {m} such that h = lim @,(y,,)
exists, y,€I', then he G and y,, = ¢~ '(h) for all large n.

PROOF OF (i). Assume that {G,} converges polyhedrally to H. We refer to the
statement of Lemma 3.3. That (b) holds was shown in the course of proving
Proposition 3.8. For (a), if he H then h is a word in the face pairing transform-
ation of Z(H) and the limit of the corresponding words in the face pairing
transformations of 2(G,).

Conversely, assume (a) and (b) of Lemma 3.3 hold for the kleinian group
H with respect to its kleinian approximants {G, }. By the Universal Ball Property,
for some 6 > 0 and O € H?, the ball B, about O is mapped disjoint to itself by all
elements of H. We claim that by (b), the same property holds for G,, for large n.
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Otherwise, there would be a sequence ¢,eG, with g, —id. Since H is
non-elementary, we can find h,, h,. h; € H which are loxodromic with mutually
distinct fixed points. Then h, = im §,,,,i = 1,2,3,S,,€G,. For large n, at least one
of the S;, is loxodromic with tixed points distinct from those of g,. Then, {g,, S;,>
is non-elementary for some i, contradicting Jergensen’s inequality.

We have shown that there are polyhedrally convergent subsequences of {G, }.
By Lemma 3.3, they all converge to the geometric limit H of {G,}.

PROOF OF (ii). Suppose [G,} also converges geometrically to G = ¢(I'). As-
sume h = lim ¢,(¢,,) for some subsequence {m; and y,,€ I'. Then h = ¢@(h,) lies in
G,and lim ¢,,(y,,hy ') = id. By Lemma 3.6,7,, = h,. The converse follows from (i).

REMARK. Our discussion also applies in the following elementary situation.

A sequence { < T, >} of cyclic loxodromic groups converges polyhedrally to
a discrete parabolic group P if and only if it converges geometrically to P and no
subsequence of distinct elements converges to the identity.

3.11. CoroLLARY. If {G,} converges polydedrally to H with respect to one
choice of center for the fundamental polyhedra, it converges polyhedrally to H with
respect to any other choice of center.

Proor. No choice of center is involved in the statement of Proposition 3.10(i).

3.12. PROPOSITION. Suppose ¢,: I’ — G, is a sequence of isomorphisms of a group
I" onto kleinian groups G, converging algebraically to G = @(I') such that {G,}
converges geometrically to H > G. Suppose I’y = I' is a subgroup of finite index
rand {¢,(Iy)} converges geometrically to Hy > ¢(I',). Then H, has index r in H.
Moreover, H = @(I') if and only if Hy = ¢(I',).

ProOF. Let I'yxy,...,ox, denote distinct I'y-cosets that fill up I'. We start by
observing that for i # j, ¢(xx; ')eH,. For if the contrary were true then
@(x;x; ') = lim @,(y,) for some y, € I'y. That is, lim ¢,(y,x;x; ') = id. This implies
x; = y,x; for all large n contradicting our assumption that I'ox; N I'ox; = .
Consequently the Hy-cosets Hyo(x,),. .., Hyp(x,) are distinct. Their union is H.
Forif he H then h = lim ¢,(y,) for y,e I'. Writey, = B,x;, where B,€ ', and the
index i depends on n. Choose a subsequence {k} of {n} for which i(k) = j for all k.
Then lim ¢(B,) = ho(x; ') so that he(x; ')e H, and hence he Hop(x,). This
completes the proof of the first statement of the Proposition.

If { (I} converges geometrically to ¢(I") then by Proposition 3.10(i),
{@n(I'y)} converges geometrically to o(I',).

Conversely, suppose {¢,(I',)} converges geometrically to ¢(I'y). For a sub-
sequence {k}, suppose y, € I is such that h = lim ¢,(7,) exists.

Case 1. h has infinite order. Passing to another subsequence if necessary we
may assume that there exists r, 1 <r < [I':I'y] such that y;el', for all k.
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Therefore h" € (I'y) and k" = ¢(T) for some Te I'y. Furthermore for all large k,
T =y}, since lim @, (y; T ') = id.

Thus for all large k, we may assume for all k, y, is an rth root of T. Two rth roots
differ at most by an elliptic transformation with the same fixed points as Tand
whose order divides : y, = E,y, where E} = id. There are only a finite number of
possible elements E, so by passing to another subsequence we may assume
E, = E for all k. But then y, = Ey, and h = lim @(y,) = @(Ey,)eo(I).

Case2. h = lim @,(y,) has finite order g. Then for all large k, we may assume for
all k, y, is elliptic of order g as well. We will show that the set of elements {y, } must
be finite. This implies that he ¢(I') thereby completing the proof. Suppose then
that {y,} is an infinite set.

First, consider the situation if ¢ > 2. Fix TeI' loxodromic and normalize so

that
u 0 a, b,
~ ~ d, — be, = 1.
T (0 u_l>’ Yk <Ck dk), A dy WCx

For peZ, since try, = 2cos(nq,/q) for some g, relatively prime to g,
tr TPy, = (u? — u™?)a, + 2u"?cos(nq,/q).

We may assume that {a,} converges in C U {c0}. It is then clear that for some
integer p, after passing to another subsequence if necessary, T"y, is not elliptic for
all k.

Consequently by Case 1, lim ¢(T"y,) = ¢(TP)he o(I') and h = (T~ ?T,) for
some Ty eI'. Thus y, = T PT, for all large k, a contradiction.

There remains the possibility that g = 2. We see from the formula above that
Ty, is elliptic of order two only when y, interchanges the fixed points of
T (ax = dy = 0), that is, only when their axes intersect in a right angle in H>. By
a suitable choice of T we may avoid this occurance. Now replace y, by Ty, and
carry on as above.

3.13. COROLLARY. Suppose that y,: G — G, is a sequence of homomorphisms of
a kleinian group G onto kleinian groups G, such that lim,(g) = g for all g€G.
Suppose {G,} converges geometrically to H > G. Let G, = G be a subgroup of
finite index r such that {y,(G,)} converges geometrically to H,. Then H,, has index
< rin H. Moreover, if Hy = G, then H = G.

PROOF. Let Gox,, ..., Gox, be afull set of distinct cosets of G, in G. If h e H then
h = lim y,(g,) for some g, € G. Write g, = f,x;,, where f, € G,.Choose a subsequ-
ence {k} for which i{k} = j is constant. We find that hx 1 =limy,(f,)e Hy and
therefore that he Hox;. This shows that the cosets Hox,, ..., Hyx, fill up H. In
particular, if Hy = G,, then H = G.
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4. Convergence of regions of discontinuity.

4.1. A sequence of open sets {Q,} = dH? is said to converge in the sense of
Carathéodory to the open set Q if (i) every compact subset K of Q lies in Q, for all
suffciently large n, and (ii) every open set U which lies in Q,, for an infinite
subsequence {m} of {n} also lies in Q. This is the standard notion of convergence
in the theory of conformal mapping.

The concept of Carathéodory convergence 2, — Q is the same as Hausdorff
convergence A, — A of the complement A, of Q, to that, A, of Q.

In this paper we will always be dealing with situations that Q, = Q(G,) and
Q = Q(G*) for discrete groups G, and G* such that each ge G* is the limit of
elements g,€G,:g = limg,. For such situations, condition (ii) holds automati-
cally. Therefore {Q,} converges to Q in the sense of Carathéodory if and only if
any given compact subset K of Q lies in Q, for all sufficiently large n.

4.2. PROPOSITION. Assume that I is a finitely generated group and ¢,:T — G,
a sequence of isomorphisms of I' onto kleinian groups G, converging algebraically to
(an isomorphism) @:I' —» G with Q(G) £ &. Then if (G,) — (G) in the sense of
Carathéodory, {G,} converges geometrically to G.

PROOF. Assume to the contrary that {G,} does not converge geometrically to
G. Then according to Proposition 3.10(ii), for a subsequence {k} and elements
€T, g« = @u(y) € Gy is such that h = lim g, exists with h¢ G. Fix a compact set
KcQG) and choose another compact set K’ such that
K c IntK' ¢ K' = (G). The sequence g,(K) converges to h(K). We claim that
hK) = QG).

If not, the interior Int (K’') = lim g, (Int K’) containts limit points of G and
hence loxodromic fixed points of elements of G. If Int h(K’) contains a loxodromic
fixed point of ¢(A), for AeT, then Int g,(K') also does, for n large, say n = N,.
There exists N, = N,(N,) such that Int g,(K’) contains a fixed point of ¢,(A) for
m 2 N,. That is, g,(K') contains a fixed point of ¢,(4) for k = max(N,, N,). This
contradicts the assumption that K’ = Q(G,) for all sufficiently large k.

It follows that h(K) = Q(G) for every compact subset K of Q(G). Consequently
h(G) = XG). The same argument can be applied to h™! = lim @,(y, *). We
conclude that hQ(G) = Q(G). In particular, if h is loxodromic or parabolic its fixed
points lie in A(G).

We may assume that the geometric limit H > G of {G,} exists (Proposition
3.8). At this point we apply an important theorem of Leon Greenberg [4] that
states that if A(H) = A(G)is not a circle on dH3, then G has finite index in H. But
the condition of finite index holds when A(G) is a circle too. For then G is
a fuchsian group of finite area or a Z,-extension of one so that the larger discrete
group H must contain G as a subgroup of finite index.
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In fact the only possibility is that H = G. For assume that h = lim ¢,(y,) € H,
h¢G. If h has infinite order, then for some m, ™ + id € G and so h™ = ¢(A4) for
some A € I'. Therefore, lim ¢,(y" 4~ !) = id. By Lemma 3.6, A = y7 for all large k.
An element of infinite order in a kleinian group can have at most one mth root in
the group. Thus all the elements y, are the same and h € G. This is a contradiction.

The other possibility is that h is elliptic. Choose a loxodromic element ge G
whose fixed points are not interchanged by h For some integer p, g°h is not elliptic
(cf. proof of Proposition 3.12). From above, g’h e G, again a contradiction.

REMARK. Suppose instead that ¢,:I" - G, is a sequence of representations of
I' onto kleinian groups G, converging algebraically to G and suppose {G,}
converges geometrically to H. If Q(G,) — ©(G) in the sense of Carathéodory, then
G has finite index in H. For the first part of the proof above applies to this case.

4.3. For the remainder of this Chapter we will consider only geometrically
finite groups without elliptic elements. The reason for the requirement of geomet-
ric finiteness is that we will base our study of deformations on fundamental
polyhedra. When there are no elliptic elements, we can use the nice generic
polyhedra constructed in [10]. In view of Proposition 3.12, from the point of view
of the ordinary sets, restricting our attention to torsion free groups is not a serious
limitation.

We will start out, in this and the next section, with a discussion of geometric
convergence of cyclic loxodromic groups. The basic analysis was carried out in
[5] in reference to the isometric (Ford) fundamental polyhedron. However, it
carries over the polyhedra centered at any point O € H3. Although the number of
faces depends on the choice of center O, the combinatorial possibilities for each of
the polyhedra are the same, for each cyclic group. In particular, all Dirichlet
fundamental polyhdra meet the sphere at infinity in a connected set, and the
cycles about all edges in H? have order three (see §4.5).

4.4. Suppose then that S, is loxodromic and {(S, )} converges polyhedrally to
a discrete parabolic group P. Given OeH? let &, denote the fundamental
polyhedron for (S,)> centered at O and £ denote that for P. Set
F,=2, nQ(S,))and F = 2~ n Q(P), where 2, , 2~ denote euclidean closure
in H3 U oH3.

A modification of the arguments of [5] shows that F, is connected; in fact this
holds for any cyclic loxodromic group. When P has rank two we can verify this
directly for large n since F has four or six sides so that F, must as well. When P has
rank one, it is true that F, has two, four, or six sides (and is connected) but we do
not need the full force of this statement. What we require can be deduced from the
fact of polyhedral convergence alone. In any case, 7, = Q(¢S,))/{S,) is a torus.

Case 1. {{S,)} converges to the cyclic parabolic group ¢S>. Then necessarily,
S is the limit of generators of the {<S,>} so we may assume lim S, = S. The
polyhedra {#,} converge to 2, the fundamental polyhedron for {S}. The two
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faces of 2 determines disks D, D’ in 6H? which are externally tangent at the fixed
point { of S. Two of the sides of F, converge to dD, 0D’ and any other shrink in
OH3\(D u D’) towards {. Likewise in H3, two of the faces of 2, converge to those
of 2 while all the other faces collapse towards (.

The quotient torus Z, conveges to the doubly punctured sphere
T, = Q({S))/{S>. Let C, C’ be a pair of horocircles for S, externally tangent at .
On 9, C and C’ becomes two disjoint simple loops separating the punctures. On
7, we can find a pair of simple loops which converges to these. Back up in H3,
this means that we can find a sequence of Jordan curves {o,}, where o, passes
through the fixed points of S, and is invariant under S,, and limeo, = C U C, the
convergence being uniform away from (.

- c c

In H3 it will be convenient to have some canonical neighborhoods of {. With
respect to H3, construct the convex hull of the closed set consisting of C U C’ and
their disjoint interiors. In boundary & in H is a smooth simply connected surface
meeting 0H? orthogonally in C U C'\{{}. (This is easiest to visualize when
{ = .) Let & denote the interior of the convex hull and set ' = H3\s¢; # is
closed and contains a horoball at £. For the quotients, &/{S) is a cylinder and
(2" "\{C})/<S) is a pairing tube homemomorphic to {z:0 < |z| £ 1} x [0,1].

Correspondingly, let #, denote the interior of the convex hull of the union of g,
and its “interior”; set #, = H3\#,. The relative boundary %, of #, is also
smooth (if we so choose a,, except at the fixed points p,, g, of S,). The quotient
/<8, is again a cylinder but now 5, ~\{p,,q.}/{S,> is a solid torus.

The point of the construction is that the truncated 2, N J#, converges uniform-
ly to 2 n #. Note too that the orbit of 2, N £, under ¢S, is just 5, which is
simply connected in H3.

Case 2. {(S,>} converges geometrically to a rank two parabolic group
{8,,8,)>where S, = lim S¥and S, = lim S} with k = k(n),! = I(n). The fundamen-
tal polyhedron 2 for {S,,S,) is a 4 or 6-faced chimney rising toward the
common fixed point{. F = 2~ N Q({S,, S,)) has 4 or 6 sides, and is a fundamen-
tal polygon for ¢S,,S,).

Let B, designate the open ball centered at O with radius r so large that it crosses
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all the edges of 2. Let () denote the component of 2\ B, N 2 that is adjacent to
{ and write o, for its (S,, S, )-orbit. The opposite faces of (5#,) match up under
{8;,8,) and the quotient under this identification is a solid cusp torus homeo-
morphic to {z:0 < |z £ 1} x S*. The full orbit #, “looks” like a horoball at {.

Away from {, 2, converges to 2. The polyhedron £, will have an increasing
number of faces but all except 4 or 6 appear closer and closer to { and disappear in
the limit. Thus, F, = 2, n Q(S,>) converges uniformly to F.

For large n, let (5#,,) denote the component of #,\ B, n &%, which converges to
(2%,). The faces of (#,,") match up under {S, > and the result of the identification is
a solid torus. In this case, however, the full orbit J#,, of (#,,) under {S,) is
a simply connected, banana-shaped neighborhood of the axis of S,. It will be
important to remember that the complement H3\ ., is not simply connnected.

There is a natural homomorphism ¥, of (S,,S,> onto ¢S, which sends the
face pairing transformations of £ to the 2 or 3 elements of {S,) which pair the
corresponding faces of #,. The kernel of Y, is generated by a transformation
T'that gives rise to a simple loop on the boundary of the solid tours J#,,’/<S,>.
This loop bounds a disk in its interior. In H3, this is a simple loop on the banana
skin 0¢,," which separates the tips, p, and g,,.

4.5. Generic fundamental polyhedra. Suppose that G is a geometrically finite,
torsion free kleinian group and %, is a fundamental polyhedron with center
OeH3.Set? = 2; N (H? U G)). The order k of a vertex v of %, is the number of
distinct vertices of %, in the equivalence class of v: it is the number of polyhedra
Py, T,%,, . .., L%, in the G-orbit of Z, that share the vertex v; the transformations
T; € G are said to be associated with v. The order k of an edge e of %, is the number
of distinct edges of, in the equivalence class of e: it is the number of polyhedra &,
T,%,,..., T;%, in the G-orbit of %, that share the edge e; the transformations
T;€ G are said to be associated with e.

A cusp of 2 is a parabolic fixed point that lies in the euclidean closure 2. It is
of rank one or rank two. Boundary vertices and edges are those that lie in Q(G).
Associated with each boundary vertex is a vertex cycle.

The main result of [10] is that there is a dense set of points in H3 so that if O is
chosen from among these, 2 will be generic in the following sense.

(i) Each edge e of #, for which the line l(e) = H? containing e does not end at
a parabolic fixed point has an edge cycle of order three. If i(e) ends at a parabolic
fixed point {, then e has an edge cycle of length three or four, and every
transformation associated with e fixes .

(ii) Three edges emanate from each vertex v of Z,. For at most one of them e,
I(e) ends at a parabolic fixed point {. The order of v is either four or five. In the
latter case three of the four transformations # id associated with v are parabolic
and fix the end point { of I(e) for some edge e from v.
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(iii) Every boundary vertex v* is the end point of exactly one edge of %,. The
vertex cycle at v* has length three.

(iv) No edges of %, end at a rank one cusp { of 2 but two faces of 2 are tangent
to { with a face pairing transformation that fixes {. Each rank two cusp { is the end
point of four or six edges of #,. The corresponding four or six faces are paired by
elements of Stab(().

ReMARK. In(i)and (ii). If e has an edge cycle of order four, then Stab({) is a rank
two parabolic group that represents a rectangular torus.

4.6. LEMMA. Suppose H is a geometrically finite group and y,.H — G, is
a sequence of homomorphisms onto torsion free kleinian groups such that
lim y,,(h) = h for all he H. Assume that {ys,(H,)} converges geometrically to H, for
every maximal parabolic subgroup H, of H. Let # be a generic fundamental
polyhedron for H with center at O e H® and

F®) = {SeH:5?" n2?™ + &)}

the set of face pairing, edge pairing, vertex pairing, and cusp fixing transformations
of the euclidean closure 2~ of #. Then for all large n,

P* = {xeH> d(x,0) £ d(x, TO), Tey,(F(?))}

is the (generic) fundamental polyhedron for G, centered at O. If ,(h) is parabolic
whenever h e H is parabolic, then for all large n, ,, is an isomorphism and converges
algebraically to id.

PRrROOF. To verify that 2 is a fundamental polyhedron we need only to verify
the hypothesis of Poincaré’s theorem (see [13]): that the dihedral angles for each
edge cycle of 22* add up to 2.

Consider first the situation about an edge e of 2, which has order three. In the
orbit of 2 under H there is a cycle of polyhedra that share e:

y, Slg, SISZ-@, S1S2S3? = .@

where S, S, and S, are face pairing transformations of 2 and e is contained in the
intersection of bisecting planes of the line segments [0, S,0], [0, S,S,0].

There is a corresponding edge e, of 2* which is contained in the intersection of
the bisecting planes of [0, ¥,,(S,)0], [0, ¥,(S,S,)0]. Automatically, the cycle of
polyhedra,

Pr a(S)Z0, Ui(S1S) 25, Ua(S18:831P; = P

are arranged about e, without overlap.
If instead e has order four then the cycle about e is

g, Sl'@’ SISZ?’ SISZS3Q, SISZS3S4-? = ?.
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The three transformations T, = s,, T3 = 5,55, T4 = 5,5,5; associated with e are
parabolic with a common fixed point { which is also an end point of the line I(e)
containing e. Indeed, I(e) is an edge of the fundamental polyhedron #(Stab {) for
Stab{ = {he H: h{ = {} centered at O, where Stab { has rank two.

Suppose ¥,(Stab () remains parabolic of rank two. Depending on whether
P (,(Stab 0)) has four or six edges, one or two of these edges converge to I(e) as
n — oo. Assume for definiteness the latter case, which is the general case, holds for
all large n. Then #* will have two edges e,, €, both of which converge to e, and
also one face of 2* converges to e. The situation as n — oo is described by the
following diagram illustrating the situation in a small disk D transverse to e.

Yu(T) Py V)2 -

If y,(Stab () is a cyclic loxodromic group, the diagram remains valid for all
large n (assuming D is transverse at an interior point of e). There will be two edges
e,, e, of ¥ which converge to e. The e, and e, will be contained in edges of the
fundamental polyhedron 2(y,(Stab {)) centered at O, all of whose edges have
order three. The transformations associated with the edges e,, ,, namely y,(T}),
i=1,2,3,4, lie in y,(Stab ).

Now let v be a vertex of Z,. Exactly three faces of 2, intersect at v. If the order
ofvisfour,and Ty = id, T,, Tj, T, denote the associated transformations, then v is
the point of intersection of the three bisecting planes of the three segments
[0, T;0], i = 2,3,4. Correspondingly, #* has a vertex v,, also of order four,
which is the intersection of the planes bisecting [0, Y/(T;)0],i = 2, 3,4. The vertex
v, converges to v, and 2} has no edges which collapse to v.

On the other hand suppose the order of v is five. Denote the associated
transformations by T, =id, T;, T;, T,, Ts. Three of these, say T,,T;, T, are
parabolic with a common fixed point {. Furthermore, one of the three edges
eemanating from vis contained in an edge l(e) of 2(Stab {) (Stab { is necessarily of
rank two; in fact, it represents a rectangular torus). The edge e has order four and
its associated transformations # id are T, T;, T,. The vertex v s the intersection
of I(e) with the plane bisecting [0, T,0].
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ex

Assume first that y,(Stab{) is also a parabolic group and for definiteness
assume the general case that 2(),,(Stab ()) has six edges and faces rather than the
four of 2(Stab {). Two of the edges I(e,), l(e,,) of (},,(Stab {)) converge to l(e) and
two edges e, < I(e,), e, < l(e,) of 2} converge to e. Instead of one vertex near v,
2} has two vertices v,, v, and an edge e} between them all of which converge to v.
The edge ef is contained in the intersection with (i, (Stab()) of the plane
bisecting [0, ¥,(T5)0]; e¥ lies in the line of intersection of the bisecting planes of
[0,y,(Ts)0] and [0, y,(T,)0], if T, is that transformation associated with e for
which 22 = e.

The three polyhedra 2}, y,(Ts) P}, share the edge e*. We see that these form
the edge cycle about e*.

The analysis about v when y,(Stab {) is a cyclic loxodromic is the same as that
given above. In particular, 2* has two vertices v,, v, and one edge e* all of which
converge to v.

It remains to analyze the situation about each cusp { of 2 forwhich y,(Stab {)
is not a parabolic group for large n. Necessarily, it is then a cyclic loxodromic
group which is converging geometrically to Stab((): y,(Stab(()) is generated by
the y,-image of the generator or generators of Stab(().

We deal with this by isolating the end of 2 near ( using one of the objects #” of
§4.3 to truncate £ and correspondingly J#, to truncate 2*. We can choose 5#”,
', to be mutually disjoint for distinct parabolic vertices on 2 ~. The situation in
the ends 2 N #" and 2* N #, depends only on the groups Stab({) and
¥,(Stab({)) as described in §4.3. The remainder 2\ 2 N #' and P*\ P* N F,,
has been analyzed above. In short, 2* is a fundamental polyhedron for G,.

The argument shows that if y, preserves parabolic transformations then all the
edge relations of 2* already appears as edge relations of 2. That is, ¥, is an
isomorphism.

4.7. The analysis of §§4.4-4.6 gives detailed information about the relation of
Px to P for large n. We put this together in the following statement.
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PROPOSITION. Suppose H is a geometrically finite kleinian group and . H - G,
is a sequence of homomorphisms onto torsion free kleinian groups G, such that
limy,(h) = h for all he H and for any maximal parabolic subgroup H, of H,
{y,(Ho)} converges geometrically to H,. Then,

(i) {G,} converges geometrically to H,

(ii) The ordinary sets converge, Q(G,) — Q(H), in the sense of Carathéodory,

Denote by Stab(;), 1 £ i < p, and Stab(n;), the rank one and rank two, respect-
ively, parabolic subgroups of H for which y,(Stab((;)), ¥,.(Stab(n;)) are cyclic
loxodromic, in each case one representative from each conjugacy class; possibly one
or both classes will be empty.

(iii) Ker v, is the normal closure of the subgroup generated by {T¥},12j=q
for all large n, where T%, is a generator of

ker(y,: Stab(n;) — ¥,(Stab(n;))),

(iv) Associated to each Stab((;) is a pairing tube 7; = {0 < |z| < 1} x [0,1] in
M (H) and to each Stab(n,) a solid cusp torus 7; ~ {0 < |z2| < 1) x § !, Correspond-
ing to each 7 there is in Int #(G,) a solid torus T, ~ {lz| < 1} x S* such that, for
all large n,

Vs T1(A (H)) > 71 (A(G,))
is induced by a quasiconformal homeomorphism,
Vo MHN(VT; © T)) > MG\ T,

In short, the rank one groups Stab({;) have been “opened up” in #(G,), and the
rank two groups Stab (y;) arise as the end result of a sequence of Dehn surgeries
on the solid tori 7,

PrOOF. Let 2 be a generic polyhedron for H. The point of Lemma 4.6 was to
show that the polyhedron 2} for G, has the same combinatorial structure as 2,
except near the parabolic vertices of the type {(;} or {#;}. This implies that when
2 and correspondingly 2} are truncated near the {{;} and {n;}, using the
constructions of §4.4, to get ' and 2}, the results of identifying the faces of 7’
and of 2} are homomorphic manifolds. This is also true of the surface formed
from '~ N Q(H) and Z¥'~ N (G,).

The manifold resulting from the face identification of 2’ is just .#(H) less the
pairing tubes .7; and cusp tori 7}. The complement in .#(G,) of the 2}'-manifold
is a union of solid tori. Those 7, corresponding to J; are relatively compact in
Int .#(G,) but those J, corresponding to J; are retractable onto an annular
region in 0.#(G,), as indicated in §4.4. Thus the structure is as stated in (iv).

The convergence of 2} to 2 proves (i), and it also proves (ii). To prove (iii), we
have to understand the situation in more detail.
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The orbit # of 2’ under H is an open, simply connected region. The orbit € of the
edges of 2 form a network in #. A word W in the face pairing transformations of
&’ can be interpreted as a path in #\ ¢, starting from O € 2, running through
a face of 2’ to the neighboring polyhedron, etc., until ending up at W(0). If
W = id, that is, if Wis a relation in H, then y is a closed loop in #\ é. As such it is
homotopic to a product of simple loops a, where each « is freely homotopic in
A\ € to a small circle about an edge of é. This is the proof that every relation
W = id is the consequence of the relations about the edges of 2'. For example
aitself determines the relation conjugate to the one about the corresponding edge
of Z7'.

In contrast, the orbit J#, of ¥ is not simply connected. Each component
N(S;,) of H3\ #, is a banana shaped neighborhood of the axis of some S, or
conjugate of §;,, in G,. Here S, is a generator of y,(Stab)(n;)). Its boundary
ON(S;,)isitself the union of fundamental polygons. These come from the G,-orbit
of a face f, of ¥ that lies on 0.%#,. Such a face f,,, in turn, corresponds to a face f of
2’ that lies on 05¢.

Consequently a non-trivial simple loop f = dN(S,) that passes through a suc-
cession of fundamental polygons, crossing from one to the next over a common
side, can be interpreted as follows. The loop f is conjugate in G, to a word in the
side pairing transformations of f,. This word is the identity in G, but it corre-
sponds to a word in the side pairing transformations of f which is not the identity
in H. Instead, it is an element of Stab (#;).

Now examine 5, and the G,-orbit é, of the edges of 2¥'. Some of these edges
end on the ON(S;,). Given a word W in the face pairing transformations of #’,
thereis a corresponding word W, in those of 2¥'. The word W, may be interpreted
asapathy,from Oin J,\ é,. We are interested in the case that y, is closed, that is,
that W, = id.

Suppose first that y, ~ id in 5#,. Then y, is homotopicin J#,\ é, to a product of
simple loops, each surrounding an edge of €,. In this case we conclude that the
relation W, = id is a consequence of the edge relations of Z}'. But these come
from the edge relations of 2. That is, W = id in H.

On the other hand, if 7, is not homotopic to 1 in 5, then in J,\ é,, 7, is
homotopic to a product of simple loops about the edges in é, as before, and also
simple loops {#} where each B is freely homotopic in #,\ €, to a non-trivial
simple loop f' in some dN(S;,), passing through a succession of fundamental
polygons there. Returning to W from this decomposition of W,, we can conclude
as follows. That W is a product of parabolic transformations each one of which is
conjugate to an element of some Stab(n;). This completes the argument for (jii).

4.8. On combining Propositions 4.2, 4.7 and 3.12, we are led to the following
statement.
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THEOREM. Suppose @,. I — G, is a sequence of isomorphisms of a group I onto
kleinian groups G, that converges algebraically to ¢: I' > G. Suppose G is geomet-
rically finite with Q(G) + &. Then {G,} converges geometrically to G if and only if
the ordinary sets converge, Q(G,) — 2(G), in the sense of Carathéodory.

4.9. The next result is also based on Proposition 4.7 but focuses on algebraic
vis-a-vis geometric convergence.

THEOREM. Suppose that I is a finitely generated, torsion free group and 0,:
I’ - G, a sequence of isomorphisms onto kleinian groups that converges algebraic-
allyto 0:I' - G. Assume that {G,} converges geometrically to a geometrically finite
kleinian group H. Then

(i) The ordinary sets converge, (G,) — Q(H), in the sense of Carathéodory.

(ii) For all large n, there is a homomorphism . H — G, such that lim y,,(h) = h
for all he H and for ge G, y,(g) = 6,0 '(g).

(iii) Denote by {Stab(n;)}, 1 < j < g, the rank two parabolic subgroups of H for
which ,(Stab(n;)) is cyclic loxodromic, one representative from each conjugacy
class in H. Denote by T?, a generator of the kernel of the homomorphism y,:
Stab(n;) = ¥,(Stab(n;)). Then kery, is the normal closure of the subgroup of
H generated by {Tx},1<j<q.

(iv) Assume in addition that each parabolic subgroup Stab(n;) contains an
element of G. Then for some T} € Stab(n;), T} ¢ Stab(n;), T} ¢ G,

H=(G,T%...,T%.

REMARK. In (iii) and (iv) we allow the possibility that there are no such
subgroups {Stab(n;)} of H. Theorem 4.9 asserts that this is the case if and only if
H=G.

Proor. Statement (i) and the existence of Y, are contained in Proposition 3.8
and 4.6. The restriction of Y, to G = H satisfies lim 6,0 *(g ™ ")¢,(9) = id, g€ G.
By Lemma 3.6, there exists N such that

0,0~ "(9) = ¥a(g), n 2 N,

first for a set of generators g of G, and then for all geG.

Statement (iii) is also contained in Proposition 4.7. For (iv), let T; be a gener-
ator of the subgroup Stab,(n;) of G that fixes n;. Then ¥n(T) is a generator of
,(Stab(n;)) = 6,0~ ' (Staby(n ;). Consequently, Stab(n;) = {(T;, T%>. Fix T} in
Stab(n;) so that Stab(n;) = (T, T*).

REMARK. As pointed out by Thurston [17], it is. a consequence of the Ahlfors
finiteness theorem that if H is a geometrically finite group whose limit is not the
whole sphere and if G is a finitely generated subgroup, then G is geometrically

finite as well. Thus for the situation above, the algebraic limit G is geometrically
finite.
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5. An example

5.1. In conjunction with §§2-4, it is very illuminating to study the following
explicit example of conformal Dehn surgery.
We start with the parabolic group.

I'={Tz=z+w,Thz=2z+w,), T=w,/0,Im1>0,

which represents an abstract torus = C/I'. The generating pair (v, ®,)
corresponds to a pair of simple loops «, f on .
Change the basis by the rule,

Wiy =01 + N0y, Wz, = Oy; T, = Wy,/01, = T/(1 + n1),

sothat T,,z = z + w,,, T, = z + w,, also generate G. The pair (v,,, w,,) repre-
sents the simple loops a + nf, fon I
Map C onto C\{0} by

w,(z) = exp(—2miz/w,,).
We find that,
(Wn° T1)(2) = (exp 2mint,)w,(2) = (U, "> w,)z)
(W © T5)(2) = (exp — 2mit,)w,(2) = (U, ° w,)2)
(Wn° Ty, )2) = wi(2)
(Wn© T3a)(2) = (exp —2mit,)W,(2) = (U, ° w,)2),
where U,(w) is the loxodromic transformation,
U,(w) = (exp —2mit,)Ww = a,w.
In short, w, determines a conformal mapping
7 = (C\{0D/<U,>
in which the image of « + nf bounds a disk in the solid torus
H? U (C\{0})/<U,>.

5.2. Asn— o0,limt, = 0and lim U, = id. We can replace U, by a conjugate V,
so that lim V(w) = w + w,. To carry out this renormalization, set

Wy
1—a,

Aw)=w+

We find that
Vn(w) = AnUnA; l(w) = a,w + wZ'
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At the same time we compute for any integer k,

k
-1
Viw) = A,UrA,; ! = afw + S,
a,—1

Consequently, set

W(2) = (a =2 1)wn(z),

w

@) = Avoie) = —Z22 (wd) = 1)

Since any transformation w — bw commutes with U,, we find that f, satisfies the
formulas

Joo Ti(2) = V7" £2)
Joo T(2) = Vo f(2)
Ju© Thn2) = £(2)
Jo® To(2) = V, 2 fi(2)-
In short, f, is a conformal mapping
T = C\[0/(1 — a )}/ <V,

such that the image of « + nf bounds a disk in the associated solid torus. The
image solid tori have been renormalized.

5.3. PROPOSITION. (i) limf,(z) = z, uniformly on compact subsets of C.

(ii) lim V,(2) = z + w,,

(iii) lim V,7"(z) = z + w;,

(iv) {{V.>} converges geometrically and polyhedrally to
Z-oz+w,zoz+w)=1T.

Proor. By Taylor’s formula, for z on a compact subset of C,

—27i

2

W"(Z) -1= TpZ + O(n—l)a

a, — 1 = —=2mit, + o(n™?).

Therefore f,(z) = z + o(1), uniformly on compact subsets of C. The transform-
ation ¥, has fixed point oo and w,/(1 — a,) = o. Therefore (ii) and (iii) follow
from (i) by the formulas above.

Because of (ii), the algebraic limit of {{G, >} is the cyclic parabolic group { T, ).
To prove the polyhedral limit is I" we must prove the fundamental polyhedra
converge to that of I' (cf. proof of Proposition 3.8). In view of (ii) and (iii) it suffices
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to prove that if for a sequence k = k(m) - oo, the sequence {¥,‘} converges to
Mobius transformation, then that limit is an element of I, and is not the identity.
Fist we look at

ak = exp(—2miks,,).
We claim that k = k(m) = o(m?) as m — co. For lim a, = 1 since the ratio

ay — 1 _ exp(—2nikt,) — 1
a,—1  exp(—2mit,) — 1

M
must remain bounded for {V¥} to converge to a Mbius transformation. And in
addition,

Imzt. — Im<z
N
Next, set
k(m) = p(m)m + O(m), 0 < O(m) < m,

where p(m) = 0 and O(m) are integers. Because k(m) = o(m?), it follows that
p(m) = o(m) as m — co.

Take a subsequence {r} so that lim O(r)/r = c exists, 0 < ¢ < 1. We claim that
either ¢ = 0 or ¢ = 1. For consider the relation,

exp[ —2nikt,] = exp[ —2mi(kt, — p(r))] = exp[ —2=i(p(r)rz, — p(r) + O(r)z,)].
Since 7, = /(1 + r1),so r1, > 1, and
lim p(r)(rt, — 1) = —lim p(r)/(1 + r7) =0,
lim O(r)t, = c.

Consequently, since a* = exp[ —2mikt,] — 1, c is an integer.
Finally we have to examine the ratio (1) in more detail. Write,

exp[ — 2nikt,] = exp[ —2mi(kz, — p(r) — ¢)],

so that the exponent on the right approaches zero. By Taylor’s formula, the limit
of the ratio (1) is the limit of

KT, —p(r) — ¢ _ p(r)rt, — 1) + O(r)r, — ¢
T, T

=[=p(r) +(OF) —cr)t —c]t~ L.
Since Imt > 0, if this is to have a finite limit, then lim(O(r) — cr) must exist,

necessarily as an integer. Then lim p(r) must exist as an integer too. We conclude
that

(lim V*}w) = w — w,(c + lim p(r)) + w,lim(O(r) — cr).
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Moreover, lim V¥ # id. Suppose otherwise. There are two cases. If ¢ = 0, then
forlarge r, p(r) = O(r) = 0. This implies that k(r) = 0 which is impossible. If ¢ = 1,
then for large r, p(r) = — 1. This too is impossible.
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