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CANCELLATION AND NON-CANCELLATION
AMONGST PRODUCTS OF SPHERICAL FIBRATIONS

PETER I. BOOTH

Abstract.

Let B, D and F be given spaces,and p: X — B,q: Y — Band r: Z — B be Hurewicz fibrations whose
fibres have the homotopy types of D, F and F respectively. We investigate some circumstances under
which the existence of a fibre homotopy equivalence between the fibred product fibrations p xzq:
X xgY—> B and p xgr: X xgZ — B implies, or fails to imply, that q and r are fibre homotopy
equivalent. For the particular situation where B = S¥*!, D = S™, F = §", and n s relatively large we
show that this cancellation property holds in most situations with 0 < k < 16 and 0 < m < 16, but
can fail for (k,m) = (0,0),(1, 1),(3, 3) and (7, 7); a few cases remain undecided. This follows from results
which specify sufficient conditions for cancellation when B is a sphere or when p has a section, and
from a necessary condition for cancellation in a more general situation.

1. Introduction

The literature of mathematics contains numerous investigations into cancella-
tion questions, both in algebra and topology. Research has focussed on two types
of topological cancellation: if X, Y and Z are pointed spaces then wedge cancella-
tion concerns the question of whether ornot X v Y~ X v Z (ie. X v Y is
homotopy equivalent to X v Z) ensures that Y ~ Z, if X, Y and Z are spaces
then Cartesian product cancellation concerns the corresponding question for
X xY~XxZ and Y ~ Z. In both situations the topic has usually been
non-cancellation; the wedge case is discussed in [6, 7, 8,9, 10, 11, 15,23, 24 and 33],
the Cartesian product case in [4, 12,13, 14, 15,22, 23,26, 33 and 34].

The best known amonst many examples of the latter situation is the result of
[15] that there is an H-manifold E,, with §* x E,_ diffeomorphicto S* x Sp(2)
yet E;, 4 Sp(2). Now E, , and Sp(2) have the same genus, i.e. their p-localizations
are homotopy equivalent for all primes p; the above example illustrates the
strong connection that exists between non-cancellation and genus. Aspects of
this relationship are examined in many of the listed papers.

We introduce a third type of topological cancellation: fibred product cancella-
tion. If p: X —» B and q: Y — B are Hurewicz fibrations then the fibred product or
pullback space of X and Y is the subspace X x5 Y = {(x,y)|p(x) = q(y)} of X x Y
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and the fibred product of pand q,p xq: X x5 Y — B, the fibration that takes (x, y)
to p(x) = q(y). We recall that fibrations over B, e.g. p: X - Band ¢: Y —» B, and
maps over B, e.g. f: X — Y such that gf = p, constitute a category; then p xpq is
the product of p and g in this category. Then p will be said to cancel relative to all
F-fibrations (= fibrations whose fibres all have the homotopy type of F) if for all
choices of F-fibrationsq: Y = Bandr: Z — B,p xgqis FHE to p xgrimplies that
q is FHE to r, where FHE abbreviates fibre homotopy equivalent.

We focus on both cancellation and non-cancellation, establishing sufficient
conditions for cancellation in the case where p has a section (theorem 3.4), where
B is a sphere (theorem 4.6), and a necessary condition for cancellation in a very
general situation (theorem 6.3). A spherical fibration is a fibration whose fibres all
have the homotopy type of a given sphere; applying the theorems mentioned
above to spherical fibrations over spheres enables us to establish (in section 6):

MaAIN EXAMPLE 1.1 Given that k, m and n are non-negative integers with
n relatively large (i.e. n = k + 2 and n & m), then S™-fibrations over S** ! always
cancel relative to S™-fibrations over S**! in 277 of the 289 cases that occur with
0 <k <16and 0 £ m £ 16, but cancellation sometimes fails for each of the cases
(k,m) = (0,0), (1, 1), (3, 3) and (7, 7). Our results do not enable us to reach either
conclusion in the eight remaining cases: (k,m) = (3,2),(8,7), (9, 7),(11, 11),(13, 13),
(15,15),(16,7) and (16, 15).

The proof of our cancellation theorem 4.6, the main result behind the above
example, depends on the author’s fibred mapping space construction: the follow-
ing is an indication of the method used. Any FHE from p xzq to p xgr
determines, by composition with the projection X xz Z — Z,amap X xz Y - Z
over B; this corresponds by a “fibred” exponential law — a convenient category
and “over B” extension of the “ordinary” exponential law [27, p. 6] — to a map
from X into the fibred mapping space (YZ). Now this is a map between fibrations
over their base space B, and we are able to use the associated exact homotopy
ladder in an argument that determines sufficient conditions for the characteristic
element of the fibration (YZ) — B to be zero; hence we can then show that q is
FHE to r.

The author would like to thank S. Thomeier for a lot of information concern-
ing Whitehead products.

2. Preliminaries.

(2.1) We work in the context of the category of compactly generated spaces
[21]; these are defined as having the final topology relative to all incoming maps
from compact Hausdorff spaces. Any space can be cg-ified, i.e. retopologized as
a compactly generated space, by giving it this final toplogy. We use #” to denote
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the class of spaces (this now means compactly generated spaces) having the
homotopy type of a CW-complex.

(2.2) If X and Y are spaces then .#(X, Y) and .#,(X, Y) will denote the spaces
of maps of X into Y in the unbased and based senses respectively, with the (of
course cg-ifications of the) compact-open topologies. Further #(X) will denote
the space of all unbased self-homotopy equivalences of X (its base point is
normally the identity map) and [ X, Y] the set of unbased homotopy classes of
maps from X to Y.

(2.3) There is an evaluation map e: #(X,Y)— Y defined by e(f) = f(*),
fe#(X,Y). If * is a non-degenerate base point in X ({*} < X is a cofibration)
then e is a fibration (by the cg-version of [27, Theorem 2.8.2]); the distinguished
fibre is A ,(X, Y).

Taking X = Y and restricting e to the path components of .#(X, X) that
consist of homotopy equivalences we again use e denote an evaluation map, in
this case e: #(X) — X; further if the base point is non-degenerate then this e is
also a fibration. If there is a binary operation m: X x X — X such that m(x, *) = x
and m(x,-): X — X is a homotopy equivalence, for all x € X, then the adjoint map
m': X — #(X)defined by m'(x,)(x,) = m(x,, x,), for x,, x, € X, is a section to the
fibration ¢: #(X) — X. In particular such sections exist for X = S™, wherem = 0,
1,3,0r7.

(2.4) If A is any pointed space then .#,(S™, A) is an H-group [27, p. 35], so its
path components all have the same homotopy type and, taking ¢ to denote the
constant map of S™ to the base point of A, their k-th homotopy groups are
isomorphic to m,(#y(S™, A), ¢) = (" A) & w1 u(A).

(2.5) The characteristic element w, of the fibration p: X — $**! is defined to be
01+ 1) em(p~*(*)), where * denotes the distinguished point of S**, 1, , | is the
homotopy class of the identity on $**! and &: m, (S***) - m(p~'(*)) the
homomorphism that appears in the homotopy sequence of p.

(2.6.) The fibration p has a base point preserving section if and only if w, = 0
(for 1,4, is in the image of py: my , ((X) = m, . ((S** ') if and only if 6(z,, ;) = 0.

(2.7) w, isin the image of the homomorphism e ,: 7, (# (p~'(*)) = m(p~ 1 (*)).

ProoF. Let Prin (X) denote the space of homotopy equivalences from p~(x)
into individual fibres of p, and prin (p): Prin (X) — S** ! the associated projection
and principal fibration. Then evaluation at a fixed point of p~!(*) defines a map

Prin(X) - X over S**! and the result follows from the associated homotopy
ladder.
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3. The Cancellation of Fibrations with Sections.

DEFINITION 3.1. The space F will be said to have the self-equivalence property
relative to the space D if for all homotopy equivalences (in the unbased sense) h:
D x F —-'D x F and all de D the composites

FoDxF-DxF->F,
i(d) h w
where i(d)(x) = (d,x), xe F, and w denotes the projection, are self-homotopy
equivalences of F.

(3.2) We notice that if, for such a D, F and h, k: D — .#(F, F) is defined by
k(d)(x) = wh(d, x), de D, xe D, xe F, then k(D) = H#(F).

ExampLE 3.3 If m and n are non-negative integers, then S™ has the
self-equivalence property relative to S" if and only if m % n.

ProoF: The m # n case follows easily from the Kiinneth and Hurewicz the-
orems; for m = n there is a switch map (x, y) = (y, x), xe S™, ye S".

THEOREM 3.4. If B is numerably contractible (e.g. Be %" [5, Theorem 6.3]),
F has the self-equivalence property relative to the fibres of p. X — B, and p has
a section then p cancels relative to all F-fibrations over B.

ProOF. Let s be a section to p: X B, q: Y- Band r: Z — B F-fibrations and
h: X xg Y- X xgZ a FHE. The composition of h with the projection
X xgZ —+Zandthemap Y - X X3 Y, y — (sq(y), y) determinesamapg: Y - Z
over B such that for each be B, g|q~ ! (b) is the composite map

q ') o p~i(b) x ¢7'(b) p i) x r7i(b) - r7i(b),

———
hlp~*(b) x ¢~ (b)
so g is an FHE [5, Theorem 6.3].

LEMMA 3.5. Let p: X — S**! be any S™-fibration. If e,: m(#(S™)) = m,(S™) is
zero then p has a section. Ifk = 1,m = 1 and a homomorphism m,(S™) = 7y 4 pp— 1(S™,
« — the Whitehead product [1,,, a], is a monomorphism, then p has a section.

Proor. The first part is a consequence of 2.6 and 2.7; the second follows
because the image of e is the kernel of [1,,, ] (see [32, Theorem 3.2]).

ExaMPLE 3.6. All S™-fibrations over S**! have sections, and hence cancel
relative to all S"-fibrations, where m % n, in the following cases:
@k+0andm=0, ([i)k+1and m=1, (i) k <m, (ivyvk=m>0and m is
even,(VVk=m + landm =0,1or2mod4,m  2or6,(vijk =m + 2andm =0
or 1 modd4, but m+5, (vi) k=m+4 and m= 6, (viii) k=m+ 5 and
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m217, (iX)k=m+ 6withm=6,m=0,1,2,30or6mod 8 and m + 9¢ N, where
N is the set of integers described on p. 304 and p. 305 of [18],and (x) k = m + 12
withm=17,8,9 orm = 14.

Proor. For (i), (ii), (iii), (vii), (viii) and (x) 7,(S™) = 0 and the result follows from
2.6. Cases (iv), (v), (vi) and (ix) are consequences of 3.5; the required information
on[1,, ]isgivenin[28,2.15]for (iv); [16, Theorem 4.16],[17, Lemma 5.1] and
[30, p. 80] for (v), [16, 4.20] and [17, Lemma 5.1] for (vi) and [18, Theorem 1.3]
for (ix).

4. Main Cancellation Results.

We first review some of the theory of fibred mapping spaces (for more details
see [3, Section 7] and also [1]), assuming throughout that B is Hausdorff.

(4.1) If ¢: Y -> Band r: Z — B are maps then the fibred mapping space (YZ) has
underlying set ) .#(q~"(b), r~ (b)) and the function (gr): (YZ) — B is defined by

beB
(qr)(f) = b,where f e .#(q '(b),r *(b)). We topologize (Y Z) with the cg-ification
(see 2.1) of the topology that has subbasic open sets of the forms (i) (gr) "} (U) for
all U that are open in B, and (ii) W(4, V) = {f €(YZ)| f(A) < V}, for all compact
Ain Y and open Vin Z, f(A) being the set of all meaningful f(a), withae A. Then
(gr)is continuous, and the fibre of (qr) over b € B s the space .#(q ' (b),r ~1(b)) [1,
Proposition 3.2].

(4.2) If p: X - Bis a map, then the fibred product space X xg Y and the fibred
mapping space (YZ) are related by the following fibred exponential law. There is
a bijective correspondence between: (i) maps f: X xz Y — Z over B, and (ii) maps
g: X = (YZ) over B, determined by the rule f(x,y) = g(x)(y), p(x) = q(y), [3,
Theorem 7.3].

(4.3) In particular if p = 15: B — B then 4.2 implies that there is a bijective
correspondence between (i) maps f: Y — Z over B, and (ii) sections g to (gr),
determined by f|q~'(b) = g(b), be B.

(4.4) If g and r are Hurewicz fibrations then so is (gr) [1, Theorem 3.4].

(4.5) Given fibrations q: Y = S**1 r: Z —» S**!, then q and r are FHE if and
only if there is a homotopy equivalence g~ *(*) — r~(x) with the property that
when it is taken as the base point for .#(q~'(*), r ~*(*)) and (YZ), then w,, = 0.
The proof is immediate from (2.6), (4.3), (4.4) and [5, Theorem 6.3].

THEOREM 4.6. Let D and F be spaces, F having the self-equivalence property
relative to D and such that, for e: (D) — D and all h € .#(D, # (F)), the homomor-
phisms hye,: n,(# (D)) - m(H#(F)) are zero. Then all D-fibrations cancel relative
to all F-fibrations over S***.
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ProoF. If p: X » B, q: Y — B and r: Z — B are fibrations such that there is
aFHE X x5 Y — X x5Z, then the projection X xp Z — Z composed with this
FHE determines amap X x5 Y — Z over B. Applying the fibred exponential law
(4.2) we obtain amap g: X — (Y Z) that is between fibrations and over B. Selecting
base points * in X and B such that p(*) = * and defining the homotopy equival-
ence g(*): g~ 1(x) » r~ () (see 3.2) to be the base point in .#(q~*(*), " !(*)) and
(YZ), there is an associated ladder of exact homotopy sequences including:

o M q(X) T T+ 1(B) 5 7tk(P_l("‘) _ ...

lg# 1 I l(glp“(*))#

. — ;4 q(Y2) W T+ 1(B) “‘(‘5‘(;;’ (Mg~ (%), 17 (*) — ...
Taking B = S**! we notice that (g|p~ 1 (*)4: m(p 1 (*)) = n (A (g~ (%), r (%))
takes the characteristic element w, for p (2.5) to w,,. Now w, isin the image of the
homomorphism e,: m(#(p~'(*) - m(p~1(*)) (2.7) induced by the map e:
H(p~ (%)) = p~'(*) (2.3), so if (as we assume) the homomorphisms of the form
(g1 P~ 1(%)4 e4 are all zero then W = 0 and the result follows from 4.5

COROLLARY 4.7. Let k and m be non-negative integers (the case k =m =0
excluded),n(+ m) beaninteger 2 k + 2 and E: m,(S™) = m, . ,(S™*") the homomor-
phism that suspends n times. If the composite function ® = C(1 x Eey),

G, X m(H#(S™) T G, X m(S™) xE OnXGim < G

is zero, where G, denotes the stable group lim =, ,(S") and C composition, then
n—oo

S™-fibrations always cancel relative to S"-fibrations over S**1.

ProoF. If m = 0and k + 0, or k < m, then n,(S™) = 0 and it is clear that both
® =0 and the condition of either 3.6(i) or 3.6(iii) is satisfied, so we will just
consider the situation with k > m > 0.

We see from 2.3 and 2.4 that, for j = k or m, n(H(S")) = nj(A(S", S"), 1) =
ni(Mo(S", S"), ¢) = 7;,,(S"), so there are isomorphisms Q: T (S (S™) = 7y 4 (S™)
and R: m,,(#(S")) = 7,, . ,(S"). It is routine to verify that the following diagram is
commutative:

Tn(H(S7)) X m(H(S™) Txer ™ (S™) X m(S™) = m(H(S"))
R x 11 = R x E 1 Ql ~
o en() X T HS™) 155 T nlS") X T S™) > Tyl S7)

Nownzk+2,nz2m+2andm+n2k—m+ 2 so the groups 7, ,(S"),
T +n(8") and m, , ,(S™*") can be identified with G,, G,, and G, -, Tespectively. The
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image of the composite function along the top line consists of the images of all
homomorphisms h, e, as described in 4.6, that along the bottom line is @ and so
the result follows.

5. Computation of @ for Spherical Fibrations over Spheres.

ExAMPLE 5.1. Let k and m be integers with 0 < k < 16 and 0 < m £ 16; the
associated @ is non-zero only in the cases: (k,m) = (1,1), (3,2), (3,3),(7,7), 8, 7),
,7),(11,11), (13,13), (15,15), (16, 7) and (16, 15).

PROOF. (i). The cases listed in 3.6 have e, = 0 and hence ® = 0.

(ii) Ifk = mthen @ % 0only whenm = 1 or when mis odd and G,, contains terms
of order > 2, i.e. only in the cases (k,m) = (1,1), (3,3), (7,7), (11,11), (13,13),
(15,15),(19,19),.... . To see this we notice via 3.5 and 3.6 (iv) that e, = 0, and so
® =0, when m > O1is even. When k = m = 0 we have E defined as a homomor-
phism from a cyclic group of order 2 to an infinite group, so E = 0 and ¢ = 0.
When mis odd (m % 1, 3 or 7) then it is well known that [1,,, 1,,] is of order 2 [28,
2.15], so it follows from the exact homotopy sequence of the fibration e:
H(S™) —» S™ that the image of e,: n,,(#(S™)) — =, (S™) consists of the “even”
elements of n,,(S™). Now 1 x E: G,, X ®,(S™) = G,, X G, is anisomorphism and,
ifee G, and 2f € G, then a0 2f F 0 occurs and can only occur if the order of a is
greater than two. In the cases m = 1, 3 or 7 we know that e, is an epimorphism
(2.3), E is an isomorphism and C is surjective; hence @ is surjective.

(iii) If k=m + 1 then & + 0 only when m =2, or m =3 mod4 and C:
G, X G; = G, isnon-zero. i.e. only in cases (k,m) = (3,2),(8,7),(16,15),... . It
follows via 3.6(v) that e, = 0 and so ® = O when m & 2, m % 6 or m £ 3mod 4,
whereas e, is an epimorphism in the remaining cases. If m = 2 then E is an
epimorphism; when e, and E are both epimorphisms then @ 4 0ifand only if the
corresponding C 0. Form =2C + 0andso ® # 0,form=6C =0s0® =0
[31, p. 190]. It is easily seen that ® = Oform =0and m = 1.

@iv) If k =m + 2then ® % 0 only whenm = 2 or 3mod4,and C: G,, x G, -
G+, is non-zero, i.e. only in the cases (k,m) = (9,7), (17,15), ... . The proof is
similar to that for 5.4.

(v) When any of k, m or k — m is in the set {4, 5,12} then ® = 0; for either
G, =0,G,, =0o0rG,_,, =0and hence C = 0.

(vi) In cases where Gy, G,, and G, _,, are all non-zero it frequently happens that
C = 0and so @ = 0. The function C may be determined using information from
[31, p. 189 and p. 190]: such examples include the cases (k,m) = (8,2), (10,2),
(10,3), (10,7), (11, 3), (11,8), (13,2), (13,6), (13,7), (14, 3), (14,6), (14,8), (14, 11),
(15, 2), (15,6), (15,7), (15, 8), (15,9), (16, 2), (16, 3), (16, 6), (16, 8), (16, 10), (16, 13).

(vii) The remaining cases are (k,m) = (6,3), (9,2), (9,3), (9,6), (11,2), (13,3),
(13,10), (14,7), (16,7) and (16,9).
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Considering the case (k,m) = (9, 6), @ is the composite:

GG X TC9(:#(S6)) f‘;‘e—; G6 X 77:9(86) I_XE G6 X G3 _é_) Gg

Now G = Z,, G; = Zz @ Z, with respective generators v?, and v and «,, in the
terminology of [31]. Now vZov = v? % 0[31,p. 190] and v’ o a; = 0(because of
the orders of v2 and v? and a, ), hence we only need to determine whether of not vis
in the image of Ee,. Now E: 4(S®) = Gy and [v,15] # 0[18,p. 307],50 ve no(S°)
is not in the image of e, (see 3.5) and so @ = 0.

When (k,m) = (14, 7), @ is the composite

Gy X m14(H(ST)) e 67 % m14(8") (55 G x G = Gia

where G, * Z, ®Z: D Zs,G14,=2Z, ® Z,. Now 0 € G, is a term of order 16,
o2 is a term of order 2 in G,, [31, p. 189] so for @ to be non-zero we require
anon-zero homomorphism r,,(S”) = G,,, « — ¢ 0 E(a); however there can be no
non-zero homomorphism Zg —» Z, @ Z, that factors throughz, ® Z; ® Z, so
the homomorphism 7,4(S”) - G, is zero and @ = 0.

We find that @ = 0 in the other cases, with the exception of (k, m) = (16, 7), by
similar arguments; details are left to the reader. Data on particular Whitehead
products that must be considered can obtained from [17, Lemma 5.1],[18],[19],
[28] and [29, Theorem 2.1].

6. Non-Cancellation of Fibrations.

ExAMPLE 6.1. If p: S — S* denotes the double covering (z — z2) and n is any
non-negative integer then p fails to cancel relative to some S"-fibrations.

PROOF. Let Z be the quotient space of S” x I obtained by identifying S x {0}
with §" x {1}, using the homeomorphism u: S" — S" that reverses the first
coordinate; then r: Z — S' is the projection onto S' (= I with {0} and {1}
identified). Now S* xg: Z can be taken to be the quotient space of [0,4] x S”and
[4,1] x S" obtained using u to identify both S" x {0} with S" x {1}, and one
copy of §* x {1}, and one copy of S" x {4} with the other; then p xg; r is defined
by (p xs:17)(t,2) = (2t)mod 1, for all tel, zeS" The homomorphism f:
S' x 8" > §' x1 Z given by f(t,x)=(t,x) for t <} and (t, u(x)) for t =},
te[0,1],zeS" isaFHE fromp x5 qtop x5 r,whereq: S! x " — S!is the usual
projection.

Considering the maps g: §" - Z, g(x) = (},x) and h: §" - Z, h(x) = (3, u(x)),
x€S" they are clearly homotopic and so any pair of homotopy equivalences of
8" — {}} x S" are homotopic when viewed as maps into Z. Yet the homotopy
equivalences S" — {4} x S" defined by the above formulae are not homotopic
when regarded as maps into S x S” so g and r cannot be FHE
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ExaMPLE 6.2. If there is a lifting of the fibration p: X — B over the non-trivial
principal G-fibration g: Y — B, i.e. amap f: X — Y such that gf = p, then p fails
to cancel relative to some G-fibrations. (e.g. take p = ¢ and f = 14).

Proor. The induced principal G-fibration g,: X xz Y — X has a section and
hence s trivial, so if r denotes the projection B x G — Bwe have g, FHE tor,and
p Xgq = plg,)is FHE to p(r,) = p xgr.

THEORFM 6.3, If the fibration p: X — B cancels relative to all F-fibrations and
both B and X are in # then the induced function

p*:[B.Byy ) = [X.By) p*[k] = [kpl, [K]€[B, Bys)]
is injective.

Proor. The sets of FHE classes of F-fibrations over B and X are classified
[20, Cor. 9.5(i1)] by [B. B ] and [X, By, ] respectively, hence the result is
equivalent to the assertion that if p cancels then the function g — g, is injective on
sets of FHE classes of F-fibrations; this holds because if g, is FHE to r,, then
p xgq = p(q,)is FHE to p xzr = p(r,) and so g is FHE to r.

REMARKS 6.4. The result of [20] quoted requires that F is compact and in #/;
the account in [25] establishes that a universal F-fibration p: E_ — B, exists
without restriction on F, but not that B, = B, . However a proof that
B,, = By ), without restriction on F, will appear in [2].

COROLLARY 6.5. Let p: X — B be a fibration, where X and B have the homotopy
types of the spheres S'*! and S¥*1, respectively, for some non-negative integers
jand k. If ¥ denotes cardinal number and n is a given positive integer such that
# (A (S") > 2%m;(A#(S™)) then p fails to cancel relative to certain S"-fibrations.

Proor. It follows from the homotopy sequence for e: A(S** 1, B g(sn) = Bop(sn
that [S**1,B sn ] can be identified with the quotient of m, , { (Bysn) = me(S#£(S™)
under an action of 7,(Bysn) & mo(H#(S") = Z,; hence BS Y, Bypsm] 2
3 Hm(H(S™) > #(m(H(S™) = #(7;4 1 (Basm)) Z $[S'* L, Bysn], p* as de-
scribed in Theorem 6.3 cannot be an injection, and so p sometimes fails to cancel
relative to S"- fibrations.

EXAMPLE 6.6. The Hopf fibrations S” — S* and §*5 — S8 fail to cancel relative
to certain S"-fibrations, for all choices of n = 8 and n = 16 respectively.

PROOF. We see from 2.3 and 2.4 that n,(#(S") = m(Hp(S") = 7, 4 ,(S") for
k = both 3 and 6, where n = 8, s0 n;(H#(S") = Z,,, ns(H#(S") ~ Z, and the
non-cancellation of §7 — §* follows; a similar argument applies to S*° — S8
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REMARKS 6.7 (). Theorem 6.3 and Corollary 6.5 make it easy to generate many
non-cancellation examples, by factoring either null homotopic maps or maps
$i*1 5 §¥*1 into composites of homotopy equivalences and fibrations p.

(ii). An argument similar to that of 6.6 for the Hopf fibration p: 53 — 52 does
not yield any conclusion about cancellation; however, P. Selick has shown the
author, by a homology argument, that the image of p*: 7,(B gsn) = T3(Bysn) is
0, hence the p* of 6.3 is not injective and cancellation fails for S* — S? relative to
S"-fibrations.

PROOF OF MAIN EXAMPLE 1.1. Thisis animmediate consequence of4.7,5.1, and
examples 6.1, 6.6, and 6.7 (ii).

REMARK 6.8. The assumption concerning n in example 1.1 ensures that
m,(S") = 0; hence the characteristic elements of g and r located in this group are
zero and g and r both have sections (2.6). So it is not reasonable to speculate, on
the basis of this example, that cancellation predominates for spherical fibrations
over spheres in general.
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