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CHARACTERIZATION OF PERFECT
INVOLUTION GROUPS

TORBEN MAACK BISGAARD

0. Introduction.

By Herglotz’ theorem, every positive definite function on the group Z of
integers is the trigonometric moment sequence of a unique measure on the
unit circle. A slight change in the definition of positive definiteness leads to
the following result of Jones et al. [7]: If ¢: Z—> R is such that the kernel
(m,n) - @(m + n) is positive semidefinite, there is a measure u on R\ {0} such
that @(n) = | x"du(x), neZ. In this case the measure need not be uniquely
determined (an example of an indeterminate two-sided moment sequence is
[2,6.4.6]).

To place the moment problems of Herglotz and of Jones et al. into a common
frame, consider any abelian semigroup (S, +) with zero, equipped with an
involution s — s*. Call a function ¢: S — C positive definite if the kernel
(s,t) = (s + t*)is positive semidefinite, and let S* be the space of multiplicative
complex functions ¢ on S satisfying 6(0) = 1 and a(s*) = a(s). Two questions
arise:

Is it true that for every positive definite function ¢ on S there is a Radon measure
p on S* such that ¢(s) = [ a(s)du(a), se S?

If so, is p always uniquely determined?

We shall call S semiperfect if the answer to the first question is affirmative; perfect
if, in addition, the answer to the second question is affirmative.

Every bounded positive definite function on § is represented by a unique
Radon measure on $* (in fact concentrated on the bounded members of S*) [8].
Thus § is perfect if every positive definite function on S is bounded. This is so for
abelian inverse semigroups (with the natural involution), hence in particular for
abelian groups with the conventional involution s* = —s (the Bochner-Weil
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theorem for discrete groups) as well as for idempotent abelian semigroups
(semilattices) with the involution s* = s.

An involution semigroup admitting unbounded positive definite functions
may be perfect, non-perfect semiperfect, or non-semiperfect, as shown by the
following examples where the semigroup operation is addition and the involu-
tion is the identity (s* = s):

The semigroup Q, of nonnegative rationals is perfect [2,6.5.6]. So is
Q[2,6.5.10] and so, more generally, is every countable rational vector space (by
the countable direct sum theorem for perfect semigroups [2, p. 224]).

The semigroup N, of nonnegative integers is semiperfect (Hamburger’s the-
orem) but is not perfect since there are indeterminate moment sequences.

For k = 2 the semigroups N¥ and Z*, associated with the multidimensional
moment problem and its two-sided analogue, are non-semiperfect ([1],
[2,6.4.8]).

The purpose of the present paper is to characterize those abelian groups with
involution which are perfect, and those which are semiperfect. For each property,
it turns out, there are just two “forbidden *-homomorphic images”.

Section 1 contains definitions and basic observations. In Section 2 we establish
a key lemma, on extension of completely positive definite functions on countable
torsion-free abelian groups carrying the identical involution. The main theorem
is proved in Section 3, and Section 4 discusses, among other things, the prospects
of extension of the result to semigroups.

1. Preliminaries.

Every semigroup appearing in this paper is abelian, so (except when being
formal) we write just “semigroup” for “abelian semigroup”. The same applies to
“group”; thus “free group” means “free abelian group”. In the absence of any
indication to the contrary, the semigroup operation is addition (+).

A *-semigroup (S, *) consists of a semigroup S with zero and an involution, that
is, an involutory automorphism of S, written s — s*. If (T *) is another *-semi-
group, a homomorphism p: S — T is called a *-homomorphism provided that
p(0) = 0 and p(s*) = p(s)*. A *-subsemigroup is a subsemigroup containing 0 and
stable under the involution. The terms *-group and *-subgroup should be self-
explanatory.

A character on a *-semigroup S is a *-homomorphism of S into the *-semi-
group (C,-, 7), the bar denoting complex conjugation. The set of characters on
S is denoted by S* and is equipped with the topology of pointwise convergence.
We let E, (S*) denote the set of Radon measures (i.e. tight Borel measures) yu on
S* satisfying [ |o(s)| du(o) < oo for all se S, and define the generalized Laplace
transform £: E,(S*) - CS, written p— Lu, by Lu(s) = [o(s)du(o) for
ueE . (5*%),s€eS;if S has to be specified, we write % rather than just Z. A function
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¢: S — Cisamoment functionif ¢ = Luforsome ue E . (S*), any such uis said to
represent (. A moment function is determinate if it has only one representing
measure; otherwise, indeterminate.

EXAMPLE 1. Onevery group G the mapping s — —sis an involution, called the
inverse involution and denoted by —id. For this involution, what we call charac-
ters are the usual group characters, E,(G*) consists of all measures on the
compact space G* (= G), and & is just the Fourier transform.

ExXAMPLE 2. On every semigroup S with zero, the mapping s — s is an involu-
tion, called the identical involution and denoted by id. For this involution the
characters are those homomorphisms of S into (R,-) not identically zero. We
emphasize that even if the underlying semigroup is a group, characters need not
be bounded; so they are not the same as usual group characters. For example, the
characters on (Z, id) are the functions {,(x € R\ {0}) given by {,(n) = x"; of these,
only {, and {_, are bounded.

A complex function ¢ on a *-semigroup S is positive definite if for every choice
of finitely many s; in S the square matrix (¢(s; + s¥)) is positive semidefinite. The
set of positive definite functions on S is denoted by #(S). Every moment function
is positive definite since if ¢ = Ly, s;€S, and c;eC then Y c;co(s; + sf) =
13 c;o(s;)I*du(o) 2 0. If, conversely, every positive definite function on S is
a moment function, we say S is semiperfect. If every moment function on S is
determinate, S is determinate; otherwise, indeterminate. Finally, S is perfect if
every positive definite function on S is a determinate moment function (i.e., if S is
semiperfect and determinate). The following homomorphism theorems, count-
able direct sum theorem, and product theorem will be used later on:

Every *-homomorphic image of a perfect *-semigroup is perfect [2,6.5.5];

Every *-homomorphic image of a semiperfect *-semigroup is semiperfect (by
a variation of the proof of [2, 6.5.5]);

The direct sum of a sequence of perfect *-semigroups is perfect [2, p. 224];

The product of a perfect *-semigroup and a finitely generated semiperfect
*-semigroup is semiperfect [3].

(The involution on a direct sum of *-semigroups is understood to be the one
rendering the canonical embeddings *-preserving).

If p: S — Tis a *-homomorphism the dual mapping p*: T* — S* is defined by
p*(t) = top, e T* Now p*is continuous, so if vis a finite Radon measure on T*
then the image measure v** is a Radon measure on S*. If ve E,(T*) then
v e E (S*) and Z(v**) = (Zrv)op.

If S is a *-semigroup and ae S, we define the shift operator E,; C5 - C® by
E,o(s) = g(a + s) for ¢ € C5, seS. In particular, E, is the identity operator I on
C5. A function @: S — C is completely positive definite if every shift of ¢ (that is,
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every function of the form E,¢ with a€S) is positive definite. On a 2-divisible
semigroup (in particular, on a rational vector space) carrying the identical
involution, every positive definite function is completely positive definite.

LEMMA 1. Every shift of a positive definite function is a linear combination of
positive definite functions.

PROOF. Let ¢ € 2(S) and a€ S be given. The functions ¢, = (I + i"E, + i "E,,
1
4

Me

+ E,..)e (n=0,1,2,3) are positive definite and E ¢ = @y

[

2. An extension lemma.

In this section, U denotes a countable rational vector space. Every rational
vector space occurring in this section we consider with the identical involution
and make it a topological group by imposing on it the trace of the finest locally
convex topology on the enveloping real vector space.

LEMMA 2. For a subgroup X of U the following three conditions are equivalent:
(1) X isclosed in U,
(i) X N T is closed in T for every finite-dimensional subspace T of U,
(iii) There exist a subspace V of U and a free subgroup F of U/V such that
X = n~Y(F) where n: U — U/V is the quotient mapping.
Note. When (iii) holds, X is isomorphic to V x F [6, p. 74].

ProOF. The rest being trivial, let us show (ii) = (iii). Let (U,) be an increasing
sequence of finite-dimensional subspaces of U with union U. By the well-known
structure of closed subgroups of R%, for each n there exist a subspace ¥, of U, and
a free subgroup F, of U,/V, such that X n U, = =, *(F,) where n,; U, - U,/V, is
the quotient mapping. Define V = UV,. Forj < kwe have V; = ¥, n U;since V;is
the greatest subspace of U; contained in X;; it follows that V, = V n U, for each n.
Hence there are injective homomorphisms 1,: U,/V,— U/V such that
1,omn, = n|U,where n: U — U/V is the quotient mapping. Writing F = u1,(F,),
check that X = =~ !(F). Since the groups F n n(U,) = 1,(F,) are free, sois F [9, p.
378].

LeMMA 3. If X isasubgroupof U andif . X — R is completely positive definite
then @ is midpoint convex in the sense that (x + a) < }(¢(x) + @(x + 2a)) for all
x,aeX.

More generally, for all x,aec X,neN, and me {0, 1,...,n} we have

n—m

(1) o(x + ma) £ o(x) + % o(x + na).

n

Hence, if V is a subspace of U and if ¢: V= R is positive definite then



CHARACTERIZATION OF PERFECT INVOLUTION GROUPS 249

o((1 — Ax + Ay) = (1 — Deo(x) + Ap(y) for all x,yeV and 1€[0,1]n Q; it fol-
lows that ¢ is continuous.

Finally, if X is any closed subgroup of U and if ¢: X — R is positive definite then
@ is continuous.

NoTE. Inthe last statement, the assumption that X be closed is indispensable.

For example,if U = Qand X = {p/3*| peZ, ke N} then X admits discontinuous
characters, such as & given by &(p/3%) = (—1)".

ProOF. Concerning the first statement: Since E, ¢ is positive definite, the
mamx( Px)  o(x +a)
o(x + a) o(x + 2a)

and @(x + a) £ (@(x)e(x + 2a))* < He(x) + o(x + 2a)).

To show (1), note that the midpoint convexity of ¢ implies @(x + ka) <
Ho(x + (k — Da) + o(x + (k + Da)) for k = 1,...,n — 1. Multiplying the k’th
inequality by ((n — 2m)k + nm — n|k — m|)/2n and summing gives the desired
result.

For the third statement, recall that every positive definite function on a ra-
tional vector space is completely positive definite. Write 4 = m/n with reN,
meZ, ard apply (1) to X = V, a = (y — x)/n to get the inequality stated. The
continuity of ¢ follows by an argument similar to the familiar proof that every
conven firaction on a real vector space is continuous for the finest locally convex
topology.

To prove the last statement, take V, F, 7 as in Lemma 2. The cosets of V being
open in X, it suffices to show that for each coset A of V in X the function ¢ |4 is
continuous. This amounts to showing the continuity of E,¢ |V for some a € A. By
Lemma 1, E,@|V is a linear combination of positive definite functions on V,
hence continuous by what was shown above.

)is positive semidefinite, so ¢(x) = 0, o(x + 2a) = 0,

LEMMA 4. If X isasubgroup of U andif ¢: X — Riscompletely positive definite
then @ extends to a continuous function on the closure of X.

ProoOF. With no loss of generality, suppose that X spans U. In a first step,
assume U = Q* for some k e N. We shall show that for every bounded subset B of
X there exists a = 0 such that

() lo(x) — (Y| < allx — yll, forallx,yeB

with the notation ||z|, = max {|z,|,...,|z} for z = (zy,...,2,) € Q* The exist-
ence of the desired extension follows.

Since X contains a basis of Q, there is no loss of generality in assuming that
(1,0,...,0), ..., (0,...,0,1) are in X. Again with no loss of generality, assume
B = [—1,1]* We first show

&) lo(x) — @(0)| < clix|l, for all xe X n[—1,1*
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where ¢ = ksup {@(s) — ¢(0)|se { —1,0, 1}*}. It suffices to prove
o(x) — @(0) Sclx|, forall xe X n[—1,1]*

since this inequality applied to —x, along with the midpoint convexity of
¢ (Lemma 3), yields ¢(0) — ¢(x) < ¢(—x) — ¢(0) < ¢ ||x]| .

For convenience, reverse the signs of suitable coordinates such that the
coordinates of x = (x,,...,x,) are nonnegative. Put S = {0, 1}*. The subgroup
F of U generated by S U {x} is torsion-free and finitely generated, hence free, so
the set E = F N [0, 1]* is finite.

We shall construct a family (r,),.; of probability measures on E such that

4) t= f udn,(u)
) o) £ J pdn,
6) n, = ¢ ifand only if te S

where ¢, denotes the Dirac measure at t. Given t = (t4,...,t,) € E, choose s =
(s4,.-.,8)€Ssuchthat|t; — s;| < 4fori = 1,...,k. Then the pointr = 2t — sisin
E and the measure n, = 4(¢, + ¢,) satisfies (4). Moreover, (5) follows from the
midpoint convexity of ¢, and (6) holds since if t ¢ S then t § s whereas if t € S then
the choice of s forcesr =s = t.

Define a sequence (y,),»o Of probability measures on E by py =¢, and

Hns1 = 2, Ua({t})m,; choose an accumulation point u of (u,). By (4),(5), induction,
teE

and going to the limit,

0 x= J tdu(t)
®) o(x) £ pr du
9 u=Y u{thn,.

teE

From (6) and (9) it follows that u(S) = u(S) + Y, u({t})n,(S), thatis x,(S) = 0for
teE\ S
all tesupp (u)\ S. Suppose supp (u)\ S is nonempty and choose a vertex v of the

polytope conv (supp (1)\ S). Since v is in supp (u)\ S, we have 7,(S) = 0. From (9)
it follows that supp (n,) = supp (u); so supp (n,) < supp (u)\ S. This fact together
with v = [udn,(u) and the choice of v implies 7, = ¢,, contradicting (6).
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The contradiction shows that u is concentrated on S. Now (7) and (8) imply
o(x) — o(0) = j((p(t) — @(0))du(t) £ k™ *cu(S\ {0}). The desired inequality fol-
lows since p((S\ {0}) < (X s)du(s) £ Y [sdu(s) = ¥ x; < k ||x| . This proves
A3).

To derive (2), let x,ye X n[—14,4]* be given and assume x # y. Denote by
n the greatest integer such that |[ny — (n — 1)x||, < 1. Then

(10) nlly —xllq =lny — x)lo 2 ll(n + Dy — nxllq, — Iyl > %
Because x and ny — (n — 1)x are in X n [ — 1, 1]%, the inequalities (3), (10) imply
olny — (n — 1)x) — o(x) < |p(ny — (n — 1)x) — @(0)] + |p(x) — ¢(0)]
sclny—(n— x|, +clixl, £ 2c S nally — x|,

where a = 4c. Combine this with (1) (applied to a = y — x, m = 1) to obtain
@(y) — @(x) S ally — x|, A similar argument gives ¢(x) — @(y) < allx — yll o,
proving (2).

In the general case, use the axiom of choice to find a pair (Y, @) consisting of
asubgroup Y of X containing X and a completely positive definite function ¢ on
Y extending ¢, and maximal for the natural ordering of such pairs. Let (U,) be an
increasing sequence of finite-dimensional subspaces of U with union U. By the
first part of the proof, for each k the function @ | (Y U, ) extends to a continuous,
hence completely positive definite, function @, on (Y n U)~. Evidently &; =
D, |(Y nU;)~ forj < k; so @ extends to a completely positive definite function on
(U(Y n U,)~. The maximality of (Y, ®) now implies Y = (J(Y " U;)~. By Lemma
2 it follows that Yis closed, so Y = X. By Lemma 3, & is continuous.

REMARK 1. The appeal to the axiom of choice in the proof of Lemma 4 is
convenient, but not necessary. By an appropriate choice of seminorms to replace
I Il», the above proof of the finite-dimensional case can be extended so as to
cover the general case.

3. The result
One more lemma is needed for the proof of the theorem:

LEMMA 5. Nouncountablerational vector space carrying the identical involution
is semiperfect.

PrOOF. Let the space in question be Q) for some set I. Consider the function
o: QY - R given by

@(s) = exp (% Y s,’) for s = (s;)e Q.

iel
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Denoting by y the lognormal distribution, we have

W) = Iexp <-,s>d(® y), se@’
jeJ
for every finite subset J of I, identifying {se Q" |s; = 0 for i¢ J} with Q’; here
{+,) is the standard inner product on R’. Hence ¢ is positive definite. If Q¥ is
semiperfect it follows that

o(s) = ICXP (,sddp, seQ?

for some Radon probability measure p on R!. For any finite subset J of I, the

image measure p™ under the projection n;: R’ — R, like the measure ® y,
represents ¢ | Q’; by the perfectness of Q’ it follows that y™ = ® 7. Thuslsuj is
a Radon product measure ® y. Since an uncountable family ofJ;J()ncompactly
supported Radon measuresleéannot have a Radon product measure, it follows
that I is countable.

THEOREM. Let G be an abelian group with involution and let W be a rational
vector space, the dimension of which is the smallest uncountable cardinal; consider
W with the identical involution.

(i) G is perfect if and only if neither W nor (Z, id) is a *-homomorphic image of G.

(i) G is semiperfect if and only if neither W nor (Z2, id) is a *-homomorphic image
of G.

PrOOF. Since (Z, id) is not perfect (see §0) and since neither (Z2, id) nor W is
semiperfect (§1 and Lemma 5), necessity of the conditions follows from the
homomorphism theorems (§1).

In what follows we assume that neither (Z2, id) nor W be a *-homomorphic
image of G, and show that G is semiperfect. That done, we shall complete the
proof by showing that if (Z, id) is not a *-homomorphic image of G then G is
determinate.

Considering the quotient groups S =G/{s+ s*|seG} and T=
G/{s — s*|se G} with the inverse involution and the identical involution, re-
spectively, see that the quotient mappings are *-homomorphisms.

Let U be the enveloping rational vector space of the greatest torsion-free
quotient group of T, and let p;: G— S and p,: G — U denote the canonical
mappings. Equip the product group S x U with the involution (s, u)* = (—s, u)
and define a *-homomorphism p: G— S x U by p(x) = (p,(x),p,(x)). Let
ny: S x U—>Sandn,: S x U - U be the projections and note that p, = n, op,
P2 =T 0pP.
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The rational vector space U is countable-dimensional. To see this, choose
a family (e;);c; in G such that (p,(e;)) is a linear basis of U. If J is uncountable,
choose a mapping m of J onto W and let M: U —» W the Q-linear mapping
determined by M(p,(e;)) = m(j). The *-homomorphism M o p, maps G onto W,
contrary to assumption.

The proof that G is semiperfect consists in several steps:

(a) Every positive definite function on G factors through p.

That is to say, every positive definite function on G is constant on each coset of
the kernel ker (p). By Lemma 1 it suffices to show that every positive definite
function on G is constant on ker (p). Let ¢: G — C be positive definite and define
¥ = ¢|ker(p).

Since ker (p) < ker (p,) = {s + s*|se G} and since E,, ¢ is positive definite
for each se G, the function ¥ is completely positive definite.

To show y(a) = y(0) for any given a € ker (p), note that ker (p) = ker (p,), so the
definition of p, gives ka = s — s* for some ke N and se G. Choosing te€ G such
that a =t + t*, we find a = a* and 2ka = ka + ka* = s — s* + (s — s*)* = 0.
The function ¥ defined on (Z, id) by ¥(n) = y(na) is completely positive definite,
hence midpoint convex (Lemma 3). Since ¥ is periodic it follows that ¥ is
constant. In particular, Y(0) = ¥(0) = ¥(1) = Y(a). This proves (a). Obviously
the function on p(G) involved in the factoring will again be positive definite.

In the following we consider S x U with the product of the discrete topology
on S and the topology on U from §2. Let H be the closure of p(G)in § x U.

b) Every positive definite function on p(G) extends to a unique positive definite
Sfunction on H.

We first show that every positive definite function on p(G) extends to a continu-
ous (hence positive definite) function on H. The cosets of {0} x U being open in
S x U, it suffices to show that for any positive definite function ¢ on p(G) and any
coset A of {0} x U the function ¢ | (p(G) N A)extends to a continuous function on
(p(G) n A)~. Thanks to Lemma 1, we need only consider the case 4 = {0} x U.
Now p(G)n A = p(ker(p,)) = p({s + s*|seG}) = {t + t*|tep(G)}, so E,p is
positive definite for each ae p(G) N A and therefore ¢ | (p(G) N A) is completely
positive definite. Identifying p(G) n A with a subgroup of U in the natural way,
we get the result by Lemma 4.

Since H n ({0} x U) is isomorphic to a closed subgroup of U, every positive
definite function on H n ({0} x U) is continuous (Lemma 3). Using again
Lemma 1 and the fact that the cosets of {0} x U are openin S x U, we find that
every positive definite function on H is continuous, proving the uniqueness
statement of (b).

Define K = S x n,(H) and note that K contains H.
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(c) Every positive definite function on H extends to a positive definite function
on K.

Observe that for se S and ye H we have (s, t,(y)) + (s, 72 (y)* = (0,27,(y)) =
y + y*. Hence
(11) {x + x*|xeK} ={y + y*|yeH}.

Now let ¢: H— C be positive definite and define &: K - C by &|H = ¢,
@|(K\ H) = 0. We claim that @ is positive definite. This is equivalent to saying
that whenever « is a complex measure on K with finite support then

Jldsd(a*o?) =20

where * denotes convolution and the adjoint operation ~ is defined by conjugate
linearity and the condition that £, = ¢, for Dirac measures ¢,.

If x,,...,x, are representatives of the finitely many cosets of H meeting the
support of a (x; and x; representing distinct cosets if i  j) then

n
a= & *p
i=1
where each f; is a complex measure on H with finite support. Hence
n
axo = Z ex‘+x}*ﬁi*ﬁj’
i,j=1

Terms with i & j are supported by cosets of H other than H itself since if
x; + xje H then (11) gives x; — x; = (x; + x}) — (x; + xj)€ H. The remaining
terms are supported by H since (11) implies x; + x} € H. It follows that

(a‘&)IH = Z 6x,+x?‘ﬁi‘B'l‘
i=1

Using (11), choose y,,...,y,€ H such that x; + x; = y; + y;. Seeing that the
measures y; = ¢, * f; are supported by H, use the positive definiteness of ¢ to

conclude J.tbd(oc *xd) =) f@“?z *7) 2 0.
i=1

(d) K is semiperfect.

We first show n,(H) = p,(G). Since =, is continuous, n,(H) = n,(p(G)) =
7,(P(G)) = p,(G). For the converse inclusion, note that by Lemma 2 there exist
asubspace V of U and a free subgroup F of U/V such that p,(G) = n~ !(F) where
n: U - U/V is the quotient mapping. Since (0,2p,(x)) = p(x + x*)ep(G) = H
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for x € G, we have {0} x 2p,(G) < H. It follows that
(12) {0} x 2p,(G) = H,

hence 2p,(G) < n,(H). Also, p,(G) = n,(p(G)) < n,((G)) = m,(H). Since F is dis-
crete in U/V, the cosets of V are open in p,(G), so each of them meets p,(G).
Therefore

(13) F = n(p,(G))

and  py(G) = n"'(F) = p,(G) + V = p,(G) + 2V < p,(G) + 2p,(G) < n,(H),
proving m,(H) = p,(G).

Since n~'(F) is isomorphic to V x F, the *-group K is *-isomorphic to
§ x V x F, the first factor carrying the inverse involution and the other two the
identical involution. In view of the assumption that (Z2, id) not be a *-homo-
morphic image of G, (13) implies F = Z° with 6 € {0, 1}. In particular, F is finitely
generated and semiperfect. By one of the product theoremsin§1,S x V is perfect;
by the other it follows that K is semiperfect.

We are now in a position to prove that G is semiperfect. If ¢: G — C is positive
definite then by (a), (b), (c) there is a positive definite function @ on K such that
@ = ®op, and by (d) we have & = #v for some ve E . (K*). Hence v* € E , (G*)
and ¢ = Z(v™).

In the remainder of the proof we assume that (Z, id) not be a *-horomorphic
image of G, and show that G is determinate (hence perfect).

Referring to the proof of (d), see that the present assumption implies F = {0},
hence p,(G) = V. Since p,(G) spans U, it follows that ¥ = U. By (12), {0} x U =
{0} x 2U < H, and since S = p,(G) = n,(p(G)) < n,(p(G)) = =, (H), it follows
that H=S x U.

The mapping (o,v) = ¢ ® v given by ¢ ® v(s, u) = a(s)v(u) is easily seen to be
a homeomorphism of $* x U* onto H*.

Weclaim that p*: H* — G* (the dual of p: G — H)is a homeomorphism of H*
onto G*. To see that p* is one-to-one and onto, let y € G* be given. The character
7/lyl equals 1 on {s + s*|se G} and therefore has the form o o p, for a unique
o€ S*. The character |y| equals 1 on {s — s*|se G} and takes values in the
uniquely divisible group (J0, oo, -) and therefore has the form v o p, for » unique
ve U*. Now o ® v is the unique character on H satisfying y = p*(c ® v).

To see that p* ' is continuous, consider a net (s; ® v;) in H* such that
(p*(o; ® v;)) converges to some yeG*. Define s ®uv=p* '(y) and y, =
p*(7; ® v;). Given s€ S, choose x € G such that s = p,(x). Then a(s) = y,(x)/y:(x)|
= Y(x)/|n(x)| = a(s),so 6; — a. Given ue U,choose x e G and k € N such that ku =
P2(x). Then v,(u) = [y, (x)|'* = [p(x)|'" = v(u), so v; > v.

Next, we claim that if € E , (G*) then u?* "' € E . (H*). Given s S and ue U,
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choose x e G and k € N such that ku = p,(x). Then

1/k
L~ In(s, wldp™ " () = L‘ Gl duty) < u(G*)“““”‘< L* ol du(v)) :

proving the claim since the right side is finite by assumption.
We can now show that G is determinate. Since %;: E . (G*) - 2(G) is the
composite of the three mappings
E(GY) 7= E+(HY) —/— P(H) 5> 2(0),
it suffices to verify that each of these is one-to-one. Since p* "' is one-to-one, so is
u— pP* "' injectivity of %, is part of the fact that H = S x U is perfect. That
@ — dopis one-to-one was shown in (b).

The rational vector space appearing in the following consequence of the
Theorem is understood to carry the topology described in §2.

COROLLARY. A torsion-free abelian group carrying the identical involution is
perfect if and only if it is countable and is dense in the enveloping rational vector
space.

PRrROOF. Let G be the group in question and U the enveloping rational vector
space. The space W of the Theorem is a homomorphic image of G if and only if
G is uncountable (see the relevant portion of the proof of the Theorem). Now
assume that G is countable. By Lemma 2, G = n~ !(F) for some subspace V of
U with quotient mapping n: U — U/V and some free subgroup F of U/V. The
cosets of V being open in G, we have F = n(G). Since F is the greatest free quotient
of G then Z is not a homomorphic image of G if and only if F = {0}, which is
equivalent to G being dense in U.

4. Comments.

REMARK 2. Ifacountable *-semigroup S is *-divisible in the sense that for each
seS there exist te S and (m,n)e N2 with m + n = 2 such that s = mt + nt* then
S is perfect [4]. By the homomorphism theorem and the countable direct sum
theorem it follows that a countable *-semigroup is perfect if it is the sum of its
*.divisible *-subsemigroups. The condition is satisfied by countable abelian
inverse semigroups, by Q,, and by the perfect *-semigroups constructible from
these by means of the homomorphism theorem and the countable direct sum
theorem.

The purpose of the present remark is to point out the existence of a countable
perfect *-group which does not satisfy the above condition.

For a semigroup carrying the identical involution, *-divisibility is equivalent
to the condition that each element be divisible by infinitely many integers.
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Pontrjagin [9] exhibited an indecomposable torsion-free abelian group G of
rank 2 of which no nonzero element is divisible by infinitely many integers. This
group, when considered with the identical involution, is not the sum of its
*-divisible *-subsemigroups (or else it would have nonzero elements divisible by
infinitely many integers) but is nonetheless perfect since if Z were a homomorphic
image of G then G would be decomposable (cf. [6, p. 74]).

REMARK 3. A countable *-group is perfect (resp. semiperfect) if and only if (Z,
id) (resp. (Z?, id)) is not a *-homomorphic image of it. In the Theorem, an
uncountable identical-involution rational vector space occurs as a “forbidden
*-homomorphic image”, apparently because of the failure of the class of Radon
measures to be stable under the formation of uncountable products. To over-
come this by widening the class of representing measures permitted, agree to call
a *-semigroup S quasiperfect [4] if for each positive definite function ¢ on S there
is a unique measure y, on the o-field in S* induced by the evaluations ¢ — a(s):
§* — C (s€eS), such that ¢(s) = [ a(s)du(c), se S. Every *-divisible *-semigroup is
quasiperfect [4]. In particular, every rational vector space, with any involution
whatsoever, is quasiperfect. Thus, in order for a *-group G to be quasiperfect, the
condition that an uncountable identical-involution rational vector space not be
a *-homomorphic image of G is not necessary. The condition that (Z, id) not be
a *-homomorphic image of G is necessary. Whether it is also sufficient, we do not
know.

REMARK 4. Let S be a cancellative *-semigroup and G = § — S the quotient
group, with the involution extending that of S. Whether G is perfect, non-perfect
semiperfect, or non-semiperfect can be determined from our Theorem and it is
natural to examine to what extent the conclusion can be transferred to S.

If S is perfect, so is G, being a *-homomorphic image of S x S (cf. the proof of
[2,6.5.10]). It can be shown that if S is semiperfect, so is G.

The perfectness or semiperfectness of G, however, does not imply that S have
the same property:

The *-group G = (Z2, *) with the involution (m, n)* = (n, m) is semiperfect [3].
Yet its generating *-subsemigroup S = (N3,*), associated with the complex
moment problem, is not semiperfect [2, 6.3.5].

Boas [5] noticed that if a finite sequence ¢(0),.. ., @(n) is strictly completely
positive definite in the sense that the matrices (p(j + k));x<iy and

(@G + k + 1)); 4 g ens v are positive definite then for all sufficiently large choices

of (n + 1) the extended sequence ¢(0),...,¢(n + 1) is again strictly completely
positive definite. He inferred that every sequence ¢: N, — R satisfying a certain
growth condition is an indeterminate Stieltjes moment sequence. The method of
Boas can be applied to every discrete subsemigroup of [0, o[ and shows that any
such semigroup is indeterminate. So if S is a subsemigroup of Q. of the form
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S = {s0,51,...} WithO=sy <5, <...and s,,, — s, > 0asn— oo (suchas S =
{27*p12*k < p} = {0,1,3,2,3,3,%4,3,...})) then S is indeterminate (hence
non-perfect) despite the fact that G = S — S, being a dense subgroup of Q, is
perfect.

REMARK 5. By the Corollary in §3, a nonzero subgroup of (Q, id) is perfect if
and only if it is dense in Q. For a nonzero subsemigroup of Q., however,
denseness in Q , is neither necessary nor sufficient for perfectness: The non-dense
subsemigroup Q,\ 0, 1] can be shown to be perfect, and one can construct
a dense subsemigroup of Q, which is not perfect.
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