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SOME RESULTS IN SPECTRAL ANALYSIS
AND SYNTHESIS AT INFINITY

ISMO SEDIG

Abstract.

Asymptotic spectra and Wiener spectra are considered. We show that the asymptotic spectrum of
a bounded function coincides with the zero set of the closed ideal in L!(R) consisting of those
integrable functions whose convolutions with the bounded vanish at infinity. This fact and known
results in asymptotic spectral analysis allow us to characterize the bounded and uniformly continu-
ous functions whose Wiener spectra are, e.g., finite. The characterization is quite similar to that of the
asymptotic spectrum. Despite the similarities in spectral analysis, their spectral synthesis properties
are different. In particular, it is shown that there exists a bounded function that cannot be “syn-
thesized” from its asymptotic spectrum.

1. Introduction.

The asymptotic spectrum of a bounded function is usually defined in terms of
its limit set. It is shown below that it may equally well be defined as the zero set of
a certain closed ideal in the convolution algebra L' (R). This ideal is composed of
those integrable functions whose convolutions with the bounded function vanish
at infinity.

For this reason one may ask whether the characterization of the uniformly
continuous functions in L°(R) whose asymptotic spectra are finite can be carried
over to the Wiener spectrum. Below we examine this and related questions and
show that the answers are affirmative. (For results in asymptotic spectral analy-
sis, see Gripenberg et al. [4].) However, as far as spectral synthesis is concerned,
the asymptotic spectrum and the Wiener spectrum are quite different. In particu-
lar, it turns out that the positive spectral synthesis result in Benedetto [1,
Theorem 4.1] for the Wiener spectrum does not hold for the asymptotic spec-
trum.

The emphasis in Gripenberg et al. [4] is, naturally, on positive, i.e. one-sided,
asymptotic spectra. In accordance with this, we will mainly consider one-sided
Wiener spectra. The ordinary two-sided Wiener spectrum, as defined in Meyer
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[8] and in Benedetto [ 1], can then be expressed as the union of the corresponding
one-sided (positive and negative) Wiener spectra. This is, in fact, a special case of
a property of ideals in L} (R).

As an application we obtain some results related to the asymptotic behavior of
certain bounded functions.

2. Preliminaries. Definitions of Different Notions of Spectra.

Let I be an ideal in the convolution algebra I!(R), i.e., I is a subspace of I}(R)
with the property thatg * f e I forevery ge L!(R)and f € I. The zero set Z(I) of I is
defined by

Z() = () {teR| f(1) = 0}.

Sel

Here f stands for the Fourier transform of f; thus f(f) = f(x)e **dx.

The following property of ideals in I!(R) will be used below to establish
a relationship between the different notions of Wiener spectra.

2.1 LEMMA. Let I and J be ideals in I} (R). Then I N J is an ideal in I}(R), and
(i) Z(I nJ))y=Z(Hv Z{J).

Proor. Clearly, I nJ is an ideal. Since I nJ < I, Z(I) < Z(I n J). Similarly,
Z(J) < Z(I n J) and, therefore, Z(I) v Z(J) = Z(I n J). Suppose t ¢ Z(I) v Z(J).
Then f(t)g(t) + O for some fel and some geJ. But then f*gelnJ and
(f *g)" (t) % 0. This shows that t¢ Z(I n J). Hence Z(I nJ) < Z(I) u Z(J), and
so (i) holds.

Let e L*(R) and put I, = { fe L'(R)| f * ¢ = 0}. I is a closed ideal in L'(R)
and its zero set is, by definition, the weak* spectrum a(¢) of ¢, i.e.,

a(¢) = () {teR| f(t) = O}
felw
Let 7, denote the translation operator, thus 7,¢(x) = ¢(x + y) for x, ye R. The
(positive) limit set I'(¢) of ¢ is defined as follows:

I'(p) = {y e L°(R)| there exists a sequence o, — oo such that
T,, @ = ¥ weak* in L*(R)}

Corollary 2.1 in Staffans [11] shows that the above definition of the limit set is
equivalent to that given in [4] for functions in BUC(R), i.e., for the space of
bounded and uniformly continuous functions on R. One defines the (positive)
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asymptotic spectrum o®(¢p) of a function ¢ in L°(R) by

@)= [ o).

vel(p)

Equivalently, one may define o *(¢) as the zero set of a closed ideal in ! (R). Put
Agr = {feL'R) lim f+0(x)=0}.

2.2 PROPOSITION. Given g€ *(R), A o+ isaclosed ideal in L' (R) whose zero set
is the asymptotic spectrum of ¢.

As far as we know, Proposition 2.2 does not explicitly appear in the literature.

ProoF. Clearly, 4, . is a subspace of L' (R). Pick any ge L'(R) and feA,,.
Then by Levinson [7, Lemma 2.1], “1?0 g* f*¢(x) = 0. This shows that 4, is
anideal. If f = ,‘llrgﬁ( in I} (R), then } Q= klgg fi * @ uniformly on R. It follows
that A4, is closed.

Pick any y e I'(¢) and fe A4, . For some sequence o, — o,

a0

f*Y(x) = lim J_ fx =y oy + a)dy

= klim f*ro(x+o4)=0 (xeR).

It follows that a(y) = Z(A, ) and, therefore, 0®(¢) = Z(A4,..).

To prove the opposite inclusion, suppose that te R\ d*(¢). Let U be a neigh-
borhood of t such that U na(y) = @ for every y e I'(¢). Choose f e L'(R) for
which f(t) + 0 and supp(f) = U. Let us show that f €A,.. If this is not true,
then one can find an ¢ > 0 and a sequence a, — oo such that

If * @)l = |f *(14,9)O0) > & (keN).

But the weak* closure in L°(R) of the set {z,¢ | h = 0} is compact and metrizable
in the induced weak* topology. See Staffans [11, Lemma 2.1]. Therefore, for
some subsequence %, — 00 and a function y in I'(p), lll_{g Tq,, @ = Y weak* in
[*(R). In particular, | f *¥(0)| = &. On the other hand, supp(f) N o(y) = O and,
therefore, f *y = 0. This contradiction shows that fe 4, .. But thent¢ Z(4,.),
since f(t) # 0. Hence Z(A,+) c 6®(p) and consequently c*(¢) = Z(4,,).
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Finally, given ¢ € L*(R) consider the following subsets of I!(R):

Jyo= {feL‘(Rn lim ﬂ 1 * ()l dx = 0},
n— oo 0
1 [}
s, = {feum)l lim ;J 1 * ol dx = 0},

T, ={feB(R)|ggg2injj If*(p(x)ldx=0}.

Clearly, J, = J,. nJ,_. A straightforward calculation shows that Jo+rJp-,and
hence J,,, are closed ideals in L' (R). One defines the positive Wiener spectrum
o, (p) of ¢ as the zero set of J, . The negative Wiener spectrum o, (¢) of ¢ is
defined to be the zero set of J, _. Finally, the two-sided Wiener spectrum o,,(¢) of
@ is, by definition, the zero set of J,,.

Specializing Lemma 2.1 to J,,, and J,_ we get
(2.1) ou(@) =0, (@)U o, _(9)

Moreover, from the obvious inclusions I, = 4,, < J,, and from Proposition
2.2, it follows that

2.2 0w+(9) = 6%(9) < a(0).

Our final proposition in this section states that the one-sided Wiener spectrum
is unaffected by the values that the underlying function takes on the other half
axis. We let k, denote the characteristic function of S.

2.3 PROPOSITION. Let ¢ € L°(R). Then the following assertions are true:
@) 044+(@) =0, .+(xp+9)
(b) o,,-(9) = 0,,_(Kg-9).

Proor. For every fe!(R)and neN,

f 1f (i @)l dx < L”lf*(xn- Q)0 dx + L I * 000l dx.

1 n
Moreover, lim f *(kg- @)(x) = 0 and so lim ;f If *(kg- @)(x)|dx = 0. Sup-
X = n=* o0 0

pose that f eJ, . Then the preceding calculation shows that feJ,, ... Hence
Jy+ € Ji,. e+ By a similar reasoning, we obtain the opposite inclusion. This
proves (a). The proof of (b) is quite analogous.

In the next two sections we will mainly consider positive Wiener spectra. Most
of the results that will be obtained hold with obvious modifications for the other
Wiener spectra.
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3. Spectral analysis for the Wiener spectrum.

Let ¢ € L*(R). By the dual form of Wiener’s Tauberian Theorem, a(¢) is empty
if and only if ¢(x) = 0 a.e. Obviously, this is not true for the positive Wiener
spectrum. For example, any bounded function ¢ that is asympotically zero on

. N ...
the average, in the sense that lim _n—J‘ |@e(x)|dx = 0, has an empty positive
0

n- oo

Wiener spectrum. This follows from the fact that then J,, = L*(R). See Be-
nedetto [1, Example 3.1]. But g, , (@) may be empty even if ¢ is not asymptoti-
cally zero on the average. As an example, consider ¢(x) = €*** (x € R). For every
fel)R), f*o(x) = o(x)(f@)" (2x) and therefore, by the Riemann-Lebesgue
Lemma, f * ¢ vanishes at infinity. Thus even the asymptotic spectrum of ¢ is

1
empty, although - J |o(x)|dx =1 for every neN. However, for uniformly
0

continuous functions the sufficient condition stated above is also necessary:

3.1 THEOREM. Let ¢ e BUC(R). Then o,,.(¢p) is empty if and only if
1 n
(@) lim —J lo(x) dx = 0.
n—-o N 0

PROOF. Let us assume that o,, . (¢) = 0. Since J,,, is a closed ideal in L (R), it
follows from Wiener’s Tauberian Theorem that J,. = L*(R). Pick any ¢ > 0.
By the uniform continuity of ¢ one can find a function feJ,, such that
l¢ —f*@|lL=r < e Then for every neN

irltp(x)ldx<e+ijnlf*<p(X)Idx
nJo nJo

Hence, lim sup—rll— J |o(x)| dx £ ¢ and (i) follows.
n— oo 0

3.2 COROLLARY. Let ¢ € BUC(R)and f € L'(R). Suppose that f(t) % 0 for every
teR and that lim ij |f * (x)|dx = 0. Then ¢ satisfies the condition (i) in
n-+o N 0
Theorem 3.1.

Another corollary of Theorem 3.1 deals with bounded measures. Let M(R)
denote the space of bounded Borel measures on R. Recall that the Fourier-

Stieltjes transform, fi, of a measure u € M(R) is defined by fi(x) = j e "™ du(t)

(x€R). It is shown in Hewitt and Stromberg [5, Example 3] that

(3.1) lim j iR dx = 3 (e
n-— oo 0

teR
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If one combines (3.1) with Theorem 3.1, one gets the following result:

3.3 CorOLLARY. Let pe M(R). Thena,, (i) is empty if and only if u is continu-
ous.

. . . U B
Proor. By (3.1), uis continuous if and only if lim —’I-J |f(x)|1? dx = 0. On the
0

n-* oo

e . . . .
other hand, lim ;I |(x)|? dx = 0 if and, by the Schwarz inequality, only if
0

n—* oo

l n
lim —;J |i(x)| dx = 0. An application of Theorem 3.1, justified by the uniform
n— 0

continuity of j, then completes the proof.

It should be observed that Corollary 3.3 does not hold for the asymptotic
spectrum. That is, there exists a continuous measure whose Fourier-Stieltjes
transform has a nonempty asymptotic spectrum. To see this, take any continuous
measure u for which }1_{1:0 sup |f(x)| > 0 and then use Theorem 15.6.2(i) in [4].

The following theorem collects some elementary properties of the positive
Wiener spectrum, all shared by both the weak* spectrum and the asymptotic
spectrum.

3.4 THEOREM. Let ¢ € L*(R), Y € L°(R), fe L'(R), ae C\ {0} and yeR.
Then the following assertions are true:
(@) a,,+(p) is closed.
(b) 0,+(ag) = 0,+(1,0) = 0,,+(pe”) — y = 7,,.(9).
© ows(@n{teR| (1) 0} c 0, (f*0).
(d) 0+ (f*9) = supp(f) N a4 ().
€ ouwile +¥) <o, (@)Uo,. ()
() If 0,+(@) N0, () = O, then 0,4 (¢ + ) = 0,,4(9) U 0, + ().
®) If 00s(@ —Y) = 0, theno, (¢) = 0,,¥)

PrOOF. The easy proofs of (a)—(f) are omitted, and (g) follows from (f).

3.5 CorOLLARY. Let ¢ € L°(R), y € L*(R) and suppose that lim _rln’J‘ lo(x) —
n—w V]
Y(x)|dx = 0. Then 5,,.(¢p) = 0,,+ ().

PROOF. As noted above, Ji,_,,+ = L'(R), or 0,,.(¢ — ¥) = @. Now apply
Theorem 3.4(g).

3.6 CorOLLARY. Let ¢ € L*(R) and suppose that for some ae C

] lim -—l—f lo(x) — aldx = 0.
n=o n Jo
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If a =0, then o,,.(p) = O, otherwise o,,,(¢) = {0}.

In particular, if li_p1 ¢@(x) exists, then (i) holds with a = lim ¢(x).

PrOOF. Define y/(x) = a(xeR). If a = 0 then g, , () = O, otherwise o,, . (Y) =
{0}. Then use Corollary 3.5.

3.7 REMARK. Itis well known that a(ey) <= a(@) + o) for every ¢,y € L*(R).
However, this is not true for the positive Wiener spectrum. For example, take

@(x) = Y(x) = ¢~ (xeR). Then ¢, . (py) = {0}, but 7, (@) + 0, (@) = 0.

Let BUC!(R) = {¢ € BUC(R)| ¢ is differentiable and ¢’'€ BUC(R)}. The
following theorem relates the positive Wiener spectrum of a functionin BUC! (R)
to that of its derivative. See also Theorems 15.4.18 and 15.6.3(v) in [4].

3.8 THEOREM. Let ¢ e BUC'(R). Then g,,,(¢') < 0,,+(¢) < a,,.(¢") U {0}.

PROOF. Let us first show that J,,. < J,, .. Let (m),n be an approximate unit
on R, that is, ,(x) = kn(kx) where n is a rapidly decreasing C*-function such that
#(0) = 1. Then

¢’ = lim n,*x " = lim n, * o,

uniformly on R. Therefore, f* ¢’ = klim . * f * @ uniformly on R, for every

feL}(R). Now suppose that fe€J, .. Then for every ke N

lim — f ini* £ * o(x)|dx = 0.

n-o N 0

1 n
It follows that lim ;J‘ |f *¢'(x)|dx =0, or feJ, .. Hence J,, = J,, and
n-—* oo 0

consequently ., ,(¢') < 0, +(®).

To prove the second inclusion, suppose that teR\ (g, (¢") U {0}). Take
a rapidly decreasing C®-function f such that f(t) # 0 and supp (f) N 0,,.(¢") =
0. It follows from Theorems 3.4(d)and 3.1 that f € J, , or,equivalently, f'eJ, .
But ﬁ (t) = it f(t) % 0 and, therefore, t ¢ o, . (¢). Hence g, () < 0,,.(¢") U {0}.

Recall that, by (2.2), 6,,+(¢) = 6®(¢) < a(¢p) for every ¢ € L*(R). A partial
converse is provided by the following proposition.

3.9 PROPOSITION. Let ¢ € L°(R) and suppose that t is an isolated point of ().
Then tea,, . (). In particular, t € a®(p).

Example 3.19(b) below shows that 6 () may have isolated points that do not
belong to o, . (¢).
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PROOF. Itis well known that ¢ admits the unique decomposition ¢ = ae” +
where ae C\ {0} and t ¢ o(y). Apply Theorem 3.4(f) to conclude that te 5, , ().

Proposition 5.2(a) in Benedetto [1] shows that a(¢) = 7,,(¢) for every ¢ that is
uniformly almost periodic. This is true for one-sided Wiener spectra as well:

3.10 PROPOSITION. Let ¢ be uniformly almost periodic on R. Then o(¢) = 0., . ().

PrOOF. Suppose we have J,, < I,. Then a(¢) < o,,.(¢) and hence the con-
clusion follows from (2.2).

Let us show that J,, < I,. Take any fe J, .. Suppose that || f * @[ =®, > 0.
Since closed ideals in I!(R) are translation invariant, we may assume that
|f * ¢(0)] > 0. On the other hand, f * ¢ and therefore also |f * ¢| are uniformly
almost periodic. Then the proof of Lemma VI.5.14 in Katznelson [6] shows that
lim sup% J |f *o(x)|dx > 0. But this is impossible, since feJ,,. Thus

0

n—* o0

Jor 1,

(4

3.11 CoROLLARY. Every closed subset of R is the positive Wiener spectrum of
a bounded function.

ProoF. Use Proposition 3.10 and the well-known fact that there exists a uni-
formly almost periodic function whose weak* spectrum coincides with any
preassigned closed subset of R.

3.12 COROLLARY. Let ¢ be weakly almost periodic on R. Then o, () =
Oy (9).

ProOOF. Recall that ¢ admits the unique decomposition ¢ = ¢, + ¢, where
1 (" .
¢, is uniformly almost periodic and lim EJ |@1(x)|dx = 0. See Eberlein
[3, Theorem 1]. By Corollary 3.5 and Proposition 3.10 respectively,

0, +(9) = 0,,.(0,) = o(py).

Another application of Proposition 3.10 and Corollary 3.5 (for the negative
Wiener spectrum) yields

o(¢y) =0, -(¢y) = 0, ().
Hence o,,+(¢) = 0,,-(9).

Corollary 3.12 is not true for the asymptotic spectrum. In fact, there exists
a nonnegative weakly almost periodic function ¢ such that lim sup ¢(x) > 0and
X

such that ¢(x) = 0 for every x < 0. See the proof of Theorem 4.3.6 in Dunkl and
Ramirez [2, pp. 44-45]. Hence the negative asymptotic spectrum of ¢,0~ (@),
defined e.g. as the zero set of the closed ideal {fe L'(R)| lim f*¢(x) = 0}, is



SOME RESULTS IN SPECTRAL ANALYSIS AND SYNTHESIS AT INFINITY 267

empty. But, since ¢ is uniformly continuous and lim sup ¢(x) > 0,5%(¢) is

nonempty.

However, for Fourier-Stieltjes transforms (a subclass of weakly almost peri-
odic functions) the analogue of Corollary 3.12 does hold: A classical theorem due
to Rajchman says that, given ue M(R), x!jx:nq) fi(x) = 0if and only if ll_p; fi(x) =0.

(The proof hinted at in Rudin [9, Exercise 6.7] extends without difficulty from
[0, 2m) to R.) On the other hand, for every f € L!(R) f * jiis also a Fourier-Stieltjes
transform. Therefore, by Rajchman’s theorem, lim f*j(x) =0 if and only if

lijn S * fi(x) = 0. Thus we obtain the following:

3.13 THEOREM. Let ue M(R). Then o~ *(fi) = a®(i).

Note that, conversely, Rajchman’s theorem can be deduced from Theorem
3.13. For example, if lim ji(x) = 0, then 6®() = @ and, therefore, ¢~ °(j1) =

0 also. From the uniform continuity of f it then follows that lim A(x)=0.

We are now in a position to characterize the bounded and uniformly continu-
ous functions whose positive Wiener spectra are “small” (e.g. finite). Our charac-
terization in Theorem 3.16 below is very similar to that given in Gripenberg et al.
[4, Theorem 15.6.2] for the asymptotic spectrum. In their characterization,
asymptotically slowly varying and asymptotically drifting periodic functions
appear. These are defined as follows. Let ¢ e BUC(R). One says that ¢ is
asymptotically slowly varying if for every yeR }gg I(z,¢ — @)(x)l = 0. The
function ¢ is called asymptotically drifting periodic with period p if Jljrolo
Iz, — @)x)| = 0. Let us take the average of |t,@ — ¢| on R* and call ¢ asym-
ptotically slowly varying on the average if

3.2) lim %jn l(zy¢ — @)(x)|dx =0 (yeR).
n=* oo 0

Similarly, let us call ¢ asymptotically drifting periodic on the average with period
p if
L
(3.3 lim ;J. Iz, @ — @Xx)ldx = 0.
n= oo 0

Obviously, every function that is asymptotically slowly varying is asymptotically
slowly varying also on the average.
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3.14 PROPOSITION. Let ¢ e BUC! (R). Then ¢ is asymptotically slowly varying
on the average if and only if

. L1
(i) lim —J l@’(x)ldx = 0.
nson Jo
PROOF. Let us assume that ¢’ satisfies (i). For every ye R and ne N

1 (" n y
1 f I f | f ¢/(u + x)dul dx
njo njo Jo

max(0,y) 1 n
< j —-[ |@'(u + x)| dxdu.
0

min(0,y)

Therefore, it follows from the dominated convergence theorem and condition (i)
that ¢ satisfies (3.2).

Conversely, suppose that ¢ satisfies (3.2). Define f = k_ 3,0, + K(-1,0)- Then
for every xe R

If *o'X)| <tz — OXX)| + (T, @ — oXx),

1{" . .
so that lim o f |f * @'(x)ldx = 0.Butitis easily seen that f(t) + OforeveryteR.
n— oo 0
Therefore, by Corollary 3.2, ¢’ satisfies condition (i).
3.15 CoroLLARY. Let ¢ e BUC(R) and pe R, and define

Wx) = j "oy (xeR).

X

Then  is asymptotically slowly varying on the average if and only if ¢ is asymptoti-
cally drifting periodic on the average with period p.

ProoF. Y e BUC!(R)and §' = 1,9 — .
For the statements (a) — (c) of Theorem 3.16 below, recall that, by Theorem

3.1, 0,,.(9) + O if and only if lim sup%j lo(x)|dx > 0.
n—ae 0

3.16 THEOREM. Let ¢ e BUC(R). Then the following is true:

(@) 0,,+ (p) = {0} if and only if ¢ is asymptotically slowly varying on the average

and a,,. () + 0.

(b) to is an isolated point of 6,,, (@) if and only if ¢ is of the form ¢ = 0" + y,

where the function 6 is asymptotically slowly wvarying on the average,
0wt @)+ O anda, ., V) =0, (@\{to}-

©) 04+ (@) = {ty,....t} if and only if ¢ is of the form ¢ = Z 0,¢", where each
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function 0; is asymptotically slowly varying on the average and

Gus (0) + 0.
d) 0,4 (@) = {kto| keZ} for some ty % O if and only if ¢ is asymptotically drifting
periodic on the average with period 2m/t,.

Combining Theorems 3.16(d) and 3.8 one obtains the following:

3.17 CoroLLARY. Let ¢ e BUC!(R) and let pe R. Then ¢ is asymptotically
drifting periodic on the average with period p if and only if ¢’ is asymptotically
drifting periodic on the average with period p.

The proof of Theorem 3.16 is based on the following lemma:

3.18 LEMMA. There exists a sequence (hy).y in L (R) such that for every k, h, = 0
in aneighborhood of 0, and such that, given f € I} (R)with f(0) = 0, f = klim h* f

in I} (R).
Proor. Take any he L! (R) for which A = 1 in a neighborhood of 0. Define

hy(x) = kh(kx) — %h (%) (xeR, keN).

It is easily seen that each A, vanishes in a neighborhood of 0. Also, for every
fel}(R), f = klim kh(k-)* fin L} (R). Suppose that f (0) = 0. Then, by Fubini’s

© 1 (= x y) (x>|
S R A AV dyd
L‘(R)<j_wkj‘_w (k k k |f(y)l dydx

_ j Ie_yh— ki Lf O dy.

theorem,

Je+(e)-s

It follows that klim %h<i> * f = 0in ! (R). Therefore,

1
L (R)

1 .
1S = hex fllt < 1 = k() s fllan + “zh@ .

=o(l) (k— o).

PROOF OF THEOREM 3.16. (a) Let us assume that ¢ is asymptotically slowly
varying on the average and that g,,, (¢) + @. Choose an arbitrary f € L' (R) with
nonvanishing Fourier transform. It follows from the identity

(3.4) fxtyo—@)=0,f - f)*o
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that 7, f — feJ,, for every yeR. Take any teo,, . (¢). Then
@ f = @)= -1)=0 (yeR)

Since f (t) # 0, t must be 0. Thus a,,, (¢) = {0}.

Conversely, suppose that g,,, (¢) = {0}. Let f be as above. For every yeR
define g, = 7, f — f Then §,(0) = 0. Let (h,),n be as in Lemma 3.18. Then, by
Theorems 3.4(d) and 3.1,

1 n
(3.5) lim _n—J. [h* g, * @(x)|dx =0 (keN).
n— o0 0
But g, * @ = lim h, * g, * ¢ uniformly on R. Consequently, it follows from (3.5)
k- o0
and (3.4) that

n— oo

lim 1J'" 1f +(@5,0 — o)l dx = 0.
njo

Thus, by Corollary 3.2, ¢ is asymptotically slowly varying on the average.

(b) Let ¢ be of the given form. Then o, , (6) = {0} and hence, by Theorem
3.4(b), a,,, (0e"®) = {to}. It follows from Theorem 3.4(f) that t, is an isolated
point of g, , (¢).

Assume that t, is anisolated point of o, . (¢). One can find a function f € L' (R)
such that f =1 in some neighborhood U of t, and supp(f)n (o, (@)\
{to}) = 0.Define 6 = (f * p)e "> and Y = ¢ — Be"*. By Theorem 3.4(c),(d) and
(b), 6,,+ (0) = {0}. Therefore, 6 is asymptotically slowly varying on the average. If
ge L} (R) and supp(§) = U, then g = g * f in L' (R) and hence

gry=g*@—f*ro)=@—g*f)*e=0.
Consequently, since we assume that §(to) ¥ 0, toé¢o, . (¥). It follows that

Ows (W) = 044 (@\{to}-

(c) Apply (b) k times.

(d) Let ¢ be asymptotically drifting periodic on the average with period 2r/t,.
Then the proof of the first part of (a), with an obvious modification, shows that
0+ (@) < {kto| keZ}.

Conversely, let o,,, (p) < {kto| keZ}. First, assume that o, (¢) is finite. By
(©), @ isof the form ¢ = Y 6, €™ where each k; is an integer and each function

j=1
0, is asymptotically slowly varying on the average. Then

m
Taato ® = 9 = Y. (Fauu, 8 — 6) €,
j=1



SOME RESULTS IN SPECTRAL ANALYSIS AND SYNTHESIS AT INFINITY 271

e
so that lim ;j [(T2x/e, @ — @) (x)| dx = 0. Now suppose that o,, , (¢) is infinite.
(1]

n-* o

Pick any ¢ > 0. Choose f € L' (R) such that ¢ — f * ¢|| L2® < —;—and such that

supp (f) is compact. Then g, , (f * @) is a finite subset of {kt, | k e Z}. Therefore,

1 n
(3.6) lim ;J I(T2n, (f * @) — f % 9) (x)l dx = 0.

n—+o (1]

Since
I(T2011, @ = VXN < (20100 @ — T2mpo (f * @) (%)
+1C2ni, ([ * @) = [ @) X) + |(f * 0 — @) (X)|
<&+ (Tanp, (S *0) — f*@)(x)] (x€R),

. . 1" .
it follows from (3.6) that lim sup;J‘ (T2, @ — @) (x)] dx < &. Thus ¢ is asym-

n— o (1]
ptotically drifting periodic on the average, with period 2n/t,.
This completes the proof.

3.19 ExaMpLES. (a) Let us give an example of a function that is asymptotically
slowly varying (only) on the average. Let 6(x) = x;_, ,(x)sin (2nx), and define
o(x) = f Y. 68(u — 29du (xeR). Then 9 e BUC' (R) and

0 k=1

n [2logn] (*2k+4
J lp'(x)dx < Y j sin (2mx)| dx
o k=1

2%—3
= %[zlogn] =o(n) (n- o).

It follows from Proposition 3.14 that ¢ is asymptotically slowly varying on the
average. However, it is clear that ¢ is not asymptotically slowly varying. See also
Theorem 15.3.3(i), (iv) in [4].

(b) Let us give an example of a function @eBUC(R) such that
0w+ (¢) = 0 and 6® () = {0}. Thus, although 0 is an isolated point of 6% (¢), it
does not belong to a,,, (¢) (cf. Proposition 3.9).

X o 1 _ 2k
Let the function 6 be as in (a) above. Define ¢(x) = J Z IO(“ >du

0O k=1 k

(x € R). It is easily seen that ¢ e BUC! (R) and that ’!1_{1010 ¢@'(x) = 0. Therefore, o is
asymptotically slowly varying. Also,
1
lim suple(x)| = |92 = = (keN).

X = 00 n
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Now apply Theorem 15.6.2(ii) in [4] to conclude that ¢® (¢) = {0}. On the other
hand,

n (2logn] + 1 2"+'—§
J lpx)ldx < Y, o) dx
o k=1 2"—-2'
1 [2logn] + 1
<— Y k=on (n- o)
T k=1

Thus, by Theorem 3.1, g, , (¢) = 0.

Our final theorem in this section is the one-sided counterpart of Theorem 3.1 in
Benedetto [1]. Given ¢ € L* (R), put

Pn = K[n,n] ¢ (n € N)

3.20 THEOREM. Let ¢ € L (R). The positive Wiener spectrum of ¢ is the smallest
closed subset E of R with the following property. If K is any compact subset of
R such that K N E = @, then

i) lim if |@,(H)2 dt = 0.
n-+o N K

The proof of Theorem 3.20 will be based on Lemma 3.21 below. The counter-
part of Lemma 3.21 in the two-sided case is Proposition 3.2 in [1]. See also
Lemma 1 in Meyer [8, p. 192].

3.21 LEMMA. Let o€ L*(R) and f e }(R). Then

* o

@ lim | 1+ g ldx =0,

N

®) fim — | "If *(ca- 9 — @) dx =,
@© Jo

ro

© tm~|  Ifsouldx =0,

n=o n
J

-

1 a0
(d) f€J,, if and only if lim ;J. |f * @n(x)1>dx = 0.
PrROOF. (a) Take any &>0. Choose a function geL'(R) such that
Wf=gluw < ||(p||,}l(a)s and such that supp (9) = [ —a, a] for some a > 0. Then

f " 1f * a0l dx < r I = 9)* @ax)ldx + f " lg % on0) dx

n n

n+a

SIf=gluwleallLiw + f lg * @n(x)| dx

<ne+ alglLiw lolL=r)»
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. 1
and, therefore, "ll_g) sup-;f |f * @,(x)| dx < g, thus proving (a).

(b) Let f(x) = f(—x)(xeR). For every neN,
L 1 * (ke @ — @2)(x)| dx = j " Irf(x — Y)o(y)dyldx
0 n

< r o0 j Ay — x)ldxdy

n

< ”‘P"me)j lfl * K[O,n](y) dy.

Then take ¢(x) = 1 in (a), to obtain the desired conclusion.
(c) This is proved as assertion (a) above.
(d) By the proof of Proposition 2.3, J,,, = Ji,. 4+ For every neN

L Lf * (kpe @)(x)] dx = L IS * (kg @ — @,)(x) dx + L S * @n(x)| dx

and

Hireomra = (5[ yroworas)”

1 . .\
Suppose that lim —;j |f * @,(x)|*dx = 0. Then the two inequalities above,
n— oo

=
together with assertion (b), show that feJ, ., + = J, 4.
Conversely, let f € Ji,. 4 +- Then

o [co]

|f * @n(x)| dx

(“f"L'(R) "‘P”L”(R))_ ! j

—

If * @a(x)?dx < f

V] n
< f |f * on(x)|dx + J If *(kg+ @ — @n)(x)| dx
© 0

+ J |f *(kr+ @)(x)| dx + r If * @u(x)|dx = o(n) (n— o)
V] n

by (c), (b), the hypothesis and (a), respectively.

PROOF OF THEOREM 3.20. Take a compact K = R\ s, .+(¢), K + @. Let us
show that then (i) holds. Choose a function f e I}(R) such that f(K) = {1} and
such that supp (f) N o, (@) = 0. Then f€J,,, and therefore

if o0 dt <~ j " 170 éaor dt
n K n - 00
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2 a0
= —nﬁ f I *euldx = o(l) (n->0)

by Plancherel’s theorem and by Lemma 3.21(d), respectively.

Next, suppose that E is any closed subset of R with the property that (i) holds
whenever K is compact and K N E = 0. Let us show that ,,, (¢) = E. Suppose
this is not true, and pick any t, € g,,, (¢)\ E. Then choose a function fe I!(R) for
which f(t,) % 0, supp (f) is compact and supp(f) N E = @. Since

1r 1 * 0 (x)dx =ir 1706, (012 dt
nJ_. 2nn ) _

1 1 .
< o "}”lz,m(m;j @, (D)1 dt

supp (/)
=o(l) n— o0),

Lemma 3.21(d) shows that f € J,, . . But this isimpossible because t, € 5, .. (¢) and
](to) :*: 0. Hencev Ow+ ((0) c E.

4. Synthesis at infinity.

Let ¢ € I? (R). Recall thatif f € I! (R)and f = 0in a neighborhood of g, , (¢),
then, by Theorems 3.4(d) and 3.1,

1 n
4.1) lim ;j |f *@(x) dx = 0.
n— oo 0
In particular, if a,,, (@) = 0, then (4.1) is true for every f e L' (R). Similarly, if
fel!(R)and f= 0in a neighborhood of o (), then

4.2) }gn f*p(x)=0.

One is thus led to consider whether (4.1) will hold, if one merely assumes that
f vanishes on o, (¢), and whether (4.2) will hold, if it is only assumed that
f vanishes on ¢ (¢). Theorems 4.1 and 4.3 below provide answers to these
synthesis problems at infinity.

4.1 THEOREM. Let peL®(R) and feL!(R). Suppose that f (o, . (¢)) = {0}.
Then (4.1) holds.

The two-sided counterpart of Theorem 4.1 is contained in Benedetto [1,
Theorem 4.1]. Although our Theorem 4.1 is an easy consequence of that of
Benedetto, we will give a proof quite similar to that given in [1] for the two-sided
case.
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N
PrOOF. Let us show that lgn ;J |f *,(x)]*dx =0, and then apply

Lemma 3.21(d) to conclude that (4.1) is satisfied.

Take any ¢ > 0. There exist a compact K = R and an open U > a,,, (¢) such
that

VAGIRS \/%Il(/’ll @ (t€K L)

(K* is the complement of K in R). Then for every neN

1 (*® | S
@3 - j mlfwn(x)nzcix=mf_w|f<t)¢n(r>|2dt

£ 1 1 .
< — c—— 5 ()2 — 5 (1))2
<2 lolidn 5 Lwlmt)l i+ ancu(z) Gul0) dt

and

1 [
4.4 - X0l — 2
(4.4 " wan(t)l dt < f I

< @l w)

Furthermore, by Theorem 3.20, for every n large enough,

@4.5) 17O 012 dt < %

2nn Jgnue

It then follows from (4.3), (4.4) and (4.5) that
1 &)
;j If * @a(x)?dx < ¢

for every n large enough. This completes the proof.

4.2 COROLLARY. Let ¢ and f be as in Theorem 4.1, and assume that f * ¢ is
uniformly almost periodic on R. Then f x ¢ = 0.

Proor. By Theorem 4.1, f € J,,. Thus the conclusion follows from the proof
of Proposition 3.10.

The second problem posed above is more difficult. In fact, there exists
a bounded function that cannot be “synthesized’ from its asymptotic spectrum:

4.3 THEOREM. There exist a function ¢ € L* (R) and a function f e L}(R) for

which f(a°(¢)) = {0}, but lim sup|f * ¢(x)| > 0.

X —* 00
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However, note that, by (2.2) and Theorem 4.1, one has lim lj

nso n |,
|f * (x)ldx = 0.

The proof employs Malliavin’s theorem, i.e., the fact that there exist a function
Y eL”(R) and a function feL!(R) such that f(a(y)) = {0}, but f *y(0) + 0.
Furthermore, we require that

4.6) xlir;lw Y(x) = 0.

For the fact that there exists such a nonsynthesizable i, see Theorem 1 in Sedig
[10]. Now construct the function ¢ in Theorem 4.3 as follows. Let (a,),.y be
a strictly increasing sequence of positive real numbers such that
nlLrE) (a,+, — a,) = co. Let a, denote the midpoint of [a,,a, ;] (n€ N). Define

(P(X) = '/l(x - (1,,), a, < x < An+1 (neN)

and let ¢(x) = 0 for x < a,.

4.4 LEMMA. With the notation above, c®(¢) = a({s).

PrROOF. By the dominated convergence theorem, lim 7, ¢ =y weak* in
L*(R). Thus € I'(p), the limit set of ¢, and, therefore, a(y) = 6®(¢) by the
definition of 6*(¢). To prove the inclusion in opposite direction, let us show that

if ge ' (R) and g*y = 0, then lim g* ¢(x) = 0. Then I, = 4, and hence, by
Proposition 2.2, 6% (¢) < a(¥).

Take any ¢ > 0. Choose k, > O for which f

1x] >k,

€
lgCaldx < 1l 4 Then

for every xe R and neN

ke

4.7) lg* (x)l < % + f ) lgWl lo(x — y) — ¥(x — y — a,)l dy.

By (4.6) one can find an x, > 0 such that |y(x)| < Z— ligli (s, for every |x| > x..
Also, there exists an n,e N which has the property that
(4.8) a,—a,_; = 2x,+ k) (n=n,).

Suppose that xeR and x > a,,. Then

xe(aman + kc] U(an + knan+l - k:] u(an+l - k:’an+1]
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for some n > n,. If xe(a,,a, + k], then o(x — y) = Y(x — y — a,) for every
ye[—k.,x — a,). Therefore, the integral in (4.7) is equal to

ke
J gl le(x — y) — Y(x — y — a,)ldy

x-a,

= J ' lg(x — YWYy — o, - 1) — Yy — )l dy.

x—k,

By(4.8),y — a,-, > x,and y — a, < —x,forevery ye[x — k., a,]. It follows that
|g * o(x)| < & Byasimilar reasoning, |g * ¢(x)| < ¢if xe(a,+, — k., a,+ (] Finally,
if xe(a, + k,,a,,, — k.], then o(x — y) = Y(x — y — a,) for every ye[ —k,, k.].
€

Consequently, |g * ¢(x)| < 3

. Hence lim g* ¢(x) = 0.

PROOF OF THEOREM 4.3. Let ¢ and f be the functions obtained above. Then, by
Lemma 4.4, f(c*(¢)) = {0} and, by the dominated convergence theorem,
f*y(0) = lim f *p(a,). But f *y(0)+ 0 and hence lim sup|f * ¢(x)| > 0.

The proof suggests that there is a close relationship in spectral synthesis
between the asymptotic spectrum and the weak* spectrum. In this regard, see
Proposition 4.4 in Staffans [12].
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