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THE KRULL-SCHMIDT THEOREM FOR CATEGORIES
OF FINITELY GENERATED MODULES OVER
VALUATION DOMAINS

PAOLO ZANARDO*

A central result in the theory of abelian groups is the existence, first proved by
B. Jonsson in [4] (see especially [S]), of finite rank torsion-free abelian groups
which admit non-isomorphic decompositions into indecomposable summands.
This fact led Jonsson to introduce in [6] the notion of quasi-isomorphism (orig-
inally called almost isomorphism), proving that a finite rank torsion-free abelian
group decomposes in a unique way, up to quasi-isomorphism, into strongly
indecomposable summands ([6], Theorem 2.6.).

The categorical point of view is the following (see Ch. 7 of [1]; se¢ also [11]):
one considers the category 4, whose objects are finite rank torsion-free abelian
groups, and the morphisms (called quasi-homomorphisms) are defined, for M,
NeA,byHom, (M,N) = Q ® Hom, (M, N). If M is strongly indecomposable (i.e.
indecomposable in the category A), then End ,(M) is a local ring. Thus we can
apply the Krull-Schmidt theorem for additive categories, obtaining Theorem 2.6.
of [6].

In the present paper we show that a similar idea can be applied to finitely
generated modules over a valuation domain R. For every prime ideal H of R, we
consider a category C(H); the objects are finitely generated R-modules whose
annihilators either contain H or are H-primary, and the morphisms are defined, for
X, YeC(H), by Hom ., (X, Y) = Ry ® Homg (X, Y) (R, denotes the localiz-
ation of R at H). C(H) turns out to be an additive category such that idempotents
split in it. We prove that, if X is indecomposable in C(H), then End g, (X) is
alocal ring (Theorem 4); this yields the uniqueness of decomposition of objects in
C(H) into indecomposable summands, up to isomorphism in C(H) (Theorem 7).

We note that our investigation is strongly motivated by an important result by
P. Vamos [10], who first showed the existence of a finitely generated module over
a valuation domain which admits two non-isomorphic decompositions into
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indecomposable summands; he actually gives conditions on valuation domains
R for the existence of finitely generated R-modules with the above pathology
(Theorem 20 and Corollary 21 of [10]). Vamos’ results was conjectured mainly
because of many similarities between the theories of finitely generated torsion
modules and of finite rank torsion-free modules over valuation domains; these
analogies are emphasized in [8], [9].

Results on uniqueness of decomposition into indecomposable summands for
special classes of finitely generated R-modules can be found in [7], Theorem 12
and in [13], Theorems 18 and 19.

It is also worthy of note that, in Remark 9, we explain why we must consider
R-modules with the above condition on annihilators instead of arbitrary finitely
generated modules; this limitation is, in fact, necessary to ensure that End, (X)
is local for each X indecomposable in C(H).

In the sequel, R will denote a valuation domain, P its maximal ideal. For
general references about valuation domains and their modules, in particular
finitely generated modules, we refer to the book by Fuchs and Salce [3].

For a complete exposition on quasi-homomorphisms of finite rank tor-
sion-free abelian groups we refer to the book by Arnold [1], Chapter 7.

Before confining ourselves to finitely generated modules, we begin our dis-
cussion in a more general context.

Let H be a prime ideal of R; let C(H) be any subclass of R-mod, containing {0};
let us define, for X, Ye C(H),

Hom¢,, (X, Y) = Ry ® Homg(X, Y);

C(H) is a category with the obvious definition of composition of morphisms.
Itisimmediate to check that Homc (X, Y) = {1/r® f: re R\ H, feHomg(X, Y)}.
The morphisms in C(H) are called C(H)-homomorphisms. If X, Ye C(H) are
isomorphic in C(H), X and Y are said to be C(H)-isomorphic, we shall write
XzewY
We shall need a characterization of C(H)-homomorphisms which are different
from zero.

LEMMA 1. Let 1/r ® f eHomey,(X, Y). Then 1/r ® f = 0 if and only zfthere
exists ae R\ H such that af = 0.

ProoF. It is enough to prove that af # 0 for allae R\ H implies r(1/r ® f) =
1 ® f + 0. Let us consider the R-module Rf < Hom, (X, Y). Since af # 0for all
ae R\ H, we deduce that H 2 Ann(f) = B. Let S = R\ H, and let us consider
the R,-module S~ *(R/B) (see Chapter 3 of [2]). Since Rf = R/B, from Prop. 3.5.



THE KRULL-SCHMIDT THEOREM FOR CATEGORIES OF. .. 7

of [2] it follows
S™'(R/B) = Ry ® Rf < Hom (X, Y).

We conclude that 1 ® f % 0 if and only if 1 + Be S~ *(R/B)\ {0}, and this last
fact follows from B < H.

The next Lemma 2 corresponds to Corollary 7.7.(a) of [1].

LEMMA 2. Let X, Ye C(H); then X is C(H)-isomorphic to Y if and only if there
exist feHomg(X,Y), geHomy(Y,X) and ae R\ H such that fg = a-id,,
af = a-idy. In particular, X =4, {0} if and only if the annihilator of X properly
contains H.

PROOF. X =y Y if and only if there exist 1/r® feHomgy, (X,Y)
and 1/s®geHomy,(Y,X) such that (1/r® f)(1/s®g)=1®id, and
1/s®g)(1/r ® f) = 1 ® id, if and only if, in view of Lemma 1, t(fg — rs-id,) = 0
and t(gf — rs-idy) = 0,for asuitable re R\ H;if weset a = rst e R\ H, we get the
first assertion. The second assertion follows easily from the first one.

Ifevery X € R-mod is in C(H), using Lemmas 1 and 2 and following “verbatim”
the proof of Theorem 3.1. of [11], we see that C(H) is the quotient category
(R-mod)/A (see [11] for the definitions), where A4 is the subclass of R-mod
consisting of R-modules whose annihilators properly contain H.

From now on C(H) will denote the class of finitely generated modules X, such
that either Ann X contain H, or it is H-primary. Note that, since R is a valuation
domain, a finitely generated module Z is not in C(H) if and only if there exists
a prime ideal K of R such that AnnZ < K < H. If there is not possibility of
confusion, we shall denote C(H) simply by C.

The class C is closed for pure submodules and homomorphic images: if Y is
a pure submodule of X € C, then Y is finitely generated and AnnY = Ann X;;
moreover for all f € Homg(X, Z), fX is finitely generated and Ann (fX) = Ann X.

It is easy to verify that C is an additive category (C contains finite direct sums in
view of Lemmas 1 and 2; cf. Example 7.6. (iii) of [1]).

We recall the definition of splitting of idempotents (see [1]): if A is an additive
category, we say that idempotents split in A if for each idempotent e€ End ,(X),
with X € A, there exist Ye A, pe Hom (X, Y) and ge Hom (Y, X) such that
e = gp and pq is the identity of End , (Y).

LEMMA 3. Idempotents split in C.

PrROOF. Let XeC and let e = 1/r ® f be an idempotent of End (X). From
e? — e =0t follows 1/r2® (f? — rf) = 0. In view of Lemma 1 we deduce that
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a(f? — rf) = Ofor a suitable ae R\ H. If we write e in the form e = 1/ra ® af, we
gete? — e = 1/r’a® ® (a®f? — ra®f). Thus we can assume, without loss of gener-
ality, that e = 1/r ® f and f2 = rf. Let us consider the submodule fX of X; we
have observed above that f X € C; let j: f X — X be the canonical injection. Let us
observe that fj e Endg(fX) coincides with r(id ;x). In fact, for all x = f(x)e fX,
we have: fj(x) = f2(x) = rf(x') = rx. Moreover, trivially, jf = f. Set now p =
1/r ® feHom(X, fX),q = 1 ® je Hom (fX,X). We have:

p=01)1/r@f)=1/rRjf =1/r®f =e,
pa=1/r@fi=1r®r-id;y =1Q@idy.
The desired conclusion follows.

An object X e C is said to be C-indecomposable if X is indecomposable in the
category C.

THEOREM 4. If X € C is C-indecomposable, then End.(X) is a local ring.

Proor. Itisenough to prove that, for an arbitrary element 1/r ® f'e End(X),
either 1/r ® for 1 ®idy — 1/r ® f is a unit of End.(X). We shall actually prove
that either 1 ® f is a unit of End(X), or 1 ® fis nilpotent; hence the same will be
true for 1/r ® f, and the desired conclusion will follow. Since X is a finitely
generated R-module and feEndg(X), by Prop. 2.4. of [2], there exist a,,
a,,...,a,_, €Rsuch that

68 ff+a,_ " t+...+a f+a,=0,

from which we also get the following relation in End(X):

@ (AN +a,(1f) ' +...4+a,(1®f)+a,(l®idy)=0.
If now a, € R\ H, since End (X) is an Ry-module, from (2) we get:

€) A®MN=1a)(A@f) ' +... +a)=1Qidy;

we conclude that 1 ® f is invertible, as desired. Thus we can assume that
ay,4a,,...,4,_,€H and a,¢ H for a suitable r < n (here we set a, = 1). From (1)
we get

@ f"+...+af =ab,_ f +...+bf+by),

for a suitable ae H such that —ab,=4a,(i=0,...,r — 1). Since aeH and
N.>od"R is a prime ideal properly contained in H, the condition on Ann X
implies that a™ € Ann X, for a suitable m > 0. Raising both members of (4) to the
m-th power, we obtain:
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(5) fmfem e+ am=0.
Since a)" ¢ H, the relation (5) can be written in the form

(©6) bf* = f*1G(f),

where G(x) is a suitable monic polynomial of R[x], h > 0 and b ¢ H. From (6) we
at once get: b"f* = f2G(f)". Set g = f*G(f)" and ¢ = b"id, — g; let us consider
the two submodules f*X and ¢ X of X. We want to prove that X is the direct sum
in C of f*X and ¢X. For this purpose, by Lemma 7.1. of [1]. it is enough to find
g, eHom,(f*"X, X), p, e Hom(X, " X), g, € Hom(pX, X), p, € Hom(X, ¢ X),
suchthat:p,q, = 1 ®iduy, .9, = 1 ®id,x,q,p, = 0,q,p, = 0,4,p, + q,p, =
1 ®idy. Let j;: f"X - X and j,: X — X be the canonical injections. Let us
observe that gj, = b"(id uy). In fact for all x = f*(x')e f*X we have

@i, () = fPG(fYfH(x) = B"fH(x') = b'x.
Moreover, pX < Ker(f*), because of z = bx — g(x)e X, then
2) = bfx) — f2G(H(x) = 0;
this fact implies that ¢j, = b"id,y, since for all ze pX < Ker(f*) we have
0j,(2) = b"z — G(f)'f"(z) = b"z (note that Ker(f") is not necessarily in C, be-

cause it can be not finitely generated). Finally, we have gj, = 0, since pX <
Ker (f*), and ¢@j, = b"idnx — gj; = 0. Now we set:

p=1/"®gq =1Qj;p,=1/"Q¢;q, =1®},.
We have:

Pidy = 1/b"®gj, = 1/ @bidpny = 1 @ idny,

D292 = l/bh ®pj,=1 ®id¢x, D192 = l/bh ®gj, =0,

P21 = /b ® @j; =0,q,p, + 420, = 1/ @ (j1g + j20) =
1/"® (g + ¢) = 1/b" @ b'idy = 1 ® idy,

as desired. By hypothesis, X is C-indecomposable, hence either f*X or ¢X is
C-isomorphic to {0}. If f*X =~ {0}, by Lemma 2 there exists c € R\ H such that
¢f"X = {0}; therefore ¢f* =0 and 1/c®@cf* =(1® f) =0, so that 1 ®f is
nilpotent, as desired. Suppose now that pX =~ {0}. By Lemma 2, we get that
cpX = {0} for a suitable ce R\ H; hence 0 = cp = cb" — cG(f)"f*. We deduce
that in End.(X) the following relation holds:

™ cG(1 ®f)'(1 ®f) — cb*(1 ®idy) = 0.

Since End((X) is an Rg-module, multiplying (7) by 1/c and recalling that G is
amonic polynomial, we get a relation of the form (2), with ay € R\ H; hence in this
case 1 ® fis a unit. This concludes the proof.
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Recall that the length I(X) of a finitely generated module X is the minimal
number of generators of X (see Ch. IX of [3]). If X e C, we see at once that, in
general, I(X) is not invariant for C-isomorphism; however, since X = Y implies
I(X) £ I(Y), for X, Y finitely generated (Prop. 3 of [13]), we deduce that there
exists @€ R\ H such that [(aX) = l(abX)for all be R\ H. The length of such aX is
said to be the C-length of X;; it coincides with the minimal length of submodules of
the form cX, with ce R\ H, and it is denoted by I-(X).

PROPOSITION 5. Let X, Y €C; if X = Y, then Io(X) = I(Y).

ProoF. In view of Lemma 2, there exist f € Homg(X, Y) and g € Homg(Y, X)
such that fg = a-idyand gf = a-idy, withae R\ H. We can assume, without loss
of generality, that I(X) = l(aX) = l(abX) and [(Y) = l(aY) = l(abY) for all
be R\ H. We have:

Ie(X) = l(aX) = l(@*X) = ig(af)X) < laf X) < UaY) = I(Y);
analogously I.(Y) £ Io(X), from which the assertion.
COROLLARY 6. Let X € C be a direct sumin C of X,,..., X,,. Then
Io(X) = 1e(X)) + ...+ 1e(X)

PrROOF. Let us consider Z=X,®...® X,,; Z is a direct sum in C of
X,,...,X,, too; since C is an additive category, we have X = Z; since, obvious-
ly, I(Z) = (X)) + ... + 1c(X,,), it suffices to invoke Prop. 5.

We can now prove that the Krull-Schmidt theorem holds in C.

THEOREM 7. Every object X in C is a finite direct sum in C of C-indecomposable
summands; if X =c @7, X; =c ®]-, Y}, where X,, Y;are C-indecomposable for all
i, j, then n = m and X; =_Y,;, for a suitable permutation ¢ of {1,...,n}.

Proor. In view of Cor. 6, we deduce that [(X) is an upper bound for the
number of summands (not C-isomorphic to {0}) in a direct decomposition of X in
C; this yields the first statement of the theorem. The second statement is a conse-
quence of the Krull-Schmidt theorem for additive categories (see Theorem 7.4. of
[17), which can be applied because idempotents split in C and End¢(X;), End¢(Y))
are local rings for all i, j, in view of Theorem 4.

Let us note that, if R is an archimedean valuation domain, i.e. if P is the unique
nonzero prime ideal of R, then every finitely generated R-module is in C(P), and
Homg)(X, Y) = Homg(X, Y) for all X, Y. Hence from Theorem 7 we reobtain
Theorem 10 and Corollary 11 of [12].

REMARK 8. It could seem natural that C-homomorphisms and C-isomor-
phisms were called quasi-homomorphisms and quasi-isomorphisms. We avoid
this terminology for two reasons. The first is that the class C depends by the
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choice of the prime ideal H. The second reason is that it seems more appropriate
to say that two R-modules X and Y are quasi-isomorphic if each one is isomorphic
to a submodule of the other (see [ 13]); this definition agrees with the behaviour of
finite rank torsion-free abelian groups (see Cor. 7.7.(b) of [1]), but, in general,
C-isomorphic objects in C are not quasi-isomorphic in this sense.

REMARK 9. It is convenient to motivate why we confine ourselves to modules
X such that either Ann X > H, or it is H-primary. Actually, if we allow that not
all the objects in C(H) have the above property, we cannot be sure that Endc,(X)
is local, for every X C(H)-indecomposable, hence Theorems 4 and 7 fail. For
example, we can choose a suitable valuation domain R, in such a way that, for
every prime ideal H of R, we can construct a two-generated R-module X which is
C(H)-indecomposable and such that Ry ® Endgz(X) is not a local ring (for the
construction we use the results in [7], mainly Theorem 7; we omit the proof,
which would involve techniques extraneous to the present paper).
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