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INFINITE TENSOR PRODUCTS OF UPPER
TRIANGULAR MATRIX ALGEBRAS

STEPHEN POWER*

Let n = 2 be an integer and let T(n) be the algebra of n x n complex matrices
which have zero entries below the main diagonal. Under the operator norm T(n)
is a Banach algebra, and for a sequence (n,) of such integers there is a natural way
to associate a unital Banach algebra

T(m)=Tn)®TM,) ...

which is an infinite tensor product in the sense of inductive limits.

In what follows we determine the group Aut T((n,)) of Banach algebra auto-
morphisms of T((n,)). The quotient group Out T(n,)), obtained from the normal
subgroup of pointwise inner automorphisms, turns out to be the discrete group of
permutations 7 such that n, = n.,, kK = 1,2,.... Thus, up to composition by
pointwise inner automorphisms the set of outer automorphisms may be un-
countable, finite, or even trivial. In fact we describe all isomorphisms and
epimorphisms between these Banach algebras.

We also determine the structure of the complete lattice Id T((n,)) of all closed
two-sided ideals of T((n,)), with the natural lattice operations. The abstract
framework needed concerns primary approximately finite lattices, and we devel-
op a little general theory in this direction, inspired by Arveson’s unique factoriz-
ation theory for primary completely distributive metric lattices. It turns out that
the unordered set {n,,n,,...} is a complete lattice isomorphism invariant for the
AF lattice Id T((n,)) and hence a complete Banach algebra isomorphism invari-
ant for the algebras.

The algebras T((n,)) can be regarded as the approximately finite versions of
reflexive operator algebras associated with certain commutative subspace latti-
ces defined on an infinite tensor product Hilbert space. Such algebras were
introduced and studied by Arveson [1, Chapter 3]. He obtained complete
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similarity invariants for these algebras as a conequence of a unique factorization
theory mentioned above. We obtain a similar result in the class of approximately
finite lattices and our proof derives directly from Arveson’s arguments. However
the arguments simplify considerably in our setting.

We can define T((n,)) as a subalgebra of the well known Glimm algebra, or
UHF C*-algebra,

M((n) = M(n,) @ M(n;) ® ...

Here M(n) indicates the full n x n complex matrix algebra and the infinite ten-
sor product is the C*-algebra direct limit of the direct injective unital system
M(n,) - M(n,;n;) — ..., under natural embeddings. The isomorphism theory
and automorphism groups of these algebras are well understood (see [4],[5],[7],
[9], for example) and, being approximately finite C*-algebras, K, theory is also
available as a complete invariant. Thus M((n,)) and M((m,)) are isomorphic if and
only if the sequences of partial products n,n,...n, and m;m,...m,, satisfy the
Glimm divisibility criterion: each term from one sequence must divide some term
of the other. In other language, (n,) and (m,) must determine the same supernatu-
ral number. It follows then that T((n,)) and T(m,)) may fail to be isomorphic even
though their associated UHF algebras are isomorphic, just as with finite tensor
products. We note that the K, group of T((n,)) coincides with the K, group of the
diagonal subalgebra, from which it follows that K-theory provides poor invari-
ants for the algebras T((n,)). However unlike the UHF algebras, which are simple,
thereis a rich ideal structure, and this structure can serve to study morphisms and
the automorphism group. For example the automorphisms that fix the ideal
lattice are precisely the pointwise inner automorphisms.

The results above and related matters are organized in the following way. In
section one we define approximately finite lattices and note relevant examples
and key properties such as zero-one laws for factorizations. In section two we
determine the ideal lattice of T((n,)) as an AF lattice. Here we use standard
approximation techniques associated with natural expectation mappings on the
containing UHF algebra. We have used similar methods in [8] to study ideals in
another class of non-self-adjoint subalgebras of AF algebras, namely in nest
subalgebras associated with a maximal projection nest in the diagonal. Sections
three and four use ideas of Arveson and develop the structure of prime elements
in finite and approximately finite primary lattices, respectively. In section five we
determine the nature of isomorphisms, epimorphisms and the automorphism
group. In the final section we compute K.

For general lattice theory the reader may consult the standard reference
Birkhoff [3], where ideal completions of lattices are discussed a little. Arveson’s
results are also described in his lecture notes [2].

It is a pleasure to record my thanks here for the warm hospitality that
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I received from the Department of Mathematics at the University of Houston, in
the fall semester of 1986, when the research was completed. Vern Paulsen gets
extra thanks for our endless mathematical conversations.

1. Approximately finite lattices.

Let L, be a lattice with respect to meet and join operations v and A respect-
ively. An ideal of L, is a subset J which is closed under joins and is such that if
a < b, withaeL ,and beJ, thenaeJ.

The collection of all ideals, including the empty set, forms a complete lattice L,
known as the ideal completion of L. The lattice L, is injectively embedded in L,
as the sublattice of principal ideals of L.

We say that a complete lattice L is approximately finite if there is a countable
sublattice L, = L such that L is isomorphic to L, as a lattice. More precisely we
require that the natural injection L, — L, extends to an isomorphism L — L.

Let L, = L, ... be a chain of finite sublattices of L, with union equal to L.
Then there is a one-to-one correspondence between elements J of L, and certain
chains ofideals J, < J, ..., whereeach J, is anideal in L,. The correspondence
is given by

JoJnL,JAL,,...,

and so we require that the chain have the fullness property,
J, = (uJ,)n L, for all k.

Approximately finite lattices often arise naturally as the direct limit of a direct
system of finite lattices. In fact the class of such limit lattices, which we shall define
in terms of an ideal completion, coincides with the class of AF lattices, as we now
indicate.

An injective direct system of finite lattices is a sequence of finite lattices
M, M,,... together with injective embeddings

M, ->M,—>...

The collection M, of increasing sequences (m,), with m, € M,, and which are
eventually constant, forms a lattice in a natural way. Identifying eventually equal
sequences we obtain a countable lattice M, in which each lattice M; is naturally
and injectively embedded, say M; — a(M,). Moreover M, is the union of the chain
a(M,) c o(M,) = .... We define the direct limit L of the original system to be the
ideal completion of M,, and we write L = lim, M,.

We usually consider lattices which possess both a first and last element,
denoted by 0 and 1 respectively, and refer to such as unital lattices. A morphism
between unital lattices is said to be unital if it maps 0 to 0 and 1 to 1.
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An element ¢ of a lattice is join-irreducible, or prime, if c = a v b implies that
a = cor b = c,and a unital lattice is primary if the unit 1 is prime. An element c is
meet-irreducible if c = a A b implies a = ¢ or b = c. If the first element 0 of
a unital lattice is meet-irreducible then we say that the lattice itself is meet-
irreducible. There is an elementary duality between the theory of primary lattices
and meet-irreducible lattices that arises through the converse lattice, (L, <) say,
of the lattice (L' <);a < bin(L, <)ifand onlyifb < ain(L, £),a A bin(L, <)is
the supremuma v bin(L, £),and a v bin(L, <)is the infimuma A bin (L, £).
It is easy to check that (L, <) is primary if and only if (L, £) is meet-irreducible.

A finite lattice is primary if the supremum of all elements strictly less than 1 is
also strictly less than 1, and is meet-irreducible if the infimum of all elements
strictly greater than zero is also strictly greater than zero.

We now give some examples to illustrate the concepts above.

ExaMpLES 1. For n = 2,3,... write L(n) for the totally ordered unital lattice
{0,1,...,n — 1}. In particular L(2) is the trivial unital lattice. These lattices are
primary and meet-irreducible.

2. Fornym =2,3,... let L(n) x L(m) be the product lattice of L(n) and L(m)
with the product partial ordering. For n,m > 2 these lattices are neither primary
nor meet-irreducible.

3. Asubset A of the product set {1,...,n — 1} x {1,...,m — 1} forn,m = 2,is
said to be increasing if (j,,j,) belongs to A whenever j, < k, and j, < k, for some
element (k,, k,) in A. The totality of increasing sets, together with the empty set
(which is also regaded as an increasing set), forms a lattice of sets (under the set
operations) which we denote by Inc(n, m). Thus Inc(n, 2) and Inc(2, n) are just
copies of L(n). Similarly we can define Inc (n,,.. ., n,) for integers n,,..., n, that are
greater than unity, and there are natural unital injections

Inc(n,,...,n,) — Inc(n,,...,ny)

for r <s. Here the increasing set 4 gets mapped to the increasing set
A XN,y x...x N, where N;={l,...,n; —1}. Note that the Ilattice
Inc(n,,...,n,)is generated by r sublattices L,, ..., L, where L, is a copy of the nest
lattice L(n,). These lattices are primary and meet-irreducible.

4. For a sequence (n,), of integers n, = 2, we can define the direct limit AF
lattice associated with the system

Inc(ny,n,) = Inc(ny,n,,n3) - ...

We see later that such lattices are primary and meet-irreducible. The lattice can

be thought of as the infinite tensor product of the nest lattices L(n,), L(n,),. . ..
5. Let A be a partially ordered set with a last element a, and let L be a unital

lattice. Then the collection, Inc(A4, L) say, of increasing functions from 4 to L,
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forms a unital lattice. Thus f belongs to Inc(4,L)if f: 4 — L and f(b) < f(c) if
b < c. If L is a finite meet-irreducible lattice then Inc (4, L) is also meet-irreduc-
ible. For if 0" is the unique successor of 0 in L then the function f, such that
f(1) = 07" and f(b) = Ofor all b # 1, is the unique successor of the zero function.

For example, if L is a lattice then Inc (L, L(2)) is the lattice of increasing subsets
of L.

The lattice structure that we will be concerned with in later sections is the
lattice Id A4 of closed ideals of a unital Banach algebra A. Here the join operation
is closed linear span and meet is intersection. Clearly Id A4 is a complete unital
lattice. We shall look at a class of inductive limit Banach algebras where the ideal
lattice Id A can be identified as a direct limit of explicit finite lattices. This
identification is fairly standard analysis, but the analysis of the structure of Id A
requires quite a bit of lattice theory. The payoff is that the structure of meet-
irreducible elements can be made quite explicit (see Theorem 4.2) and this has
considerable implications for the nature of isomorphisms and automorphisms of
the algebra A.

We complete the present section by considering complete distributivity and
factorizations in the context of AF-lattices.

This information will be needed for the lattice theory in section 4.

PROPOSITION 1.1. Let L be an AF lattice and let ¢, c,,...and b be elements of L.

Then J_\=/1 (bAac)=bn <,~\=/1 c,-).

Proor. This is immediate because L is a complete lattice.

DEerFINITION 1.2. Sublattices L, and L, of a lattice are said to be independent if
the following property holds: ifa A b £ a’' v b, with a,a’in L, and b,b" in L,,
thena<d orb<b.

DEFINITION 1.3 (Arveson [1]). Let L be a complete unital lattice. A factoriza-
tion of L is a sequence of sublattices L,, L,,... such that
i) L=L,vL,v...

(ii) For every j the lattices L; and ¥ L, are independent
k¥

(i) () (LyV Lysq v...)={01}.
n=1
Similarly we shall say that L,,...,L, is a factorization of L if (i) and (ii) hold.
Property (iii) is called the zero-one law for the sequence L, L,,.... The next
proposition shows how zero-one laws arise naturally in certain direct limit AF

lattices.
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PROPOSITION 1.4. Let Ly, L,,... be unital sublattices of a lattice L such that for
each n the lattices L, ..., L, form a factorization of the lattice that they generate.
If L=1lim,(L, v... Vv L,)then L,,L,,...is afactorization of L.

PrOOF. Let M, =L, v ... v L, so that L is (isomorphic to) the AF lattice
lim, M,.. This means that L is identified with the lattice of ideals of the countable

sublattice Lo, = () M,. Moreover each such ideal f of L, is associated uniquely
k=1

with the increasing sequence f N M, B n M,,.... In view, of this correspondence

we can establish properties of elements f in L by arguing locally with the finite

lattice of ideals in M,.

First we obtain property (ii) of Definition 1.3. Let N, = ¥ L;,and note that N,
j¥r

is simply the sublattice of ideals f of L, such that f~n M, = B~ N}, where
N'=L v...vL_,vL, v...vL,fornzr Letp, f beelements of N,,
regarded asideals of L, and let «, @’ be principal ideals of L, determined by p, p’ in
L, respectively. Furthermore assume thata A < o' v . Let ge f n M, Since
(@A )M, c(a v B)n M, there exists ¢’ in f' " M, and p” in &’ " M, such
thatp A g =p” v ¢ £ p' v 4. By the independence of L, and N}, if p £ p’ then
q = q'. Thusif p £ p', or equivalently, « £ o, then ' " M, < f' " M,,. Since n is
arbitrary property (ii) now follows.

Similarly it can be shown thatif fe L, v L,., v ...,then,forn < m,f " M,,is
an ideal in L, v ... v L, and for n>m, fn M, = {0} or M,. Hence for

Y€ ﬂ (L,v L,+, v ...)we have y n M,, for all m, and so property (iii) holds.
n=1
DEFINITION 1.5. We say that the factorization L, L,, ... of the AF lattice L is
a coherent factorization if L is isomorphic to the approximately finite lattice
lim,(L, v ... v L,), as in the statement of Proposition 1.4.

PROPOSITION 1.6. Let L,, L,,... be a coherent factorization of the unital AF
lattice L, and let p,e L, for k = 1,2,.... Then either A.p; is the zero element or
P« = 1 for all but a finite number of k.

PrOOF. Let B = A,p, which is identified with the ideal {xe L,:x < p, for all
k}, where L, is as in the proof of Proposition 1.4. Let xefn M,, where
M,=L,v...v L, as before. Then x A 1 £0 v p, for all k, and so, by the
independence of the lattices M, and L, for k > r, it follows that x £ 0or 1 < p;.
Thus if p, # 1 for an infinity of k, then x = 0. Hence § = 0.

Our last proposition in this section is also an elementary conequence of local
arguments. A similar assertion holds with primary replaced by meet-irreducible.

PROPOSITION 1.7. Let L = lim, L, be the AF lattice determined by finite primary
unital lattices L,. Then L is primary.
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2. 1d T((n,)) as an AF lattice.
The following notation will be useful. Let (n,) be a sequence of integers, with

n, 2 2 for all k, to avoid trivialities. Let A = T((n,)) = ® T(n,), B = M((n,)) =
w k=1

® M(n), C = C(n)) = ® C(n), where C(n,) is the diagonal algebra T(n,) N
k=1

= k=1

T(n,)*. Also,forr = 1,2,...,let us write A,, B, and C, for the finite tensor product
algebras associated with the r-tuple n,,...,n,, regarded as the canonical subal-
gebras of 4, B and C respectively.

We now define some important expectation maps on the algebra B. Forr < s
let U, ; be the unitary group of the diagonal algebra C(n,, ;) ® ... ® C(n,) = C,
and let du denote Haar measure on U, ,. The linear contractive map &, , defined
on B by

P, (x) = '[ u*xudu, x in B,
U" s

is a projection and has range equal to the subalgebra M(n,) ® ... ® M(n,) ®
Cn,,)®...® C(n,). Since @, ,extends P, ;when s < t, we can define &, on B as
the pointwise limit

¢r(x) = lim ¢r.r+n(x)°
The map @, is a contractive projection onto the subalgebra B, ® C(n,, ) ®....
In particular @,(x) — x as r — oo for every x in B.

PROPOSITION 2.1. Let J be a closed subspace of B that is a C-module. Then J is
the closed union of the subspaces J N B,, n = 1,2,.... In particular this holds true
for ideals J of the subalgebra A.

ProoF. Note that if x belongs to J then so does &,(x) for every r. On the other
hand the bimodule @,(J) is finitely generated over C, and the proposition is easily
obtained in this case.

The synthesis property expressed in the last proposition is required to identify
the ideal lattice of A. In fact the same feature holds for appropriate modules in
general approximately finite C*-algebras (see [8]).

Let us introduce a twisted partial ordering on the set of pairs

on) = {(i,j: 1 sisj<sn},

which reflects the ideal structure of T(n). We write (i,j) < (k,]) when i = k and
j £ L If S is an increasing subset of §(n) with respect to this ordering then the set
J of matrices in M(n) supported by S is an ideal. Conversely every ideal arises in
this way. More generally we have the following elementary proposition.
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We write 2 for the trivial unital lattice L(2), and we use the notation of example
S in section 1.

PROPOSITION 2.2. (i) The ideal lattice 1d T(n) is isomorphic to Inc (é(n), 2).
(ii) If A is any complex algebra then the ideal lattice Id (T(n) ® A) is isomorphic
to the lattice Inc (é(n), 1d A).

In particular T(n,) ® T(n,) has an ideal lattice which is isomorphic to
Inc(d(n,), Inc(6(n,),2)), and we write this more simply as Inc(6(n,), é(n,),2).
Similarly the r-fold tensor product T(n,) ® ... ® T(n,) has an ideal lattice de-
noted by Inc(d(n,),...,d(n,),2).

There are natural embeddings

Inc(8(n,),...,8(n,), 2) - Inc(8(n,), .., (n,), 2),

when r <s, which are most easily identified by checking first that
Inc(é(ny),...,0(n,),2) is isomorphic to Inc(é(n,) x ... x é(n,),2), the lattice of
increasing subsets of the partially ordered product space d(n;) x ...x d(n,). The
embeddings above correspond precisely to the embedding Id A, - Id 4, , ; of the
ideal lattice of Id A4,. (Here an ideal J in Id A, is identified with the ideal J in
Id 4, , , that it generates).

THEOREM 2.3. The ideal lattice of T((n,)) is isomorphic to the approximately
finite lattice lim, Inc (6(n,) x ... x &(n,),2).

PrOOF. We have observed that the limit lattice in the statement of the theorem
is isomorphic to lim, Id A4,.

By Proposition 2.1 we can identify Id A with the set of sequences J N A4,,
Jn A,,... forJinld A. Anincreasing sequence J,, J,, ... of ideals J, of 4,,is such
a sequence precisely when J, = 4, n (U, Ji),r = 1,2,.... Let us call such a se-
quence an inductive sequence of ideals. Then, more precisely, Proposition 2.1
allows us to identify Id A with the lattice of increasing inductive sequences of
ideals. From the definition of direct limits of lattices, we see that Id 4 is isomor-
phic to lim, Id A4,.

We have already observed that the limit lattice of a unital direct system of
primary lattices is primary. Similar reasoning or direct argument with Proposi-
tion 2.1 shows that the ideal lattice Id T'((n,)) is meet-irreducible.

REMARK. Similar reasoning applies in the context of nest subalgebras of AF
algebras considered in [8]. For example it is possible to define a natural upper
triangular subalgebra, TM ((n,)) say, of M((n,)), which is the inductive limit
algebra lim, T(n, ...n,), with respect to certain natural embeddings ‘by refine-
ment’. For this algebra we can obtain the identification

1d TM ((n,)) = lim, Inc(8(n, ... n), 2).
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3. Finite primary lattices

We now collect together some elementary facts concerning finite factorizations
and finite primary lattices. The arguments here are partly derived from Arveson’s
paper [1].

PROPOSITION 3.1. Let M be a finite unital lattice with unital sublattices

L,,..., L, which form a factorization of M. If each factor L, is primary then M is
primary.

PROOF. Let e,...,e, be the largest non unis in L,,..., L, respectively. We
show thate; v ... v e,is the largest non unit in L, and hence that L is primary.
Note first that e; v ... v ¢, is strictly less than 1. For otherwise 1 A 1 £
ey v ... Vv e,)and so by independence 1 < e, v ... v ¢, Continuing with this
argument obtain the contradiction 1 <e,. On the other hand let aelL,
a# 1. Then a=a, v ... v a, with each g; of the form x;; A ... A x;,, with
x;j;€ L;,for alli. For each j there exists x, with x;, < e,. (For otherwisea; = 1,and
a=1).Thusag;<e, v...ve,andsoa=<e, v... Ve, asdesired.

In view of Proposition 1.7 we now deduce that if L, L, ... is a coherent
factorization of the approximately finite lattice L, then Lis primary if each factor
L, is primary.

COROLLARY 3.2. Let M be a finite unital lattice with unital sublattices L,,...,L,
which form a factorization of M. If p is a prime element of L, for some i, and if M is
primary, then p is a prime element of M.

PrROOF. Let p be a non-zero prime element of L; and define N =p A M,
N, =p A L, fork=1,...,n. We claim that N,..., N, is a factorization of N.

Clearly, N,,..., N, generate N. Fix r and elements a,a’ in L,, b,b"in \/ L;, and
ir
assume that

pragAa(PAabS(pad)vpab)

Ifr=ithen(pra)ab=pPAraAr@ab)S(prad)vd)ap=s(pard)vd.
Hence pAa<p Ad orb<b.Ontheother handif r +ithena A (p A b) =
praAn(pAab)S(prd)v(pab)andsoa<aorpAb<pab. Inboth
cases we have the desired alternative,p Aa<pAadorpAab=<pAb.

We next show that each of the lattices N, is primary, and the corollary will
follow from Proposition 3.1.

Assumethatp=(pAa) v (p A b)withaandbin N,. Ifk =ithenpra=p
orp A b = pbecause pisprimein L;. On the other handifk # ithenp A 1 = p =
pAa@vb)Lavb=0v(av b)andso,byindependence,p <0orl <avb.
Hencel =a v band a = 1 or b = 1 because M is primary. Hence p A a = por
p A b = b as required.
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COROLLARY 3.3. Let M be a unital primary lattice with unital primary sublatti-
ces Ly,...,L, which form a factorization of M. Let p be an element of the form
]

p = /\ p, where each p, is a prime in M,. Then p is prime in M.
r=1
ProOF. By Proposition 3.1 it suffices to show that each of the sublattices
pA Li is primary. Suppose then that a, b are elements of L; such that

p=(@Aav(pablandp+0.Letg,= \ p,sothatp, A gi=p=(p: A a) v
r¥i

(pi A b)) A g;. Since the lattices L; and \/ L; are independent it follows that
j*i

pi=(p; A a) v (q; A b) and hence p; = p; A a or p; = p; A b, since p; is prime.

Hencep=p Aaorp=p A b,and p A L;is primary.

The converse to the last corollary is also valid; every prime element p of the
lattice M is of the form p; A ... A p, where each p, is prime in L,. We see this in
the next section where we obtain an analogous representation for prime elements
in certain approximately finite lattices admitting a factorization L,, L,,... by
finite primary sublattices.

4. Prime elements and unique factorisation.

Our context in this section concerns approximately finite lattices L which arise
asin the statement of Proposition 1.4, that is, L is isomorphic to the approximate-
ly finite lattice lim, (L, v ... v L,)associated with the sequence L,, L,,... which
is a factorisation of L by finite lattices. We call such a factorisation a coherent
factorisation of the AF lattices L.

A factorisation is said to be indecomposable when none of the sublattices L,
admits a nontrivial factorisation. The following theorem is the counterpart of
a theorem of Arveson for distributive metric lattices [ 1, Theorem 3.3.2].

THEOREM 4.1. Let L,, L,,... and N, N,, ... be two indecomposable coherent
factorisation of the approximately finite unital primary lattice L. Then there is
a permutation © such that N, = L, for all k.

However, we will not be able to use this theorem in the context of the ideal
lattice of T((n,)) since this lattice is not primary. It is however meet-irreducible,
and we have the following theorem.

THEOREM 4.2. Let L, L,, ... and Ny, N,, ... be two indecomposable coherent
factorisations of the approximately finite meet-irreducible lattice L. Then there is
a permutation n such that N, = L., for all k.
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These unique factorisation theorems follow from Theorem 4.3 which is the key
result of this section. In fact we only use this theorem in what follows.

THEOREM 4.3. Let Ly, L,,... be a coherent factorisation of the approximately
finite unital lattice L.

(i) L has nonzero prime elements if and only if L, is primary for almost every k.
Moreover the nonzero primes are precisely the elements p of the form

P=Py APa AN ...\ Dn
where p, is a nonzero primein L, for | £k<mm=1,2,....
(i1) The nontrivial meet-irreducible elements of L are precisely those of the form
P=V Dk
where p, is a nontrivial meet-irreducible element in L,, for k = 1,2,... .
ProOOF. We first show that for each prime p # 0 we have
p= A{a;:a 2 p aely).

(This is the AF version of Theorem 3.1.2in [2]). Let p, denote the infimum and let
pn= A{a:azp,ael,., v L,,,Vv...}.Thenpy A p, 2 p,andin fact it will be

enough to show that foreach n, p 2 p, A p,. To see that this is enough, note that

P=PoAPn= V(Po APy)=DPo A(VDP)=poA L

The last two equalities here follow from Proposition 1.1 and property (iii) of
Definition 1.3 respectively.

Suppose then that x = p. We show that x = p, A p,. Let B, ..., B, be an
enumeration of the elements of the form x; A ... A x,_, with x; in L;. Consider
the collection N of elements of the form

1
\~/ B A &)

withc,inL, v L,,, v ... . Then N isa complete lattice. Hence for somec;,. .. ¢,
we have

I\

psx=\ (B rc)
k=1

Since pis a prime element it follows that p < f, A c,forsome kandsop < f,and
p £ c¢,. We have py < f, and p, < ¢, and 50 py A p, < By A ¢ < x as required.
Let

= A{ag:a, 2 p,ae Ly},

with p, = 1 if this set is empty. Suppose that p, = a v b with a, b in L,. Let
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4 = ./¢\kpi- Then p=p,Age=(@vbrg=(@nrq)v(bnrg,)andsop=
angqg,orp=>bAnagq,. Suppose that p=a A q. Thenp=p. Aq,=a A g, £
a v 0.Byindependence p, < a(since g, + 0). Alsoa < a v b = p,,andso p, = a.
The other case, namely p = b A g, leads to p, = b.

Thus p, is prime for all k, and by Proposition 1.6, p, = 1 for all but a finite
number of k. On the other hand the results in section 3 show that pis prime in L if
p has the form given in (i).

(iii) We can argue exactly as above for a meet-irreducible element p # 0 by
replacing prime by meet-irreducible, v by A, A by v,and 0 and 1 by 1 and 0,
respectively. In this way we see that p = v p, with p, a meet-irreducible element
of L, for all k. It remains to show that p = v p, is meet-irreducible for every
choice of meet-irreducible elements p, € L,.

First note that p, v ... v p, is meet-irreducible for each n. This follows by
applying Corollary 3.3 to the lattice L, v ... v L, with the converse partial
ordering. The infinite case follows in an elementary way from local arguments.

For suppose that p =a A b and p, a, b are represented by the ideals =, o,
respectively, of the countable lattice Ly, where L, is the union of the finite
Ly=Lyv...v L, Then

N Ly = (@n ) Ly = (@0 L) 0 (B Ly,).

However, by independence n n L, is the principal ideal for the meet-irreduc-
ibleelement p; v ... v p,,and soeithera N L,y = nn Ly or fn Ly = nn Ly,
This is true for all n and so « = = or § = =, as required.

Notice that we have shown that L is primary (resp. meet-irreducible) if and
only if each factor L,, of the coherent factorisation, is primary (resp.
meet-irreducible).

PROOFS OF THEOREMS 4.1 AND 4.2. Let L, N, be as in Theorem 4.1 or 4.2. Set
L, .= L, N,. Then we claim that it follows from Theorem 4.3 that L,, ,, L,, ,,
...andL, ,, L, ,,...arecoherent factorisations of L, and N, respectively. In fact
the arguments for this are virtually identical to those in the proof of Theorem
3.3.1in[1] and so we omit the details. Since each L, is indecomposable it follows
that the factors L,, ; are all trivial except for a single factor, L, ., say. Similarly
the factors Ly pim» L2, xm), - - - are all trivial except for a single factor which must be
Ly xmy- Thus Ly, = Ly, womy = V;iLj ngm = Negmy S0, With 7 replaced by 7!, the
proofs are complete.

REMARK. We have obtained the unique factorisation theorem, Theorem 4.1,
without recourse to Arveson’s factorisation theorem for distributive metric
lattices. It seems logical to make the elementary context independent of the
topological one. However it may well be possible to deduce our theorem from
Arveson’s by constructing normal valuations on AF lattices.
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5. Isomorphisms and the automorphism group of T((n,)).

The following theorem characterizes the Banach algebra isomorphisms and
epimorphisms between the algebras T((n,)) and T((m,)) where, as usual, (n,) and
(m,) are sequences of positive integers greater than unity.

THEOREM 5.1. (i) T((n)) and T((m,)) are isomorphic if and only of there is
a permutation m such that my = n.4), k= 1,2,... .

(ii) There is an onto unital homomorphism from T((n,)) to T((m,)) if and only if
there is an injection n: N — N such that m;, < n, for all k.

Let L((n,)) be the approximately finite unital lattice lim, Inc(é(n,), ..., 6(n),2)
so that by Proposition 2.3 L((n,)) and Id T((n,)) are isomorphic. By Proposition
1.7 L((n,)) is meet-irreducible. There are canonical identifications of the lattice

; = Inc(6(n;), 2) as a unital sublattice of L((n,)) and, by Proposition 1.4 L,, L,,
...is a factorization of L((n,)). However the factorization is not indecomposable.
Each sublattice L; admits a factorization L§ v L4, where L} and Lf are copies of
the nest lattice L(n).

L} = {¢.€lnc(8(ny),2): ¢((i,)) =1<1=5ist}
L} = {¢.€lnc(d(n),2): (i) =0t <j< 1}

Thus L((n,)) is a meet-irreducible unital approximately finite lattice with in-
decomposable coherent factorisation L3, L4, L3, LS, ... .

The set of non zero meet-irreducible ideals of T(n) is isomorphic to d(n). The
point (i, j) in 6(n) corresponds to the ideal spanned by the matrix units ¢, ; where
k <ior 1>j. Theorem 4.3 shows that the set of nontrivial meet-irreducible
ideals of T((n,)) is canonically isomorphic to the product set

o(m)) = é(ny) x 8(ny) x ...
with the product partial ordering.

LeEMMA If n, =1 and m 2 1 for all k then there is an order isomorphism
y:8((n,)) = 8((my)) if and only if there is a permutation n such that my, = n,,, for
all k.

Proor. Let t, = (1,1) and note that the interval [(1,n,),(1,1)] is a chain in
&(n,). Moreover, if t = (0,0,...,,0,...), where the j™ zero is the zero element
(n, n;) of &(n;), then the interval [0, ] in &((m,)) is a chain of length n,. Moreover it
is easy to see that every segment [0, t'] which is totally ordered, is of this form.
Thus a induces a bijection of such segments, and it follows that m, = n,, for
some permutation 7.

PRrROOF OF THEOREM 5.1. Since a Banach algebra isomorphism between T((n,))
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and T'((m,)) induces a bijection between the sets of meet-irreducible ideals, part (i)
follows from the discussion above.

Suppose now that m, < n,, for all k for some fixed injection n. Then there is
a contractive unital algebra homomorphism o, : T(n,,) = T(m,), and the con-
tractive maps 6, ® ... ® oy, from T((n,,)) to T((m,)), converge pointwise to an
epimorphism.

On the other hand let ¢ be an epimorphism from T((n,)) to T((m,)). Then ker ¢
is a meet-irreducible ideal and so by Theorem 4.3 (ii), kero =J, v J, v ...,
where J, is the ideal in T((n,)) generated by a meet-irreducible ideal J, of T(n,).
Thus there are integers 1 < r, < n, and a natural isomorphism

T v..vI-oTr)®.. @ T(r)® Ty, ) @ T(my,,)® ...

Since ker g is the closed union of the ideals J, v ... v J, it follows that
T((n,))/ker o is isometrically isomorphic to T((r,)). Now (ii) follows from (i).

The automorphism group. In the next two lemmas we show that the automo-
rphisms fixing the ideal lattice are precisely the pointwise-inner automorphisms.
We write y, for the canonical permutation automorphism of T((n,)) associated
with a permutation n such that n, = n_, for all k.

LEMMA 5.2. Let ye Aut T((n;)). Then y = Boy, where vy, is a permutation
automorphism and B is an automorphism with B(J) = J for every two-sided ideal J.

PRrOOF. Since y preserves meet-irreducibility of ideals, y induces an isomor-
phism y: 8((n,.)) — 6((n,)). But such an automorphism is a composition of a permu-
tation automorphism 7, and an automorphism, f say, which acts locally. In fact
each d(n;) supports a flip automorphism (exchanging coordinates in d(n;)), and
B must either fix or flip each coordinate. Since B derives from the algebra
automorphism f = o« !, it is easy to check that in fact f has no flip action, and
hence that (J) = J for every meet-irreducible ideal, and hence for all ideals.

The hypothesis in the next lemma cannot be relaxed too much as can be seen
the following example. Let ./ be the subalgebra of T(4) spanned by the matrix
units e;; of T(4) other than e,, and e,,. It can be seen that &/ admits automo-
rphisms that preserve ideals but which are not inner. For example consider the
automorphism a such that a(e;4) = —e;, and a(e;;) = ¢;; for all other matrix
units in /. This fails to be inner because « fails to preserve the rank of some
elements. (See [6] for related matters).

LEMMA 5.3. Let of be a subalgebra of the algebra T(n) which contains the matrix
units ey, e;,.for 1 <i < n. Ifais an automorphism of o/ such that o(J) = J for every
two sided ideal J then o is an inner automorphism. Moreover the same holds true for
ideal preserving automorphisms if the algebraic tensor product s/ ® 8, where & is
a commutative unital C*-algebra.
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PROOF. By the ideal invariance of a we see that a(e,,) = e, + . a,;e,;. Let
i=2
a,, be a nonzero coefficient withr 2 2andlet S,,(4) = I + Ae,,. ThenS,,(})~! =

§,(—4) and we see that S,,(4) is an invertible element of .« such that
(S, (D)~ ale;)S 1)y, = ay, — 4.

It follows that we may construct an invertible element S in A such that S~ a(e, ;)
S = e“.
Since « is an automorphism we observe that for 1 <i < j

8- l“(eij)s)ly = (eus_l“(eij)s)ir
=(8" la(elleij)s)lr
=0.

Thus « leaves invariant the subalgebra, ./, say, spanned by {e;;: ¢;;€ 7,2 < i}. In
particular, with respect to the associated decomposition C" = C @ C" !, we can
assume o has the form

(%1 4 N _ (9 o(a)
" ( 0 Al) e ( 0 0‘1(/‘11)>

where a, is the restriction of a to ./, and ¢ is a linear map on the linear space of
row vectors g.

We shall show that a is inner by induction on n. By the induction hypothesis o,
is implemented by an invertible element T, of the algebra «/,. Conjugating by
T = e,, @ T, obtain a new ideal preserving automorphism which is the identity
map on ;. Without loss then, we assume that « already has this form. In
particular 6(aA,) = d(a) A, for all operators 4, in &/, from which it follows that
(e, ;) = dje, ; for some scalars d; (associated with indices j 2 2 for which e; is in
/). Suppose e,; lies in /. Then d,e,, = de,,) = de,e;,) = d(ey;)d(e;,) =
dje,;e;, = dje,,. Thus all the d; coincide with a single scalar d say. Thus
a(-) = D~ !- D where D is the diagonal matrix with entries 1,d,d,...,d, and the
first assertion is proven.

Note that of ® 2 can be considered as the algebra of matrices from o/ whose
entries are operators in B. Replacing the role of the scalar field by # in the
argument above leads to an almost identical proof for the second assertion of the
proposition.

The next lemma characterizes the ideal fixing automorphes as the pointwise
inner automorphisms.

LEMMA 5.4. Let a be an automorphisms of T((n,)) such that a(J) = J for every
closed two sided ideal J. Then there exist invertible operators S,, with S, and S;” ! in
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T((n)), forr = 1,2,..., such that S; * XS, — a(X) as r — oo for every element X of
T((m)).

ProOF. Let 4, = @ Tn)), A"= @ T(n),C,= ® C(n) C"'= @ Cny),
k=1 k=r+1 k=1 k=r+1

regarded as the usual subalgebras of T((n,)). The Jacobson radical rad A" of the
subalgebra A" is the strictly upper triangular part of 4" and we have A" =
C" + rad A". Moreover J = o, ®@rad A" is an ideal such that the quotient
T((n,))/J is canonically isomorphic to =/, ® C". To see this observe that
o, ® rad A" is the kernel of the natural contractive homomorphism from T((n,))
to &, ® C'). In particular, since J is invariant, a induces an automorphism a, of
o, ® C', and moreover a, leaves invariant the ideals of &/, ® C". The ascending
subalgebras &/, ® C" have dense union in T((n,)), and so it will be sufficient to
show that each automorphism a, is inner. This follows from the second part of
Lemma 5.3, since the algebras A, are subalgebras of T(n,n, . .. n,) of the required
form.

The results above are summarized in the next theorem. We write Out (T((n,)))
for the quotient group determined by the normal subgroups of pointwise inner
automorphisms.

THEOREM 5.5. Let I1((n,)) be the discrete group of permutations n such that
M = Nagy, kK = 1,2,... . Then each automorphism o in Aut T((n,)) admits a decom-
position a = Boa, with f a pointwise inner automorphism and = in II((n)). In
particular Out T((n,)) is the discrete group I1((n)).

ReMARK. The classification in Theorem 5.1(i) has been substantially general-
ized in the author’s paper “Classifications of tensor products of triangular
operator algebras” (to appear in Proc. London Math. Soc.).

6. The K, group.

Let A be the algebra T((n,)) with diagonal subalgebra C = C((n,)), associated
as usual with integers n, =22, k=1,2,... . We show that K,(4) = Ky(C). In
particular K, does not distinguish the isomorphism type.

Recall that A decomposes as a direct sum A = C + rad A, where rad A is the
Jacobson radical. Let p = (p;;) be anidempotent in M,(A4) and let p;; = ¢;; + ry;in
Cand r;;inrad 4, so that ¢ = (¢;;) is an idempotent in M,(C). We show that there
is continuous path of idempotents p, 0 < t < 1, in M,(A4), such that p> = p and
p® = c. From this it will follow that the natural map K (4) = K,(C) induced by
the quotient mapping, is an isomorphism.
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Let d, , be the invertible element of C given by
d,=1®...910D,®1®...,

D, = t2 ,0<t<1.
-

Then the inner automorphism «, ,: a - d, ' ad, , is a contractive on A. It follows
that we can define the pointwise inner homomorphism a, by

ofa) = lim o, ; 00, ,0...00,(a).
k— oo
Indeed, this limit exists on a dense subspace, and the composed automorphisms
are contractive. Note that a, is a homomorphism and a,(a),0 <t < 1, is a con-
tinuous path in 4. A simple approximation argument shows thatifa=c +r

with ¢ in C and r in rad A, then ay(a) = lima,(a) = ¢. Thus the idempotents

t=0

p' = (a,(p;;)) form a path with the desired properties.
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