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THE C*-ALGEBRA GENERATED BY TWO PROJECTIONS

IAIN RAEBURN and ALLAN M. SINCLAIR

Problems concerning pairs of projections play a fundamental role in the theory
of operator algebras. Here we shall give a unified treatment of some of these
problems, in terms of the representation theory of a universal C*-algebra gener-
ated by two projections. While we shall obtain some mild improvements on
- known results, our main intention is to show how a representation-theoretic
viewpoint clarifies some of the issues involved.

We begin by showing the existence of a C*-algebra C*(p,q) generated by
projections p, g, with the property that whenever P, Q are projections on a Hilbert
space H, there is a representation n of C*(p, q) on H with n(p) = P and n(q) = Q.
A theorem of Pedersen [12] shows that this algebra has a concrete realisation as
an algebra of 2 x 2-matrix-valued functions on [0, 1], so its representation
theory is well-understood. We provide a short proof of Pedersen’s theorem using
the Mackey machine, and make some comments on the analogous algebra
generated by three projections.

Next we consider questions of unitary equivalence of projections P, Q in a von
Neumann algebra M, and in particular, of how to find a unitary U € M satisfying
U PU* = Q and minimising |1 — U|. This is easily solved in C([0, 1], M,(C)),
although not necessarily in the subalgebra C*(p, q), and transferring the solution
to M involves analysing the corresponding representation of C*(p, q). The result-
ingestimateson |1 — U| interms of | P — Q| are sharp, and appear to be slightly
better than those previously known, even in the case |P — Q|| < é < 1.

Our other main application concerns the problem of unitary equivalence of
pairs of projections — given two pairs {P,Q}, {P’,Q'}, when is there a unitary
U such that U PU* = P’ and U QU* = Q'? Dixmier showed that, when the
projections { P, Q} are in generic position (see Remark 3.3), the single self-adjoint
operator P + Q is a complete unitary invariant of the pair {P,Q}; since
self-adjoint operators had already been classified up to unitary equivalence, this
essentially solved the problem [6,§VI]. From our point of view, the generic
position hypothesis is a representation-theoretic one, and his theorem can easily
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be proved by examining the corresponding element p + g of C*(p,q). Further,
applying this approach to an operator AP + Q, for any A€(0, ) except 4 = 1,
leads to a version of Dixmier’s result which does not require any extra hypothesis
on the pair {P, Q}.

We wish to stress that, while we may have obtained some minor improvements
of known results, we do not claim that any of our work is highly original. Indeed,
many of these results have been rediscovered several times already: see the
bibliographic note on p. 18 of [S]. In addition to those who have written on the
subject, it appears that the main ideas were known to others, including von
Neumann, Mackey and Kadison. It is possible, however, that our C*-algebraic

approach has a slightly different flavour, and we hope our methods may be of use
elsewhere.

ACKNOWLEDGEMENT. We thank Joel Anderson, Alastair Gillespie, Dick
Kadison and Gert Pedersen for helpful comments.

§1. The C*-algebra generated by two projections.

PROPOSITION 1.1. There is a unital C*-algebra A generated by two projections
D, q with the following universal property: whenever P, Q are a pair of projections in
aunital C*-algebra B, there is a unital homomorphism ¢ : A — B such that ¢(p) = P
and ¢(q) = Q. Indeed, if u and v are the canonical generators of C*(Z, * Z,), take
A=C*2,*Z,),p =1 —u)/2,q =1 — v)/2. The triple (A, p,q) is unique up to
isomorphism.

ProOF. The uniqueness is clear, so we just have to establish that C*(Z, *Z,)
has the required universal property. By representing B concretely on a Hilbert
space H, we may suppose that P and Q are projections on H. Then U =1 — 2P,
V=1 — 2Q are unitaries of order 2, and hence each defines a unitary representa-
tion of Z,. The pair U, V therefore defines a unitary representation of the free
product Z, *Z,, and there is a representation ¢ of C*(Z,*Z,) on H such that
d(u) = U, ¢(v) = V. Since u, v generate C*(Z, * Z,), the range of ¢ liesin B, and the
result follows.

REMARK 1.2 Since the algebra A in the proposition is essentially unique, we
shall call it the C*-algebra generated by two projections, and denote it C*(p, g).
Further, we shall usually identify C*(p,q) with the algebra of matrix-valued
functions described in the next theorem, which is due to Pedersen [12].

THEOREM 1.3. There is an isomorphism of the C*-algebra C*(p, q) generated by
two projections onto

A = {feC([0,1], M,(C)): f(0), f(1) are diagonal},
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which carries the generating projections into the functions

(1 0 3 x ./x(l~x))
p(x)_<0 0)’ q(X)—<~/x(1—x) 1-x /)

REMARK 1.4 This result seems more reasonable if we write x = cos? 6: then
q(x) is the orthogonal projection of C2 onto the span of the vector (cos 6, sin 6).

PrOOF. One can easily verify that the formulas do define projections p, g lying
in A, and there is therefore a homomorphism ¢ of the universal C*-algebra
C*(p, q) into A which sends the generators into the functions p, q. It is also easy to
verify that for x € (0, 1) the operators p(x), q(x) generate M,(C), that for x = 0 they
generate the diagonal algebra C2, and that for x = 1 they together with 1 generate
C2. Thus the range of ¢ is a rich subalgebra of 4, and hence all of 4 by [7,11.1.6].
It remains to show that ¢ is injective, or, equivalently, that every irreducible
representation of C*(p, q) factors through ¢; we shall do this with a straightfor-
ward application of the Mackey machine (e.g. [10]).

Recall that there is an identification of C*(p, q) with C*(Z, * Z,) under which
u=1—2p,v = 2q are the generators of Z, *Z, = U C*(Z, *Z,). Now the prod-
uct uv has infinite order in Z, * Z,, and every element of Z, * Z, is either a power
(possibly negative) of uv or a product (uv)"v; since conjugation by v sends uv to
vu = (uv)~ !, this means Z,*Z, is isomorphic to the semidirect product
Z >1Z,,in which Z, acts as multiplication by + 1. Thus the irreducible represen-
tations of C*(p,q) are in one-one correspondence with the irreducible unitary
representations of G = Z >1Z,. To compute these, we consider the normal
subgroup Z, and look at the action of Z, on T = 2 by conjugation; the orbits are
parametrised by {exp(if): 0 < 6 < n}. For 0 < 6 < =, the stabiliser is trivial, and
there is one irreducible representation of G whose restriction to Z lives on the
orbit exp(+if), namely Ind¢ exp(if), which is two-dimensional because
|G:Z| = 2. For 6 = Qor 1, the stabiliser is all of Z,, no induction is necessary, and
we obtain a total of four one-dimensional irreducible representations of G; since
A also has four, these must all factor through ¢. The two-dimensional representa-
tions of G are characterised by their restrictions to Z = {uv), so all we have to do
is compute the irreducible components of the representations which send uv to

duvkx) = (1 — 2p(x)X1 — 2q(x)) = < 2x -1 2/x(1 — x)>’

—-2/x(1 — x) 2x — 1

But this matrix has eigenvalues (2x — 1) + 2i./x(1 — x), which if we write
x = cos? 6 (see Remark 1.4) become exp(+2if), and every orbit exp(+i¢) for
0 < ¢ < = has this form for some xe(0, 1). Thus all the irreducible representa-
tions of G factor through ¢, and the result follows.
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REMARK 1.5 This result is well-known, and the above proof is presumably
what Blackadar hasinmind in [ 1, problem 6.10.4]; the original proof of Pedersen
had an algebraic flavour. It has been extensively used in operator theory (see, for
example, [8,13,14]), and operator-theoretic proofs have also been given — for
example, by Power [ 13], based on ideas of Halmos [97]. While we certainly do not
claim this proof is more elementary, it is completely routine to anyone familiar
with the Mackey machine.

COROLLARY 1.6. (1) The spectrum of C*(p, q) is homeomorphic to the quotient of
two copies of [0, 1] in which the corresponding points of (0, 1) have been identified.
(2) If two projections P,Q generate B(H), then the dimension of H is at most 2.

REMARK 1.7 While our approach to these results is not particularly original, it
does help explain why problems involving 3 or more projections are inherently
more complicated — for example, 3 projections can act irreducibly on an infi-
nite-dimensional space, in contrast to Corollary 1.6(2) (see [4]). Indeed, the
argument of Proposition 1.1 shows that C*(Z, * Z, * Z,)is a universal C*-algebra
generated by 3 projections. But, whereasZ, *Z, >~ Z >Z, is easy to analyse, any
other free product, such as Z,*Z,*Z,, is non-amenable, and its reduced
C*-algebra is simple and non-nuclear [11, Theorem 1.1]. Now the full group
algebra certainly has lots of finite-dimensional representations (take any 3 sub-
spaces of any space), but this observation shows that C*Z,*Z,*Z,) is
non-nuclear, and implies immediately that it has infinite-dimensional irreducible
representations. The structure of families of 3 or more projections has recently
been studied by Sunder [15].

The universal property of C*(p,q) implies that any problem involving two
projections on a Hilbert space H is a problem concerning a specific representa-
tion of C*(p,q) on H. Since we know the spectrum of C*(p,q), and it is a type
I algebra, we can always analyse such a representation using direct integral
theory. However, in most cases this seems to be unnecessary, and we can make do
with the following simple lemma.

LeMMA 1.8. Let I = {f € C([0,1], My(C)): f(0) = f(1) = 0}, and let e be a rep-
resentation of C*(p,q) on H. Then m has a direct sum decomposition
n=n, @ ny® n,, in which n_ is nondegenerate on the ideal I, no factors through
the map f — f(0), and n, factors through f — f(1). Further, we can identify the
summands as follows:

(1) If {f,} is an approximate identity in I, then n(f,) converges strongly to the

projection onto H, = H(n,),
(2) H, is the direct sum of the subspaces H§ = mo(p)H and H§ = no(q)H, and

H? = ker n(q) N range n(p), H§ = ker n(p) N range n(q);
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(3) Hy is the direct sum of two subspaces H!{ = n,(p)H = n,(Q)JH and
H{"?=n,(1—pH =n,(1 — q)H, and

H? = range n(p) nrange n(q), H} ~? = ker n(p) N ker n(q).

Proor. Take H, = (n(I)H)~, which is reducing for = because I is an ideal, and
note that (1) then holds. Since |, = 0 on H} and I is the kernel of the homomor-
phism f — f(0) @ f(1) from C*(p,q) to C? @ C2, the action of = on H} factors
through this homomorphism. The resulting representation of C2 @ C? decom-
poses as a direct sum H @ H¢ @ H? @ H{ ~?, in which the action of n(f) is given
by

f(0),,1 on H, f(0),,1 on H§, f(1);,1 on HY, f(1),,1 on H{ ~".

If we take H, = H5 @ H§, H, = H? @ H} ", then the main assertion follows
easily, and an inspection of p(0), ¢(0) and p(1) = g(1) reveals that Hf = ny(p)H, etc.
It therefore remains to verify the identifications of the various subspaces in terms
of n(p) and =n(q).

We show first that Hf = ker n(q) N range n(p). Because all the subspaces in
question reduce =, it should be clear that Hj = ker ny(q) N range ny(p) is con-
tained in ker n(q) N range n(p), so we suppose n(q)¢ = 0 = n(l — p)¢&, and try to
prove ¢ € Hy. Now Hj is the subspace on which J = { f € C*(p,q): fi0) = 0} acts
nondegenerately, so it is enough for us to show that f(0) = 0 implies n(f)& = 0.
Consider b = q + (1 — p), and observe that by hypothesis we have n(b)¢ = 0. We
have det b(x) = x # 0 on (0, 1], and we can therefore find a sequence {a,} in
C*(p,q) such that |la,b| <1 and a,b(x) = 1 for xe[1,1]. But we then have
|f — fa,b| = 0 for any f satisfying f(0) = 0, and hence

n(f)e = limn(fa,b) = lim n(fa,) n(b)¢ = 0

whenever f(0) = 0. Thus ¢ € Hy, and it follows easily that ¢ belongs to ker n(q)
and range n(p). The identification of H§ can be proved similarly, replacing b by
(1 — q) + p, and so can (3), using instead of b the elements (1 — p) + (1 — g) and
p + q of C*(p, q), which are invertible except at x = 1.

§2. Unitary equivalence of projections in a von Neumann algebra.

THEOREM 2.1. Suppose P, Q are projections in a von Neumann algebra M, and
that there is an element W of M such that WW?* is the projection onto
ker P nrange Q and W*W is the projection onto ker Q nrange P. Then there is
a unitary U € M such that

(@) UPU* =,

(b) U commutes with |P — Q|;

© 1= Ul=/201—(1-|P -0t < /2P - Q|
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PROOF. Suppose M < B(H), and let © be the representation of C*(p,q) on
H such that n(p) = P, n(q) = Q. The idea is to solve the problem in the C*-algebra
C*(p, 9), and then apply = to get a solution on H. For each pair (p(x), q(x)), the
problem is easily solved: take

and easy calculations give
Ip(x) — go)* = (p(x) — q(x))* = (1 — 01,
1 — u(x)®> = (1 — u(x)N1 — u(x)*) = 21 — u(x) — u(x)* = 2(1 — \/)_()1.

(To see where u(x) comes from, set x = cos? 6: then g(x) is the projection on the
span of (cos 6, — sin 6), and u(x)is the usual rotation matrix.) However, we cannot
necessarily apply = to u, because the function u is not in C*(p, q) - the matrix u(0) is
not diagonal.

We therefore consider the ideal

J={feC*p,9): f(0) = 0}.

Pointwise multiplication by the function u defines a multiplier u e M(J), and this
element of M(J) has all the required properties relative to the projections
p,q€ M(J). By Lemma 1.8, we can decompose H = H, ® H,,n = n, @ =n,, where
7. is nondegenerate on J and =, factors through f — f(0). (Strictly speaking, =,
here is the representation n, @ 7, of that lemma.) The representation n, extends
uniquely to M(J), and r(u) is a unitary element of B(H.) which has all the required
properties relative to the projections n(p), 7.(q).

To complete the proof of the theorem we have to handle the summand H,, and
this is where the hypothesis on Wcomes in. Indeed, we claim that the operator
U, = W— W* has the required properties relative to my(p), mo(q): the equality
U, ny(p)U¥ = no(q) holds because mo(p), mo(q) are the projections onto
ker Q N range P, ker P n range Q respectively (see Lemma 1.8), the second condi-
tion holds because |my(p) — mo(q)] = 1 commutes with everything, and the third
because

1 —(W—W*?2=21—(W-W*—(W*-W)=21

Thus we can take U = 7 (u) + U,,and (a),(b), (c) hold. To see that U liesin M, we
just observe that if f, — 1 strictly in M(J), then n(f,) converges strongly to the
projection onto H, and therefore n/(u)=limn(w)n(f,) belongs to
m(C*(p,q))’ = M. The last inequality holds because (1 — (1 — t})})* < ¢ for all
te[0,1].
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COROLLARY 2.2. Suppose P, Q are projections in a von Neumann algebra M sat-
isfying |P — Q|| < 1. Then there is a unitary U € M such that U PU* = Q and

11— Ul = /201 - (1 = [P - QI»H < /2|P - Ql.
Proor. For ¢eker PnrangeQ we have ||(P— Q)| =] £, and thus the
condition ||P — Q| < 1 implies
ker P nrange Q = ker Q nrange P = {0}.

Therefore the theorem applies with W= 0. To see that (c) implies the norm
condition, just observe that f(t) = (1 — (1 — t?)? is increasing on [0, 1], and
therefore || f(IS])Il = f(||S||) for all operators S with ||S|| < 1.

REMARK 2.3 The constant /2 is the best possible for arbitrary P, Q, and this
result is very well-known. However, if we know a priori that |[P — Q|| <d < 1,

then we can replace \/5 by ﬁ(l — (1 — 8%)H*/4. To see this, we just need to
check that for 0 <t < d < 1, we have

Q- - <1 -1 =)/,

and this can be done by elementary algebra.
We shall now show that this constant is the best possible. Fix é < 1, and

consider the pair p(x),q(x) where é = /1 — x. Then | p(x) — q(x)|| = d, and if
v e U,(C) satisfies vp(x) = g(x)v, then v must have the form

(= 500

for some A, ue C with |4] = |u| = 1; conversely, any such v satisfies vp(x)v* = g(x).
The norm of 1—v is the square root of the larger eigenvalue of
(1 — v*)1 — v) = 21 — v — v*, which is at least as large as

(2l —v — v*) = %tr( 2- 2\/;Re,l V1= xp— I))
JI—x@-23 2-2/xReu

=2 — /x(Rei + Rep)
>2-2/x
Thus
11—l 2 /2v/1 = /x = /201 = (1 — 6)H,

with equality occurring when Re4 = Reu = 1, that is, when v is the operator u(x)
considered in the proof of the theorem. (This result was first proved by Davis and
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Kahan [5, Proposition 4.3], but this proof seems easier.) Letting 6 — 1 shows
that . /2 is best in general.

COROLLARY 2.4. Suppose P,Q are two finite projections in a von Neumann
algebra M. Then P, Q are equivalent in the sense of Murray and von Neumann (i.e.
there exists Te M such that TT* = P, T*T = Q) if and only if there exists We M
such that WW*, W*W are the projections onto ker P n range Q, ker Q n range P
respectively. If so, there is a unitary U e M such that U PU* = Q,U|P — Q| =
|P — Q|U and

1—Ul=20-01-P-QP <./2IP-Ql

PrOOF. Let n: C*(p,q) — B(H) be the representation with n(p) = P, n(q) = Q,
and decompose n = 7. @ 7, as in the proof of the theorem. As we saw there, the
unitary u satisfies n(upu*) = n.q), so n(p) is always equivalent to n(q). Because
P, Q are finite, this implies that P is equivalent to Q ifand only if ny(p) = P — n(p)
is equivalent to ny(q) = Q — n(q). But by Lemma 1.8

range ny(p) = ker Q N range P, range ny(q) = ker P nrange Q,

s0 mo(p) equivalent to my(q) means precisely that there exists We M as claimed.
The result now follows immediately from the theorem.

COROLLARY 2.5. Suppose that P,Q are equivalent finite projections in a von
Neumann algebra M, or, more generally, that P,Q are projections in M and there
exists We M such that WW*, W*W are the projections onto ker P nrange Q,
ker Q N range P respectively. Then there is an element V of M such that

@ VvV*=Q,V*V=P;

(b) VIP—Q|=|P—QIV;

© IP-V|</2P-0,1Q - VI< /2P - Q.

PrOOF. By the previous corollary, the first hypothesis implies the existence of
the partial isometry W, Now let n = n, @ n, be as in the proof of the theorem, and

consider
Jx 0
x) = e M(J).
") (,/ 1 —x 0>
This has all the right properties relative to p,qe M(J), and much as before
V= n(v) + Wis an element of M satisfying (a), (b), (c).

REMARK 2.6 Corollary 2.4 is a very minor improvement on [3, Lemma 1.4],in

which the last inequality has 3 in place of \/5., and Corollary 2.5 is slightly sharper
than [2, Lemma 2.2], which is there deduced from [3, Lemma 1.4].
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We finish this section by making some comments on the necessity of the
hypothesis in Theorem 2.1 concerning the existence of the partial isometry W. If
there is a unitary U satisfying U PU* = Q, and if P, Q are finite, then there is such
a W (Corollary 2.4), but for arbitrary P, Q this is not the case. For example,
consider H = I?(Z) with the usual basis {e,}, and let P, Q be the projections onto
sp{e,:n = 0}, sp{e,:n > 1}: then the bilateral shift U satisfies U PU* = Q, but
ker Q nrange P = sp{e,} is not equivalent to ker P nrange Q = {0}. However,
the hypothesis is always necessary for the existence of a unitary U satisfying
UPU*=Qand UP — Q| =|P - Q|U:

PROPOSITION 2.7. Suppose P, Q are projections in a von Neumann algebra M, and
there is aunitary U € M such that U PU* = Q and U commutes with |P — Q|. Then
there exists W e M such that WW*, W*Ware the projections ontoker Q nrange P,
ker P nrange Q respectively.

Proor. We first observe that since U commutes with |P — Q|, it commutes
with all its spectral projections, and hence in particular with the projection onto
the eigenspace {({e H:|P — Q|¢ = £}. By standard spectral theory we can see
that, because P — Q is self-adjoint, this is the span of the +1 eigenspaces of
P — Q. Now

(P— Q) =¢=0¢=—(1-P)}¢=(Q¢I5) = —((1 - P)Y[J),

and this implies Q¢é=(1— P} =0, so (ekerQ nrangeP; similarly,
(P — Q)¢ = —¢implies £éeker P nrange Q. Let n = n, @ n,, be as in the proof of
the theorem; then we have just shown that U commutes with the projection onto

(ker Q nrange P) @ (ker P nrange Q) = Hy = no(p)H @ no(q)H.

As before, the projection onto H, belongs to M, and therefore compressing U to
the subspace H, gives a unitary U,e M such that Uyny(p)US = no(g). Then
W = n4(q)Uomo(p) has the required properties.

§3. Unitary equivalence of pairs of projections.

We now discuss our version of Dixmier’s theorem. We shall show that for any
A€(0, o) except A = 1, the operator AP + Q determines the pair of projections
{P, Q} up to unitary equivalence. The case 0 < A < 1 can be reduced to the case
where 1 > 1 by swapping P and Q, so we shall assume 4 > 1.

THEOREM 3.1. Let {P,Q} and {P’,Q’} be two pairs of projections on a Hilbert
space, and suppose A > 1. Then there is a unitary operator U suchthat U PU* = P’
and U QU* = Q' if and only if the positive operator AP + Q is unitarily equivalent
to AP + Q.

Proor. The forward implication is clear, so we shall suppose AP + @ is
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unitarily equivalent to AP’ + Q'.If , p are the representations of C*(p, q) carrying
the generators to { P, Q}, {P’,Q’} respectively, and s = Ap + g, then we are given
that 7|c+, is equivalent to p|c+), and have to show that m is equivalent to p. We
may suppose without loss of generality that x|+, = plc+). Since s is self-adjoint,
the Gelfand transform induces an isomorphism of C*(s) onto C(a(s)), so we begin
by computing a(s). A function f e C*(p,q) is invertible if and only if f(x) is
invertible for all x, and thus for

s(x)=< A+x  Ux(1 —x))
v X(1 = x) 1—x

we have

os)= |J astx)= | M1+t /A-1)?+4ix)=[0,1]JU[41+ 1]
xe[0,1] xe[0,1]
(Notice that the effect of choosing 4 > 1 rather thani = 1is to split o(s) into two
disjoint intervals.) Now for any representation @ of a C*-algebra A, a = a*e 4
and g € C(o(a)), we have m(g(a)) = gl,(xa) (1(a)); thus for any g e C(a(s)) we have

(3.1) g(s)x) = gl1 + 1+ Ja=yr7azx )2 (5(X))-

We now let I={feC*p,q):f(0)= f(1) =0}, and decompose = =
T, ®n,®ny,p=p. D po® p, asin Lemma 2.8. We claim that these decompo-
sitions are compatible in the sense that #(n;) = #(p;)forj = ,0, 1. For suppose

£,€Co((0,1) U (4,4 + 1))is an increasing sequence of positive functions such that
fi=1lon

{1+ 24+ J(A—=1)*+4ix)/2:xe[L,1 - 1]} < a(s).

Then for xe[%,1 — 1], (3.1) implies fi(s)(x) = 1 for k > n, and hence f(s) — 1
strictly in M(I). Thus =( f,(s)) converges strongly to the projection onto J#(r_), and
similarly for p(f,(s)); since f,(s)e C*(s) and n = p on C*(s), the projections onto
H(n.) and H#(p.) must therefore coincide, i.e. #(n.) = H#(p.). Next we observe
that forj = 0, 1, the matrices s(j) and 1 generate the diagonal subalgebra of M,(C),
and hence the quotient maps f — f(j) are surjective on C*(s). Since the represen-
tations ;, p; factor through these quotient maps, and = = p on C*(s), we actually
have ny = p, and n, = p,. Thus the decompositions are compatible, as claimed,
and it remains for us to show that =, is unitarily equivalent to p.. We shall do this
by diagonalising s in C([0, 1], M,) = M(I) using the following lemma:

LEMMA 3.2. Suppose f € C([0, 1], M,) is self-adjoint and there is a continuous
map v: [0, 1] - C? such that v(x) is a unit eigenvector for f(x). Let p,(x) denote the
orthogonal projection onto Cu(x). Then there is a continuous function
w:[0,1] = M, such that w(x)*w(x) = p,(x), w(x)W(x)* = 1 — p,(x), and we can
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write any g e C([0, 1], M) in the form
(3.2) g=ap, + bw* + cw +d(1 — p,)
for some a,b,c,de C([0, 1]).

PrOOF. If v(x) = (a(x), B(x)), then, since f is self-adjoint, (— B(x), a(x)) is also an
eigenvector for f(x). Thus if

u(x) = <oc(x) -—_ﬁ;_(—x)>
B(x)  «x)

then (u* fu)(x) is diagonal, p,(x) = u(x)(l 0) u(x)* is the projection onto Cv(x)

00
0 . L . . .
)u(x)* is a partial isometry intertwining p,(x) and

and w(x) = u(x) <(1) 0

1 — p,(x). Notice that we have written down formulas for w(x) and p,(x) which
are clearly continuous in x, and the last part follows by writing u*gu as a matrix in

M(C([0, 1])).

PROOF OF THEOREM 3.1 (CONTINUED). We want to apply this lemma to our
function s(x). Messy calculations show that, at least for x + 0 or 1,

v(x) = (=2/x(1 —x), 2x + A —1 — /(A — 1)* + 4Ax)
is an eigenvector for s(x) with eigenvalue (1 + 4 + /(4 — 1)* + 44x)/2, and
loy )12 = 204 — 1)* + 8Ax — 2(2x + 4 — 1) /(A — 1)* + 4ix.

It follows from a few applications of L’Hopital’s rule that the corresponding unit
eigenvector

o(x) = lo,(e)ll = v4(x) = (1,0)as x > O or 1,

which is an eigenvector for s(0) and s(1). Thus we can extend v to a continuous
function on [0, 1] and apply the lemma to it: let p,, w be the continuous functions
we obtain. Observe that p;, = x;; 1+ 11(s) belongs to C*(s), and hence n(p,) =
pdp,) = Py, say. Let V= n(w), W= p(w) and define U = W*V + (1 — P,); note
that U is unitary and belongs to C([0, 1], M,) = C,((0, 1), M,) = M(I). Thus if
g€ C*(p, q), the decomposition (3.2) is valid in M(I), and we have

UnJ(g) = U(@P, + bV* + cV+ d(1 — P,))
= aW*VP, + bW*VV* + c(1 — P,)V + d(1 — P,)
= aP,W*V + bW*(1 — P,) + cWW*V + d(1 — P,)
= (aP, + bBW* + cW+ d(1 — P))U
= pdg)U.
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Thus &, is equivalent to p,, as required.

REMARK 3.3. The key idea here is that an irreducible representation of C*(p, q)
is determined up to equivalence by its restriction to C*(s). Dixmier’s version of
this result [6,§VI] used the operator a = p + q, but the subalgebra C*(a) does
not distinguish between the irreducible components of the representation
f — f(0), and he therefore needed extra assumptions. In fact he insisted that his
projections P, Q be “in position p” — namely, that

(3.3) ker P nker(1 — Q) = 0 = ker @ nker(l1 — P)
(3.4) ker PnkerQ = 0 = ker(1 — Q) nker(1 — P)

In the notation of our proof, (3.3) says the summand =, does not appear, and (3.4)
that n, does not appear (see Lemma 1.8); however, since a(1) does generate the
diagonal subalgebra of M,, it seems that Dixmier’s result is still valid without
assumption (3.4). In his discussion of Dixmier’s theorem, Halmos [9] also
assumes (3.3) and (3.4) (he says “P and Q are in generic position”), and Sunder
[15] has recently given a similar result, using a different operator, which only
requires (3.4) and half of (3.3). (However, Sunder also discusses the analogous
problem for larger families of projections).

ADDED IN PROOF. Bill Longstaff has pointed out to us that H. Behncke
(Tohoku Math. J. 23 (1971), 349-352) had previously used the representation
theoryof Z,*Z, >~ Z x Z, to study pairs of projections; however, he used direct
integral theory rather than our C*-algebraic methods, and his applications were
quite different from those in § 2 and § 3. In an earlier paper (Tohoku Math. J. 22
(1970), 181-183), he had also made remarks similar to our 1.7.
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