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PARABOLIC PSEUDO-DIFFERENTIAL
INITIAL-BOUNDARY VALUE PROBLEMS

VEIKKO T. PURMONEN

Introduction.

Let © be acompact and connected, n-dimensional C* manifold with boundary
I' and interior Q for some n = 2. Suppose that E and F, are complex vector
bundles over Q and TI', respectively, and let E* denote the trivial extension of E to
a bundle over @ x R,, i, E is lifted to E' by means of the projection
Q@ xR, —>Q, where R, ={teR:t=0}. In this paper we are interested in
studying parabolic initial-boundary value problems of the form

@+ PP +GC)+ ...+ (PP +GC"u=f inQxR,,
m-1

Y ¥T" Pu=g, onT xR, k=0,...,md—1(seel.2),
ji=0

dlul—o=h; InQj=0,..,m-1,

for sections u of E'. Here 0, = 0/0t, the operator PY from E to E is defined by
a classical pseudo-differential operator PY of order jd with the transmission
property at I', GY is a singular Green operator of order jd from E to E, and
T{™ =) is a trace operator of order k — jd 2 0 from E to F,. The number d, the
parabolic weight, will be an even positive integer.

Itis known that the existence of a solution u requires some kind of compatibil-
ity of the data f, g,, h;. From several related discussions we refer to
Agranovi¢-Visik [2], Donaldson [9], Iliev [18], Lions-Magenes [20] for the
point of view using the solvability requirement of a suitable subproblem, to
Bove-Franchi-Obrecht [6], Piriou [22] for the case of homogeneous initial
values, and to Grubb [12], Grubb-Solonnikov [14], LadyZenskaja—Solon-
nikov-Ural’ceva [19] Lions—Magenes [20], Rempel-Schulze [27], Visik-Eskin
[32] for the first order case (m = 1); see also Bogatova-Glushko [3], Can Zui
Ho-Eskin [7], Schulze [28], and confer for example Agranovi¢ [1],
Chazarain—Piriou [8] for related hyperbolic problems. Our main purpose is here
to find such compatibility conditions under which the problem is well-posed. So
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this work is an extension of our previous papers [24], [25], [26], which deal with
scalar differential operators and the quarter space R%, x R,.

In solving the problem we use the Laplace transformation method in the case
of homogeneous initial values. By means of an adapted Paley—Wiener-Schwartz
theorem this leads to a polynomially parameter-dependent elliptic boundary
problem in Q. A general theory for such parameter-dependent pseudo-differen-
tial boundary problems has recently been developed by Gerd Grubb in her
monograph [12]. Since we want to apply this theory to our special case, it is
convenient to formulate the problem following [12].

We shall work within the framework of standard Sobolev spaces (for functions
or sections of vector bundles). These and other preliminaries are declared in
Section 1. In Section 2 we consider polynomially parameter-elliptic
pseudo-differential boundary problems and state the crucial results needed from
Grubb [12]. The transition between parabolic problems with homogeneous
initial values and parameter-elliptic boundary problems depends on an appro-
priate Laplace transform calculus, which is given in Section 3. In Section 4 we
first derive the compatibility conditions which the data f, g,, h; have to satisfy, if
the general problem has a solution. The main result is then that these conditions
will also be sufficient for the well-posedness of the problem.

1. Notations.

1.1. Let|y| denote the Euclidean norm of ye R*or y = Re y + iIm y e C* with
k=1, and set {y> = (1 + |y|?)"/? for ye Rk, We write x = (X;,..., X1, %) =
(', x;) for the generic point of RY = R* = R*~! x R (with k = 2) and D, for the
differential operator —i d/0x;. The norm in a normed (complex) vector space H is
denoted by ||| 4.

1.2. We assume that the base manifold  is smoothly imbedded into a com-
pact and connected, n-dimensional Riemannian C* manifold X without bound-
ary. Let x and x’ denote points in 2 and I, respectively, and choose a normal
coordinate x, near I' such that I has (by indentification) a neighborhood in £ in
the form of the collar 2, =T x ]-22[ = {x = (¥, x,): X' €T, x,e 1—-2.2[}.
Moreover, X and I' are supposed to have positive C* densities dx and dx/,
respectively, satisfying dx = dx’'dx, in Z,. See, for example, Héormander [16],
[17], Rempel-Schulze [27], Treves [31].

It is assumed that there is a Hermitean complex C* vector bundle E over
 with fiber dimension N = 1 such that E = E|g. For the sake of simplicity it is
also supposed that similarly F, = F| for some Hermitean complex C*® vector
bundle F, over £ with fiber dimension M, = 0 (it is notationally convenient to
include here the case M, = 0). The bundle E over X', can be identified with its
lifting by the projection 2, — I' (see Hérmander [17, Section 20.1]), and hence
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the normal derivatives D)u = (—id/dx,Yu of sections u of E near I' are
well-defined. An analogous identification is done for the bundle F,. When
a special choice of manifold and bundle structures is allowed, it is supposed to be
done as in Grubb [12, Appendix], to which we refer for further details. Thus
especially:

(i) I' has a coordinate system x:I';—» X;, i=1,...,i;, and the collar

5 =TI x ]—2,2[ iscovered by the coordinate patches X; = I'; x ]—2,2[ for the
charts x;:Z; = X, = X; x 1-22[ with k(x',x,) = (k{(x),x,),i = 1,...,i,. For
other charts «;: Z; - X; with i; <i < iy (for some finite iz) the closures of the
coordinate patches Z; do not intersect I', 2; = Q and X; = R", for i, <i <i,,
and X; = \Q and X; < R" for i > i,, where R, = {(x’,x,)e R": x, 2 0}.

(ii) The bundles E and F, are trivial over every X; with local trivializations

'/’i3E|):""X.~ x CV,

ViiElp, > X;x C¥ for i=1,..,i,
and, respectively,

Ck,i:Fklzi_’Xi x CMk,

Cit Filr, = X x CMe for i=1,...,i

such that, for example, if x € Z; then Y (w) = (k(x), y; ,w) for we E_ with the fiber
isomorphism y, ,.: E, —» CV.

(ii)) The charts x;: Z; - X, are so chosen that the structures of cotangent
bundles can also be described suitably.

1.3. Let C*(X; H) denote the space of C* functions from an open subset X of
R* (or some C* manifold) to a Hilbert space H, and CZ(X; H) the space of
C®(X; H) functions with compact support in X. The symbol H = C will not be
indicated. Let ry : u> u|y be the restriction operator to X and ey the correspond-
ing extension by zero outside X. In particular, the restriction to x, > 0 is
generally denoted by r*, and the extension by zero to x, < 0 by e*. We then set

C*(X; H) = ry C*(R* H), C2(X;H) = ry C(R% H),
and

C*(X nRY; H) =r* C*(X; H), C2(X nRY; H) = r* C2(X; H).

Analogously we let, for example, C*(Z, E) denote the space of C* sections of the
bundle E over Z. Note that C*(Z, E) = CP(Z, E) because Z is supposed to be
compact.

We shall use the standard Sobolev spaces H* for s = 0, allowing however their
norms to depend on a complex parameter z (see [12], [15], [17], [20], [21], [23],
[27], [30], [33]). To fix these spaces it therefore suffices to define the basic space
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H:(R"). Note that in all cases the parameter-independent spaces H* are special
cases of H} for z =0, and that H} = H** in the notation of Grubb [12] with
U= |z'l/d‘

We set

Hi(R") = {ue #'(R"): (&, w)>* Fue L(RY}
with the norm
Null 2y = (S5 )>° F uall L2arys
where #'(R¥)is the Schwartz space of tempered distributions in R¥, the dual space
of #(R*). For the Fourier transformation # = &, _, we use the definition
(.g;u)(é) = j‘e—i(x@. +... +xk{k)u(x)dx-

Further, if X is an open subset in R¥, then H3(X) = r, H3(R*), equipped with the
infimum norm

lull gz gy = inf{[|vll gz (rry: 4 = ryv}

(in “smooth” cases the closure notation only points out the way of definition).
The definitions of the spaces H:(R¥ H) and H:(X; H) of functions valued in
a (separable) Hilbert space H are analogous. The closure of CP(R,;H) in
H¥(R,; H) is the space H(R.; H). In order to obtain a scale of interpolation
spaces (for s = 0), replace the space Hy(R ,; H),for s = k + 1/2 with ke N, by the
intermediate space [H§* (R ,; H), H§(R ,; H],,, provided with the norm

("““:r-(ﬁ“n) + "fUzaf“"il(m;m)”z,

and denote by H{y,(R ,; H) the Hilbert spaces so obtained (see [20], [24]). We
shall also need for p > O the space

HR,,p;H) = {ue 2(R,;H):e " ue H*(R ,; H)}
with the norm
||u||m(ﬁ,.p;u) = "e—ﬂ“"m(hmﬁ

the space Ho\(R ., p; H) is defined analogously.

The Sobolev space of order s for sections of E over X is denoted by H(Z, E).
For any choice of a (finite) system of local trivializations y,,..., ¥, of E and
a corresponding partition of unity ¢,,. .., ¢;, (see 1.2), the definition

iz
"u" 2 25.E) = Z " wi o (¢lu) “ fﬂ( Rm;CN)
i=1
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gives a norm of H(Z, E), where
Yiov =@ Nvy— Vi 1 UKi ')

(see [12], [17], [27]). Such norms are equivalent and H:(Z, E) is a Hilbert space
with respect to each of them; indeed, H:(Z, E) is the completion of C*(Z, E).
Analogously, a Hilbert norm for the space Hi(I', F,) of sections of F, over I' is
given by

iy
2
ey = 2 I 0@ g1 ooy
i=1

where ¢; = ry¢;. The space H(2, E) = ro HY(Z, E) is also a Hilbert space with
respect to the corresponding infimum norm. Recall that the trace operator
P :ursr.Di u(x, =0 in local coordinates) is continuous from H(Q, E) to
H:™I~YXr E)= H:~ /- V%I, E|) for s > j+ 1/2. The trace operator with re-
spect to the variable ¢t will be denoted by y,: v+ v|,,.

2. Polynomially parameter-elliptic operators and parabolicity.

The considerations in this section are adapted to our polynomially par-
ameter-dependent situation from the general theory of Grubb [12]. For further
details we therefore refer to this monograph,; see also Boutet de Monvel [4], [5],
Hormander [16], [17], Rempel-Schulze [27].

2.1 We shall consider an operator (system)

G C*(G, E)
@.1) A(z):[ "(Z)T(; (Z)]:C‘”(Q,E)-» x
c*(I', F)

where F stands for the directsum F, @ ... @ F,,;_ , the operator Py(z) is defined
by Pg(z) = rq P(z) eq With the polynomially parameter-dependent pseudo-differen-
tial operator

Pz) = 2" + 2" 1PV + ...+ P™:C=(Z, E) » C*(Z, E),
G(2) is the singular Green operator
G(z) = 2" 'GY + ... 4+ G™:C~(Q,E) » C*(Q, E),
and T(z) = (Ty(2))o sk<ma IS A trace operator with
T(2)=2""'T{" + ...+ T :C*(Q,E) > C*(I', F).

Here we assume that PY is a pseudo-differential operator of order jd from E to
E with the transmission property at I', G¥ is a singular Green operator of order jd
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and class r<jd from E to E, and T is a trace operator of order
r=k—(m—j)d Z0andclassr + 1 from E to F, and T = 0 for k < (m — j)d.
Such an operator A(z)is called a (parameter-dependent) Green operator, and it is of
order md, class £ md, and in general of regularity d (for P(z)) and v = 1/2 (for G(z)
and T(z)) in the sense of [12]. Recall that this means that for any system of local
trivializations (see 1.2) '/’iiflxi - X; x CN, Ceit Flr, = X x CMx the operators

PO 2): CRX )Y — C2(X ) :uy;0(P) (Y ou)),
G 2): CE(X; N R - C=(X; A RV ius §;0(G2) (Y ow)),
and
TENz): C2(X; N Ry = Co(XYMerums G jo (Tu2) (Y7 ' ow))
form a Green operator in the above sense (see also 2.2).

2.2. The parameter-ellipticity of the Green operator (2.1) is defined by means
of the interior and boundary symbols. For this, take a system of local trivializ-
ations as in 1.2, and let Y, 49 and 7’ denote generically the corresponding
local representations of PY, GY, and T¥, respectively. It is now assumed that (see
[5], [12], also for notation):

(i) 2V is a pseudo-differential operator with a symbol

pix, &)e Si(X;,R") @ L(C"; C"),

ie., pix,&) is an N x N-matrix formed, polyhomogeneous pseudo-differential
symbol of order jd with the transmission property at x, = 0.
(ii) %Y is a singular Green operator with a symbol

gAx, & &) €S (XR"L HY @ H,_ ;) ® L(CY; CY),

ie. g{x',¢,n,) is an N x N-matrix formed, polyhomogeneous singular Green
symbol of order jd and class r < jd.
(iii) 79 =0 for k < (m — j)d, and T with r = k — (m — j)d 2 0 is a trace
operator with a symbol
t(x', ¢, &,)eS(X;, R4, H,) @ L(CY; €M),

ie., t@(x, &) is an M, x N-matrix formed, polyhomogeneous trace symbol of
order r and class r + 1.
Thus it follows with z = u% that the parameter-dependent symbol

pe(X, &) = p(x,&,2) = 2™ + 2" T 1py(x, &) + ... + Pu(x, &)
is of regularity d, and the symbols

gO(x,’ 5’ Mns H) = g(x” 6’ Mns Z) = zm - 1gl(x” €9 r’n) +...+ gm(x,’ 69 "n)
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and
tox &) = t(x', &, 2) = 2" I (X, 8 + .+ (X, €)

are of regularity v = 1/2 (see [12, Proposition 2.3.14]), so that we have for all
0e[0,2nf[ (see [12, Sections 2.1-2.3])

pdx, & me Syt4(X,;, R", R ,) @ L(ICV; CY),
go(x', &', & M W) €S™ (XL, R L HY ® H_,R,) @ L(C™; CY),
teo(x &, & e SH(X,, R Hy R, @ L(CY; CMY),
The principal symbol
Po(x,&,2) = 2" + 2" ' pR(x, &) + ... + p(x, &)
is quasi-homogeneous in (&, z) of degree md in the sense that
po(x, 181%) = ™ pox,&,2) forT 2 1,1¢ 2 1,
and with it there is associated the (strictly quasi-homogeneous) interior symbol
Ph(x,& 2) = €™ p°(x, &/1€), 2/1El"), € + 0.
Similarly one associates the strictly quasi-homogeneous symbols g"(x’, &, 1, z)
and t'(x', £, z) for & # O (see [12, Section 2.8]) with the principal symbols
9°(x', &My 2) = 2" 1R, M) + .+ gulX, €M)
and
t3(x', &, 2)
ox', &,z) = [ : ] L 0,6 2) = 2" L E) + L+ MO, ©).
tma-1(X', &, 2)
Then the (strictly quasi-homogeneous) boundary symbol
P(x,0,¢, En2) + g*0, & L s Z)]
', &', &y 2)
defines, through the operator definitions with respect to x, (see [12, Section 2.4]),
the (strictly quasi-homogeneous) boundary symbol operator

ph(xl’ 0, CI, Dm Z)R,, + gh(x’! 6” Dm Z)
', &', Dy, 2)

a'(x', 8,6, 2) = [

ah(x” é’ D"S Z) = [

for x' e X}, & + 0, and
ah(xlyé’osz):y(R+)N—’y(R+)N X CM
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extends by continuity to a continuous operator

a'(x',&,D,,z): H™R )V - I}(R,)¥ x CM,
where #(R,)=r*#(R)and M =} M,.
k

With these concepts and notations it is now possible to give the definitions of
parameter-ellipticity and parabolicity.

2.3. DEFINITION. Let 0€[0,2n[ be given. The parameter-dependent Green oper-
ator A(z), given by (2.1), is (polynomially) parameter-elliptic ontheray z = p e with
p 2 0, if the local representations satisfy the conditions (i}(iii):

(i) The interior symbol p"(x,&,z):CN¥ — CN is invertible for all xe X; and all

(&, 2) # (0,0).
(ii) The boundary symbol operator

a'(x,&,D,,z): H™R ¥ - Z(R,)" x CM

is bijective for all & % 0, all z, and for all x'€ X;.
(iti) The boundary symbol operator a*(x', &, D,, z) converges in the first symbol
seminorms (see Grubb [12, Sections 2.1, 2.3, 2.8]) for & — 0 to a bijective operator

ah(xl’ 0’ Dm Z) : HMd(R +)N g LZ(R +)N x CM
for all z + 0 and all x"e X

Note that condition (i) is equivalent to the ellipticity of the symbol p(x, &, z)
because of positive regularity (see Grubb [12, Proposition 2.1.11]); positive
regularity is also used for (iii). Conditions (ii) and (iii) contain in an appropriate
sense generalizations for the Sapiro—Lopatinskii condition and the normality of
trace operators; for analysis of (ii) and (iii) see Grubb [12], [13].

2.4. DEFINITION. The operator

A@3) = (Po(d) + G(8), T(@3)) = [Pn(a,) + G(a,)}

T(3)
where P(0,) = P(0,)q = rq P(0,)eq,
P@)=ar+ar 'PY + ...+ P™,
G(@) =GV +... + G™,
T@)=0r TV + ...+ T™,

is parabolic, if the parameter-dependent Green operator A(z) = (Pg(z) + G(z), T(2))
is parameter-elliptic on every ray z = pe' with —n/2 £ 0 < n/2 (i.e., for all z with
Re z = 0).
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2.5 REMARK. The transmission property and the parabolicity imply that d is
even: if det (p°(x,0,0,&,, ) = 0, then also det (p°(x’,0,0, —&,,(—1)%z)) = 0.
Reasoning as in Grubb [12, Section 1.5], we see that the limit operator
a"(x',0, D,, z) in the convergence requirement (iii) of the parameter-ellipticity is of
the form
[ Spu(x)D™ + 25, (X)DI" 1 44 om 1

sg(x)y°
d-1

sy (X)) y

5::)— na(x W™ Mz Stm— };d(x'))’(m T 42 15};& nd(x’))’O

L S 1CW™ + zspZ RO L 2 sl T

where the s(x’) are N x N-matrices and the s{(x') are M, x N-matrices. The
differential operator can be reduced in a usual way to a system of first order
differential operators with the coefficient matrix S, which is an md x md-matrix
of N x N-blocks. It is known that

det(&,1 — S) = det(s,(x)Em™ + 25, ((X)EM 4 L+ 2™);

apply for example the generalized Gauss algorithm (see Gantmacher [10]). The
roots of this polynomial now appear in pairs, and hence we can conclude from the
bijectivity of the operator

a'(x',0,D,,z): H™R )V - P(R,)¥ x CMo x ... x CMma-1

that M = Y M, = 4+dmN.
k

Note also that the forms of the operators GY and TV are partly determined by
condition (iii) (cf. Grubb [12, Section 1.5]). In particular, the operator Ty with
r=k—(m—j)d = 0is of the form

where T} is of the class 0 and the coefficient s is a homomorphism from E| to
F,. Furthermore, the formulation of the second compatibility condition (II) on
the data will lead us to assume that the operators Sy} are differential operators on
I (see 4.5).
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2.6. In the rest of this section we suppose that the operator
A(0,) = (Pg(0,) + G(0,), T(,)) is parabolic. We shall need two basic results for the
corresponding Green operator A(z) = (Pg(z) + G(z), T(2)). The first one gives the
continuity.

2.7. THEOREM. For any s 20, the Green operator A(z) from C®(G,E) to
C*(Q, E) x C*(I', F) extends by continuity to a continuous operator

H3(Q,E)
X
P + + s+md—k—1
A(z)=[ "(Z)T(Z)G(Z)J:H; ""(Q,E)_»()é{]m Htmd—k=12( F)

with the norm bounded uniformly for all z, Rez = 0.

This result is essentially Corollary 2.5.6 in Grubb [12]. The uniformity of the
norm in z can be seen from the proofs of the local results preceding that corollary
or obtained easily by means of these local results and the fact that the operators
are polynomials in z.

2.8. In order to be able to apply the results of Grubb [12, Chapter 3] to the
Green operator A(z) = (Pg(z) + G(2), T(z)), we modify the trace operator T(z)
such that it is of order md, too. To this end, let — A4, denote the positive
Laplace—Beltrami operator on I'. As in Grubb [12, Section 3.3] we now define an
elliptic pseudo-differential operator A(z) from F to F by the diagonal matrix
diag(Amy- (D), , ... With A2) =(—4)™ + |z|2m)2mD where I, is the
identity on F,. Then it is easy to see that the operator

[T 0], . [Pa2)+ GG
At) "[0 A(z)] A‘z"[ T ]

with T'(z) = A(z) T(z) is a parameter-elliptic Green operator of order md (in both
entries), and T(z) and T'(z) are of the same regularity. Thus if follows from Grubb
[12, Chapter 3] (see especially Theorem 3.4.1) that the operator A'(z) has
a parametrix

C*(2,E)
B(z) =[Qn(z) + H(z) K'(z)]: x —C%QE)

C>(I', F)
of order —md such that the pseudo-differential operator Q'(z) is of regularity d,
and the singular Green operator H'(z) and the Poisson operator K'(z) (see [12,
Section 2.4]) are of regularity v' = min{v, d}. Moreover, for z with Rez 2 0 and
|z| sufficiently large, the inverse A'(z) ! of the operator A'(z) exists and is equal to
a parametrix B'(z). Then, by continuity, the operator A'(z)~! extends to a con-
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tinuous operator from H(Q, E) x HS™ Y(I', F) to H:*™(Q, E) for any s = 0 such
that the estimate

2.2) ||A’(z)“1(f, g)“ﬂ’,*""‘(ﬁ,m < Cs(”f”H’,(ﬂ,E) + "9"}1;‘ "’(r,F))

holds uniformly with respect to z. Since A4(z) depends polynomially on z and
hence A'(z) depends analytically on z, we also know by Grubb [12] that 4'(z) ! is
analytic in z (in the operator norm).

Now we return to the original operator A(z) and see that

B = B | =100+ H) K]

is a parametrix of A(z), and that the inverse A(z)~' exists and is equal to
a parametrix B(z) for all z with Rez 20 and |z| sufficiently large. Here
Q(z) = Q'(2),H(2) = H’(z_), and K(z) = K'(2)A(z) = [Ko(2) ... Kng-1(2)], where
K (2): C>(I', F,) = C*(£2, E) is a Poisson operator of order —k and regularity v'.
The inverse A(z) ! also satisfies an estimate corresponding to (2.2). Thus we are
led to the following result which will be crucial.

2.9. THEOREM. For anys = 0 thereis p > O such that for every z withRez 2 p
the inverse A(z)”' of the Green operator A(z) (extended as in Theorem 2.7)
exists, depends analytically on =z in the norm of operators from
HYQ,E) x [TH**™~*" YT, F,) to H**™(Q, E), and satisfies the estimate

3

Il A(z)~ l(fa 9l H* ™ YG,E)

s Cs("f“H;({S,E) + llgliyy HEtmek V2, Fk))
k

uniformly in z.

3. Adapted Laplace transform calculus.
In this section we recall and give some results concerning the Laplace trans-
formation % defined by
(Lv)z) = je‘" v(t) dt;
0
see Agranovi¢-Visik [2], Donaldson [9], Schwartz [29], and also [24], [26].
3.1. The basic fact is that, for any s = 0 and p > 0, the Laplace transformation

& is an isomorphism from the space H{o(R.,p; H) (see 1.3) to the space
#*(C,; H) of such analytic functions # from C, = {ze C:Re z > p} to the Hilbert
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space H that

0
1) Jec,.y = SUp I lo + it]? ||li(o + it||7dt < oo.
- oo

c>p

The space #°(C,; H) is complete and its norm satisfies the equality
(3.1 Il e, = J 1o + it lld(p + it)lIF dr,

where, by definition, d(p + it) = #,..e*(e”” £~ '4). Let now Z stand for Q or
I', and B stand for E or F,, respectively. Then we see thatforanys = Oand p > 0
the Laplace transformation . is an isomorphism from the space

H@(E x Ry, p,B) = H'R,, p; H(E, B)) n H{(R ., p; H%Z, B))
to the space
H(C,,Z, B) = #°(C,; H¥(Z, B) n #*%(C,; H*(E, B)).

We suppose here, as well as in what follows, that if two normed spaces H, and H,
are algebraically and topologically included in some third normed space, the
norm in the space H, n H, is given by

Il g, nm, = (el + Nulg,)2
It follows from (3.1) that
(3.2) "ﬁ"fﬂ-)(cp,s,n) = ," lli(p + it)";l;“.(f.ﬂ) dr
for 4 #*NC,, Z, B), where ii(p + it) is defined as in (3.1).
A fundamental property of the Laplace transformation & is the relation
(3.3) Fou=22Lu,
(s + jd)

now for ue H{s1 (= x R, p, B); note that the multiplication by z/ gives a con-
tinuous mapping

(3.4) i 2 #C+(C . £, B) » #(C,, 5, B)

(for the proof fix a system of local trivializations and deduce directly or by means
of [24, Proposition 5.7]). The equation (3.3) is the first step in proving the next
commutation property of %£.

3.2. THEOREM. Ifs = Oand p > O, the parabolic operator (P(3,) + G(3,), T(0,))
satisfies the relation

3.5) ZL(P(0) + G(0), T(O))u = (Pol2) + G(2), T(2))Lu
for allue HG ™2 x R, p, EY).



PARABOLIC PSEUDO-DIFFERENTIAL INITIAL-BOUNDARY VALUE PROBLEMS 233

PRrRoOOF. We restrict ourselves to an outline; note that a part of the statement is
that both sides of (3.5) are well-defined. Let us define

HOG x R,,p,E) = H'R.,, p; (&, E)) n H**R , , p; H(S, E))

and analogously the space H*\I" x R, p, F}). Since the continuity of the oper-
ators P, GY, and T? is known, it is routine to show that Py(d,), G(3,) and T;(d,)
are (more precisely, they define in a natural way) continuous operators from the
space H**™)(Q x R,,p,E") to HYQ x R,,p,E") and correspondingly to
He+md-k=12(r x R, p, F}). By interpolation, by using the continuity of the
extension by zero of e *u for t < 0 (see [24]), and recalling the properties of
intermediate derivatives (cf. Lions—Magenes [20, Chapter 1]), one then proves
that Pg(d), G(0), and T,(0,) are, moreover, continuous operators from
Hiy ™Y@ x Ry,p,E) to H@(R x R,,p,E) and correspondingly to
Hg™ =¥~ Y3(I x R,,p, F}). By using local trivializations and (3.4), we obtain
similarly the continuity of the operators

Py(2), G(z): #=*mC » Q,E) - #(C » Q,E)
and
Ty(2): #C"(C,, @, E) » #¢ ™=+~ 1(C,, I, Fy).

A standard argument now shows that the operators P, G, and T commute
with .Z, from which the assertion follows by means of (3.3).

3.3. THEOREM. Lets = 0, and let p > Q be chosen according to Theorem 2.9 for
the parameter-elliptic operator (Py(z) + G(z), T(2)) corresponding to the parabolic
operator (Pg(0,) + G(0,), T(0,)). Then the estimate

| s+ marc,, .6y S C( I(Pa(2) + G(2)) dllpioc,. 5.6

+ | T(2)al g spts + ma-x- ”2<c,,‘r.m)
k

holds for all e #¢*m9(C,, Q, E).

Proor. For iie .}f(”"“”(C‘,, Q, E) we have (Pg(z) + G(2)) tie %("(Cp, QE)and
Ti(2)ie H#C+m~*~12(C T, F,) (see the proof of the preceding theorem). Now
we consider the equality (see (3.2))

A ) . 2
||“||§r(nmd>(c,,,§.£) = _f lld(p + lT)"n,’,:}’,“’(ﬁ.de,

where i(p + it) = F,..e*(e " #~'i). From Theorem 2.9 it follows that the
inequality
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(36)  laldsinass < c(uwn(p + 1) + Glp + in)ilp + D)3z, i)

+ ITl(p + it)i(p +iT)"2r[ HyY k=12, Fk))
k

holds for almost all 7. Noting that (for suitable v)
(p+ ity Foole™v) = F (e 0]v),
and using (3.3) and Theorem 3.2, we get
(Polp + it) + G(p + it)iip + it) = F,. e (e™ " L 1 (Pglz) + G(2))h)
and
T(p + it)i(p + it) = F,..e* (e " L T(2)d).

To complete the proof it therefore suffices to integrate (3.6) with respect to t.

3.4. THEOREM. Assume that the hypotheses in Theorem 3.3 are satisfied. If
fe#C,,QE) and Ge[]H#C+™ *"12(C, I,F,) are given, there exists
a unique iie #**"(C,,Q, ;'Z) such that (Py(z) + G(z), T)ii = (f, §).

ProOOF. The uniqueness part is obvious from Theorem 3.3. In order to verify
the existence, consider the analytic mappings z+— f(z): C,— H(Q,E) and

z+§(z):C, = [ H**™ %~ V(T F,). It follows from Theorem 2.9 that the only
k

candidate for a solution is given by

i) [Pn(z) + G(z)]*‘ [f(z)]

T(2) 9(2)

in such a way that the mapping z+— ii(z): C, - H**™{(Q, E) is analytic and, in
addition, the estimate

(37) "ﬁ(z)"H;+""‘(ﬁ.E) é C("f(z)"li;(ﬁ,E) + ”g(Z)" an»md-h-l/Z(r’ F‘))
k
holds uniformly with respect to z. It will therefore be enough to show that

de*m(C,,Q, E). To this end, take z = ¢ + it C, and derive from (3.7) the
inequality

N 2 o
I “(z)"HHmd(ﬁ,E) + |Z|2(s+Md)/d"“(z)”§i°(ﬁ.£)

s C(”f @ zwge + 12270 f (z)lllzi"(ﬂ.E))

+CY (Iléa(Z) NFes s ma-k-1r2r gy + 12126 ™12 go2)| ilO(r.F,,)),
k
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which in turn implies that

i + it)1 e+ maz pydt + flo + it]>* ™| + it)| 4o gdr

an2 .
< C("]"fﬂ-)(cmﬁ.s) + ||g||1'[ wtrtmd-k=12c I F)
k

This clearly yields what was to be proved.

4. Parabolic problems.
Initial-boundary value problems
4.1) (Pald) + G(3), T@)), (v, )j<m)tt = (f, 9, )

are called here parabolic (in 2 x R, or E'), if the operator (Py(d,) + G(d,), T(d,)) is
parabolic. We are studying the solvability of parabolic problems in the space
He*™(Q x R,,p, E'). Therefore it is natural to assume that

fEH(S)(Q X R+,P,E'),

md—1
gE l_l H(s+md—k—ll2)(r X R.,.,p,F,:),
k=0
m-—1
he l‘l Hs+md—jd—d/2(Q’ E)
j=0

It will, however, turn out that such a mapping u+ (f, g, h) is not surjective.

In this concluding section we first derive two compatibility conditions on the
data (f, g, h), necessary for the existence of a solution u; for simplicity we assume
the parabolicity of the problem throughout the section. In the main theorems 4.8
and 4.9 we shall then see how these conditions work in solving parabolic
problems (4.1).

4.1. Let us take ue H**™(Q x R, ,p,E") and set f = (Pg(d,) + G(0,)u,
h = (y,8u)o < j<m = (h));. It is now obvious that the total trace of u, denoted by
B = (9,0/4)o < ja<s+ma-a;2 = (), can be given by means of f and h. In fact, by
induction we find the following relation (cp. [24], [26]):

4.2. THEOREM. With the above notation, the relation
m-—1 m—1-k
42) Bosr =M, [+ Y N Y, PG+ G Nhy,,
k=0 j=0
is satisfied for any ue H**™(Q x R, p, E') whenever 0 < vd < s — d/2, where
the operators M, and N, are defined by Mo = y,, # _, = 0 and
m—1

My=y,0,— Y PR+ GC" M, _,.,
j=0
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forv=12,...,and Ay = —1in HYQ,E), #/_, =0 and
m-1
Hy=—= Y (PR 7+ G" NN, _,s;

j=0

forv=12...

4.3. We continue to use the previous notation and shall give two compatibility
relations between the boundary values g and the total trace h* of
ue H**™XQ x R, p, E'). According to the preceding theorem, such a relation is
de facto a relation between the data f, g, and h. The first one is a straightforward
consequence of the coincidence of continuous operators in dense subspaces.

4.4, THEOREM. If0 < k < md — land ve N such that s + md — (k + 1/2) —
(vd + 8/2) > 0, then for any ue H**™Q x R, p, E') the equation

m-1
%:0; gk = Z T,((m-,)hsvﬂ
ji=0

holds in Hs+md—k—vd— l/2—d/2(r, Fk)

4.5 Whenthecases + md — k — vd = 1/2 + d/2 occurs, more knowledge will
be needed. In order to study this case further, fix a system of local trivializations
(¥y), ({i)) and a partition of unity (¢;) associated with it as in Section 1. It should
cause no confusion if we let (1)’ denote jointly both ;0 (¢u) = (¥, *)* (¢,u) for
sections u of E or E' and ¥/ o(¢); u) for sections u of E| or E'| &,»and let (O
denote correspondingly both {, ; o (¢u) for sections u of F, or F*and &rioldiw
for sections u of F, or F.

For the second compatibility relation we now assume that in the trace oper-
ator (see Remark 2.5)

4.3) T;i) = Sk(j)}" + Z S;‘nl ))‘ + T;‘(j)

with r = k — (m — j)d 2 0 the coefficients S} are differential operators on T
Then it follows from Boutet de Monvel [5] (see also Rempel-Schulze [27]) that
there exists a pseudo-differential operator TY(D,) of orderr = k — (m — j)d 2 0
with the transmission property at I' such that the continuous operator TZ(D,),
from H°*"(Q, E) to H(, F,) for ¢ = 0 satisfies the equation T = y° T¥(D,)q-
Thus we also have T, = y°T,(D,),, where

m-1
4.4 T(D,) = Y &/ T{""*(D,)

ji=0
and T,(D,), is a continuous operator from H“*™(Q x R,,p,E') to
He*mi=i(G x R, p, F!) for ¢ = 0 (see the proof of Theorem 3.2).
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Suppose now that ue H**™)XQ x R,,p,E') with s+md —k —vd =
1/2 + d/2 (and M, > 0). If we define, by using the notation of 1.3,
H(X x R,;H) = H'R,;H°(X;H)) n H"YR ,; H(X; H))

for ¢ = 0 and analogously the space H*(X x R, p; H), then we have

(4.5) vki = 0L TUDas (W e HE* ™=+ Ry x R, p;CMY)
j

fori=1,...,i,, where

(4.6) TUD)ay (WY = r* (G o (TUD XY o et (up))

and

(4.7) T(D,)Y" = T_Zol o T (D).

Therefore, writing a; = (i, !)* @; (the pullback) and 6 = 1/2 + d/2, we see that
Wi =e "o v, e HOYRY x R,;CMY).

By the continuity of the imbedding of H“®(R% x R,;CM¥) into
HOR, x R,;H°R"!;CMv)), we can thus deduce from Grisvard [11] the esti-
mate (cp. [20, Chapter 4], [24])

do
4.8) J”(V: w i) 0) — ()’0 Wi i) o) 12110(Rv-- 1,CMy) —a—
0

sC ”wk,i ||im»(ﬁ'; xR, ;CMu)

Here we obtain, by (4.4)4.7),

"M l Y .
YeWki = &Yy 5,"2 Z af nm_”(D")g&')(u)’
j 1=0

= oY Y T (DR W04

%Y, 21" G o ("~ "(Dyea(d s + 1))
T

a; z k.0 (T;c("' - l)(Dn)n b+
1

ki
= (Z T}cmau(Dn)ﬂ fr-H) s
1
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and, writing o} = ((x}) ™ !)* ¢},
m-1

')’0 Wi = e P a; a:z Z a: ,YO Tlm—')(D,)g&')(u)'
j1=0

=e P00/ Y, 0y r* (G o (T~ "(DNY; o™ (w)))

J
=e "0 Y. (00’ X ora T "(D,) eq(du))
j ]

=e " 2,0} (ki 0 (v° TUD, g W)
=73y (g
It is now possible to state the second compatibility relation.

4.6. THEOREM. Let s> 0, keN, and veN be such that M, >0 and
s+ md —k —vd =6 = 1/2 + d/2. Assume that the coefficients SY), in the repre-
sentation (4.3) of T are differential operators on I', and let the operators T (D,) be
given as above. Then there exists a constant C > 0 such that the estimate

Y

i
Wgas P2 bt = Y
i=1

0

m-1 ki
(,Zo n"‘“"(v,)nht”) (,0)

do

2
HO(Rn - l;ch
( ) ag

—exp(—pa’}d;g)"(, o)

é C IIull,z,(.ma)(g xR, ,p.EY)
holds for all ue H**™(Q x R,,p, E).

PrOOF. In view of the preceding reasoning, if suffices to consider the right side
of (4.8). There we have w, ; = e a; v, ;, where by (4.4)+4.7)

Ui =0/ ZC&.iO(n(Dn)n(d’ju)) = 0; {x,i0(Ti(D,)qu),
j

and hence a; v, ; = 0}(Ty(D,)qu)*". Therefore we get (see 1.3)
Wi "th(ﬁ'i xR 4 ;CMx)

< C "(n(Dn)ﬂu)“"H(“ va)(@Rn x R, ,p;CMx)
S CI T(Dy)g ull g+ md-k)(fFx R 4 ,p,FL)

S Cllull g+ mangix i, p.60y
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4.7. Thus we have seen that, under the given hypotheses, the boundary trace
g and the total initial trace h* of a solution ue H**™(Q x R, p, E) of the

parabolic problem (4.1) satisfy necessarily the following (local resp. global)
compatibility relations (I) and (II):

M If s=20,0<k=<md—1, and veN such that s+ md —k —vd > =
1/2 + d/2 (and M, > 0), then

1
$oige= Y T "k,

j=0

(II) If s+ md — k — vd = 6 (and M, > 0), then
m(gka hs)l“s.p,E.F:‘ < .

Let us now suppose that (f, g, h) is given in the space [T**™(Q x R.,p, E', F*),
which is defined as the product space

md-1 m-—1
HYQ x R,,p,E)x [] H*™~*~UT x R,,p,F}) x [] H**™ 444G, E).
k=0 j=0
The preceding considerations motivate us to set hj = h; for j=0,...,m — 1 and
define k;, , , for 0 < vd < s — d/2 by the formula (4.2) of Theorem 4.2. In this way
we can set the compatibility conditions (I) and (II) on the data f, g, h, too. Note that
condition (II) implies the same condition for any similar system of local trivializ-
ations and a partition of unity. From Theorems 4.6, 4.8, and 4.9 it follows for
parabolic problems that condition (II) is also well-behaved with respect to the
choice of the operators TY(D,).
We are now ready to state and prove the main results. To this end, let
mne*mQ x R,, p, E',F') denote the space

{(f.g,h)em*"NQ x R, p, E', F'):(I) and (II) hold for (g, h*)}
and provide it with the norm given by

4.9 (S 9 B e = NS, @5 )l manix .00

+ Z Ill(gk, h’)|||s2p£ JFioo

k+vd=s+md-&

where m(gks hs)ms.p.E.FL =0if Mk =0.

4.8. THEOREM. Let the problem

(Pald) + G(3), T, (7. < = (£, 9,h)
be parabolic, and let s = 0 be given such that s% d/2 mod d. Assume further that, if
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any 0 < k £ md — 1 satisfies the conditions M, > 0 and s + md — k = vd + 6 with
veN and 6 = 1/2 + d/2, the coefficients Sy in the representation (4.3) of T are
differential operators on I and the operators TY\(D,) are given as in 4.5. Then there
exists po > 0 such that for every p = p, the a priori estimate

lull s+ magi x i, .29y = CUCS G5 Wl .1
holds for all ue H**™¥(Q x R, p, E'), where
f=(Pold) + G@0)u,g = T@)u, and h = (7,3 Wo 5 <m-
Proor. We first recall that the continuous surjective trace operator
(YI a{)O Sjd<s+md-d/2 : H(S+MJ)(Q X R +1P5 E') d l—l Hs+md—jd—d/2(Q’ E)

J

has a continuous right inverse (see the references in 1.3). Therefore, if now
ue H*™(Q x R, p, EY), there exists ve H**™(Q x R, p, E') such that

4.10) (3, 01 v); = b = (y, 0] u)
and
4.11) Noll s+ margix @y p.by < C ||h‘||n - md-id-drg gy,

J
Since s  d/2modd, we thus have u — ve H§; ™2 x R,,p, E'). Now choose
Po > 0 according to Theorem 2.9. Then we can apply Theorem 3.3 to obtain

L (u — U)||x(-+md)(c,,.r§.£)

=C <||(Pn(2) + G@2)L(u — V)l pwrc, a6

+ | T(2)L(u — V)|l g spte+ma-x- ”‘(c,,.r.Fk)>’
k
Hence, using 3.1, Theorem 3.2, and (4.11), we get

4.12) Nl s+ margzx s p.E0)

s C(""s"]‘[ H*tmd-Jd-di2G F)

J

+ (Pal0) + GONu — v)ll gewgix i .59

+ I T(O)u — ")"];] H{gT ™" YD xR, ,p.F;))
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Here we have by Theorem 4.2

”h:, + vll"t+md—(m+ vd - d/2({} E)

m—1-k
Z A PG + G™ My il yo-va-arg gy

S NS | go-va-anpy + 2,
k j=0

< C(||f||nm(ﬁxﬁ+,p,sl) + ||All I H”"'“'"""’“(ﬁ,s))-
j<m

Thus it follows from (4.11) that
I(Paldy) + G(ONu — V)| porgax i, p.b0)
= C<||f||u<=>(ﬁx§+,p.zt) + (Al TI H’+Md'j"_d’2(ﬁ.E)>‘
j<m
To estimate the last term of (4.12), assume that M, > Oands + md —k =vd + o
Then

2
lgx — Tl H§ ™ %=V (r xR, p,Fk)
= llgx — T00llfice s ma-r-1i2r x s p,F)

) dt
- Je #4107 (g = T@IN four.po =
0

where

d
e zp'”a:v(gk - k(az)v)"fzw(r,rk) _t—

o3

2 _
sC (Ill(gk, h‘)lllip,s.p; + loll e+ mangx &, .[LE‘))

by Theorem 4.6 and (4.10). Consequently,
I T@Xu — Dl g~ 2.6 X Ra,p, FY)
k

= C("g”nH{{,,’"""‘""“’(ﬁ.s)(r x Ry,p FY)
k

+ Z m(gb hs)l"s.p.E,F:( + llvuﬂ(““ ma) (xR, ,p.E‘))’
k

where, of course, the sum is taken over such k that M, >0 and
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s+ md — k = vd + 6. Combining these partial estimates, we thus obtain the
desired inequality.

REMARK. Note that, if s +md —k = vd + 6 for some 0 <k < md — 1, the
condition s £ d/2modd is satisfied. On the other hand, if s — k 3 6 mod d for
every k with M, > 0, the a priori estimate takes the form

lull gres + ma) @ xR 4 ,p,Et)
=C (”f"u(s)(ﬁ xR 4 .p.EY)

+ ||g||n HEma= k= U@ EY(T xRy ,p,FL)
k

+ Al H“'""'f"“‘”(ﬁ.m)
j<m
4.9. THEOREM. Let the hypotheses of Theorem 4.8 be satisfied. Then for
(f,g, eI *™(Q x R, p, E', F"), the parabolic problem

(Pf)(at) + G(ar)’ T(ar)’ (yt a'zi)j<m)u = (f’ 9, h)

has a solution if and only if the data f, g, h satisfy the compatibility conditions (I) and
(II) given in 4.7.

PrOOF. The necessity of conditions (I) and (II) follows from Theorems 4.4 and
4.6.

In order to prove the sufficiency, assume that f, g, and h are compatible in the
sense of (I) and (II). Set hj=h; for j=0,...,m—1 and define h,,, for
0 £ vd < s — d/2 by (4.2). Then there exists ve H**™(Q x R, p, E') such that
(y, 0iv); = (h); = k*. To make use of this v, write f" = (Py(d,) + G(0)v and
g = (g = T(0),

It now follows from Theorem 4.2 that #,f = A, f ' for0 < vd < s — d/2. This
implies that

2O(f —f)=0  for0<vd<s—d2

Consequently, f — f"e H(2 x R.,p, E'), since s £ d/2mod d.
If0 < vd <s+ md— k — d,theny, d; g, = 7,0, g, by Theorem 4.4 and condi-
tion (I). In the case s + md — k — & = vd (and M, > 0) we get, by Theorem 4.6,

W(gks BN, .75, < 0O,
and, by condition (II),

Wgws BN, p, .55, < 0
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It therefore follows (by means of local trivializations of F,) that
t™12e " 9)(g, — g)€ AR, ; H(I',F,)), and hence

Ik — gl,teHﬁ)-;Md_k— l/2)/‘1(R+ap; HO(I“, Fk))
Since immediately g, — g, € HYR ., p; H**™~*~VX(I', F,)), we obtain
g — ghe Hipg ™ *~V2(I x Ry, p, ).

We next apply the Laplace transform calculus given in Section 3. What we
now know is that (see 3.1) Z(f — f)eH#"(C,,QE) and Z(g—g)e

[[#e*mi-*-YUDC, I F,). Hence according to Theorem 3.4, there exists

k

WweH ™ (C,,Q,E) such that (Pg(2) + G2)w = L(f — ') and
T(zWw = L(g — g'). An application of the inverse transformation % ~! of & then
yields w = £~ 'we H{§; ™ (@ x R, p, E') which satisfies the equations

(Pold) + G@Iw = f - f', T@w=g—4g.
Thus we obtain a solution u by setting u = v + w, and the proof is complete.

4.10. CONCLUSION. Under the assumptions of Theorem 4.8, there exists po, > 0
such that for any p = p, the operator (Po(d,) + G(3,), T(3,), (7,0}); <) of the para-
bolic problem (4.1) is an isomorphism from H**™"(@Q x R, p, E") to the space
ms*™(@Q x R,, p, E', F") defined in 4.7.
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