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EXPONENTIAL ENERGY DECAY OF SOLUTIONS
OF ELASTIC WAVE EQUATIONS WITH THE
DIRICHLET CONDITION.

KAZUHIRO YAMAMOTO

The purpose of this paper is to prove exponential energy decay of solutions of
elastic wave equations with the Dirichlet condition. To prove it we shall use
a translation representation of the unitary group which is used to express
solutions, and show that there is no point spectrum of the infinitesimal generator
of the unitary group. Furthermore using the scattering theory of Lax and Phillips
and an argument due to Morawetz, we can get exponential energy decay. In the
free boundary condition case by an existence of Rayleigh waves exponential
energy decay dose not hold for some solution, however by the behavior of
singularities of solutions of the Dirichlet condition, which is almost the same as
that of solutions of the wave equation, we can prove exponential energy decay.

1. Preliminary about the free space problem.

We shall consider the Cauchy problem corresponding to the elastic wave
equation in an isotropic medium. The displacement u(t, x) = ‘(u,, u,, u,) satisfies
the following equation of linear elasticity in R?

(L.1) 0 — (A + p) grad (divu) — udu = 0,

) ¢ 'u=fx)ont=0 (j=1,2),
where A and u are certain scalar quantities called the “Lamé constants”. We
assume A + u and u are positive. Let us introduce a norm on (CZ(R%))*:

3
IA1F = A+ wldiv fl|2ms) + 1 Y, llgrad fill2g0),
j=1
where f(x) = "(f1, f2, f3)€(CP(R?)3. o, is defined as the completion of

(C2(R3)? in the above norm. For simplicity in this paper (C3(R*))* is denoted by
C®(R3).” Similarly simplified notations are used for S, where S is a certain
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function space. The following lemma is proved in Chapter IV of [4] as Lemma
1.1

LeEMMA 1.1. Suppose f = (1}, f5, f3)€ #,. Then fe ¥ (R} n I3 (R?) and

3
(1.2) Y| 1eIPdx s CRYSI3
j=1J|x|<R

Next we define a Hilbert space H, = #;, x I[?(R% with the energy norm:
IA1E = {103+ "fz"tz.z(R)}/zs where f = {f, £}, fie #, and f,e Z(R%). Let
u(t,x) be a solution of the Cauchy problem (1.1). Then u(t, x) is represented
by the one parameter unitary group {U,(t)} on H, with the inifnitesimal gener-
ator Ay = ( I-J(((;x) 5:3), where E; is the unit 3 x 3 matrix and L(d,)u =
(A + w) grad (divu) + pdu.

We shall use the Radon transform in order to derive an explicit formula for the
solutions of (1.1). If g(x) belongs to £(R?), its Radon transform §(s, w) is defined
by the formula;

g(s,w) = (2m)~! _[ g(x)dS = (2n)~'(g,d(xw — s)),

XW =S

where s€ R, w e S2. Then the following proprties are valid:

(1.3) g(s, w) = g(—s, —w), i.e., § ia an even funtion
Lo g
(1.4) 0g/0x (s, w) = w;0§/0s(s, w).
(1.5) §(ow) = F§(o, w),
where we used the symbol F to denote the Fourier transform with respect to s.
(1.6) g(x) = —(@n)~* {87 j(xw, w)do,
(1.7 "g||12,2(n3) = ”asg”il(n xSZ)/2~

The explicit formula of the solution of (1.1) is as follows:

THEOREM 1.2. Iff,, f, € L(R?). Then the unique solution u(t, x) of the Cauchy
problem (1.1) is written as

(1.8) u(t,x) = (4n) " [ {p1 '@ [,(xw — p,t, 0))0
—p;lo x (@ x L(xw — p,t,0)}do,
where p, = ( + 2u)'2, p, = pu'/? and I(s, ) = 8,f, — p; 0 f;.

PrROOF. Consider the Radon transform of (1.1), then taking the inner and
vector product of w and (1.1), we have



208 KAZUHIRO YAMAMOTO

(1.9) (07 — (A + 21 02)(@- B)w) = 0,
. a{_l((wﬁ)w)(o,s,w)—;(wj;)w (]= 1’2),

{(53 — pd)w x (@ x @) =0,

(1.10) a{—l(wx(wxﬂ))(O,S,w)=w><(wxﬂ) (G=12).

Let #(t,s,w) be the solution of the one dimensional wave equation
(02 — p? 00 = 0 with data 9] '%(0,s,w) = gj(s,w)(j = 1,2). Then since this
equation is written as (0, + p 0,)(0, — p 0,)0 = 0, we can easily show that
(1.11) (0, — p 0)0 = (g2 — PO,4,)(s — pt, ).

Since 0,0,#(t, xw, w) is an odd function with respect to w by (1.3), by the inerse
theorem (1.6) it follows that u(t,x) = (4np)~" [(0,d, — p 02§,)(xw — pt, w)dw.
Applying this formula to the problem (1.9) and (1.10), we have the desired
formula (1.8). The proof is completed.

From the formula (1.8) we can prove the existence of lacuna of the solutions of

(1.1).

COROLLARY 1.3. We assume the support of f = (fy, f,) € Hy, which is the union
of supp f, and supp f,, is contained in {x € R*:|x| < R}, then (Uy(t)f)(x) = O for
p2ltl > |x| + R.

We shall show a translation representation of {U,(t)}.
THEOREM 1.4. Let us define an operator T, from H, to I*(R x S?) by
(1.12) To(f)(s,0) = {pi (@ 11(p;5,0)w — p3w X (@ x 13(p,5,W))}/2,

where 1i(s, w) = 0; fo — P;o? fi. Then we have the following: i) T, is a unitary
operator from H, to I*(R x S?). ii) To(Uy(t)f)(s, w) = (To.f)(s — t,w) for all
feH,.

ProoF. In order to prove i) we shall introduce an auxiliary operator Ty(f)
defined by {(w-I,(s, w))w — @ x (@ x l,(s,w))}/2. Assume f € #(R?), then

IT(NG ) = {lo-1i(s,0)? + o x (@ x L(s, w)|*}/4

= {lw-8,f1* + (A + 2u)|w- 82 f,|?
+ o x (@ x 8,f5)2 + plo x (@ x 82f1)1*}/4 + g(s, »)

where ¢(s, w) is an odd function of s, w. From (1.4), the above equalityis equal to

—~ 2~
{Iaslez + (A + w0, div S| + p Z |0, grad fl.jlz}/4 + g(s, ),

i=1

where f; = '(f}.1, 1.2, f1,3)- Making use of the Parseval theorem (1.7), we have
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| To(f)llL2m xs2) = Il £l g, Which means that Ty is an isometric operator from H, to
(R x $?). In order to prove the unitary property of Ty we shall show that
a dense set X = {g(s,w)e (R x S):(Fg)(s,w) = 0 near ¢ = 0} of IZ(R x 5%)is
contained in the range of T;. By the definitions of Tg(f) and I (s, ), the equivalent
condition Ty(f) =g is

(L13) {gl(s,w) = g(5,0) + g(~s, —0) = p,0 X (@ x 32f}) — p, e 3])),
' ga(s. ) = g(s,0) — g(—s, —w) = 4,13,

where g, and g, are defined by the first equalities. Take the Fourier transform of
(1.13) with respect to s. Then by (1.5) it follows that

(114 {(Fgl)(o, 0) = o*(p,0(" J;(00) - p;0 X (@ x (o)),
(Fg2)(0, 0) = io f3(ow).
Let us solve the first equality of (1.14). The right hand side of (1.14) is equal to

o}((py — p2)0'w + p,)fi(0w), and the inverse matrix of (p, — p,)w'®w + p,E, is
(o3 — p1)/p1p2)w'@w + p; *E;. Thus (1.14) is equivalent to

{f;(ﬁ) = €17 2((p2 — P1)E'¢/p1p2IE1%) + p3 ' E3)(Fgy)(El, &/1ED),
Fa@) = —ildl~  (Fg2)(€l, €18,

where the right hand sides of the aboves belong to #(R3) if ge X. A second
auxiliary operator Ty on [}(R x S?) to itself is defined as follows;

Ty (k)(s, ) = pi (@ K)(p,5,0) — p3'*w x (@ x k)(p,5, w).

It is clear that Ty(f) = Ty (Ty(f)) and Ty is an isometric oprator on [*(R x S2).
The relation Ty (k)=h is equivalent to (w-h)(s:w) = p}*(@-k)(p,s, w)
and (w x h)(s,w) = p3*(w x h)(p,s,w). Thus if we put k(s,w) = p; 2w (w" h)
(pi's,0) — p; 2w x (w x h)(p; 's, w), then Ty (k) = h. So Ty is unitary.

In order to prove the statement ii) we may prove Tg(Uy(t)f)(s,w) =
{o(@-1)(s — pit,w) — w x (w x 1,)(s — p,t,w)}/2. This is an easy consequence
from the definition /(s,w) and (1.11). The proof is completed.

Making use of the translation representation T, of {U,(t)}, we can express the
solution u(x, t) of (1.1) as follows:

(1.15) u(t,x) = 2n) ! [ {py (@ k)(py 'x0 — t,@)
—b;”zw x (@ x k)(p; 'xw — t,w)}dw,

where k(s, w) = T,(f)(s, w) for fe #(R?).

2. Preliminary about the obstacle problem.

We shall consider a mixed boundary value problem for the elastic wave equation
with the Dirichlet condition in the exterior domain. Let @ be a compact obstacle
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in R? with the smooth boundary such that Q = R3\ @ is connected. The problem
to be considered is as follows:

@.1) {Qzu — (A + wgrad (divu) — pdu =0 inR x Q,

# u=f(x)ont=0 (=12, u=0on R x dQ.
First by the argument of Section 1.2 in [9] we have the following
PROPOSITION 2.1. The stationary problem of (2.1)

(A + w)grad(divu) + pdu = f(x) inQ,
= ¢g(x) on 0Q,

is a coercive elliptic boundary value problem.

We introduce the following notation: Q denotes the set of {x € :|x| < R} and
E(u(t), R) stands for the energy conaind in the dmain Q of a solution u(t, x) of the
elastic wave equation (2.1) at time ¢, that is

3
E(u(t), R) = . {4 + 20 |divu, x)I> + p Y lgrad uj(e, x)1* + |u (e, x)|*}dx/2,
R ji=1

where u = (u,,u,,u;). We begin by proving the following inequality, that is
classical for the wave equation, i.e., 4 + u = 0.

THEOREM 2.2. Let u(t, x) be a smooth solution of (2.1). Then the following energy
inequality holds:

(2:2) Ew(T),R — p|T|) < Eu(0), R) = Ew(T),R + p|T)),
where p = (34 + 4p)*/2.
Proor. For T > 0, we shall prove the right inequality of (2.2). Put

3
Xo(t,x) = lu* + (X + p)|divul®> + p Y |grad u,|?,

k=1
Ouy, (?uk Oy 0wy, J od; .
Xi(t,x) = —p Z < 5 ox, T @ o, —(A+w d1vu+ py divu ).
Then the following relation holds:
0X, 3 0X; _ _ -
ato + Z o L= (e — LAO )" 11, + u, " (i, — L(0,)i) = O
j=1 0%;

For some a > 0 denote {(t,x)e(0,T) x Q:|x| < R + at} by D, then from the
divergence theorem it follows that J (Xon, + X -n)dS = 0, where (n,, n) is the
oD

unit outer normal vector of dD and X = (X,, X,, X;). Sincen, =0and X = Oon
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0D N (R x 09), we see that
EW(T),R + «T) = E(u(0), R) + j (Xon, + X - n)ds,
r
where I' = 0D n {(t,x) : |[x| = R + at}. In order to obtain the desired inequality
(2.2) we shall look for the smallest positive « such that
2.3) Xo — x- X/(ox]) > O,

because on I' the unit outer normal vector is (—a, x/|x|)/(1 + «?).
-1 -1
Put ' = pa™" 4" = o™ %, Yy = "(xquy,0 XUy 0, X3u3,)/Ix], Yy =
t t
(XaUy,0 X3Uy s X Uz 4y X3Us 1 Xy U3 0, XaUs,,), Y3 ="(Uy,1,U; 2,U433) and Y, =
Uy, 2, Uy, 3,Us, 1, Uz, 3, U3, 1, U3, 5), Where we use simplified notations v, = dv/dt,

3 3
v = 0v/ox,. From Y |u, [2 = 3 Ix;u /Xl (2.3)is denoted by the following
k

=1 k,j=1
quadratic form: X, — x* X/(«|x|) = (4Y)- Y, where Y = /('Y,,'Y,,'Y,,'Y,) and
E, 0 WEy+ (X +u)l 0
A= 0 Eg 0 WEg
TN WES+ A+ 0 UE; +(A+wI O
0 WEg 0 uEq

Here I is the 3 x 3 matrix whose all components are 1. Let us look for an
eigenvalue a of A. The equivalent condition AY = aY'is

(2 4) Yz + M'Y4 = aYZ, Yl + (ﬂ,E3 + (AI + ﬂ’)I)Y3 = aYl,
WY+ uYy=aY,, WEs+ X+ )Y, + WE; + (A + WIY; = al,.

By the first part of (2.4) we have that Y, =Y, =0, or a is a root of f(a) =
w2+ (u—a)a—1)=0. By f((u+ 1)/2>0, a condition that the equation
f(a) =0 has only non-negative roots is f(0) <0, that is u'/? < a. Since
det(WE; + (A + W)I) = wW?(3A +4y)>0and f(1) =0, if a =1 in (2.4), then
Y = 0. Thus an equivalent condition of the second part of (2.4) is

2.5) {Yx =WE; + (X + w))Ys/(a = 1),
7 H{WEs + (3 + i)I)? +(a — DREs + (A + pl) — ala — 1)}Y; =0,

The last equality of (2.5 is [{#*+m—a)a—1)}+ {(a—1)A+p+
2W(A" + i) + 3(A + w)*}1]Y,, which is denoted by (p + gI)Y; = 0. Thusif Y;, Y,
and a satisfy (2.5), then Y, = Y; = 0, or det(pE; + gI) = p*(p + 3¢q) = 0. We
have already proved that the roots of p = f(a) = O are non-negative if & = p'/2.
Put g@=p+3g= —{a®> —(BA+4u+ Da—p?—64(X + p) — X + ) +
32 + 4u}: then we have g(34 + 4u + 1)/2) = (34 + 4u — 1)/2)* + (34 + 4p)/2)* >
0,9(0) = ((34 + 4u)/a)*> — (34 + 4u). An equivalent condition that all roots of
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g(a) = 0 are non-negative is g(0) < 0, i.e., « = (34 + 4u)"/2. The proof is com-
pleted.

From Theorem 2.2 we have the following

COROLLARY 2.3. Ifinitially the total energy of u is finite, u has the same energy
for all time.

In order to express solutions of (2.1) by using an one parameter unitary group,
we introduce function spaces. The Hilbert space Hj, is the completed space of
C&(£) by the following norm

3
gl = (4 + lt)J~ Idivgl®dx +p 3, | Igradg;|®dx,
Q ji=1Ja

where g = (g,,9,,93). The space H consists of all vectors f = {f,, f,} whose first
component f; belongs to Hj, and whose second component f, is square integr-
able over @, and the norm of H is || fII = Il fyl} + || /21?2 The domain of
a shew self adjoint operator 4 which is similarly defined on H to A, is the set of all
data f = {f,, f} such that f, € H, and L(d,)f,, defined in the sense of distribu-
tions, is square integrable over £ and that f, € I2(2) belongs to H,, (see Theorem
1.2 in Chapter V of [4]). The one parameter unitary group on H with the
infinitesimal generator 4 is denoted by {U(t)}.

From Lemma 1.1 and an energy inequality of a coercive elliptic boundary
value problem, we have

LEMMA 2.4. Ifu(x) belongs to Hy and L(0,)u is square integrable, then all second
derivatives of u are square integrable, and

(2.6) I |Zz l03ull L2y < Cllullp + || Lull2(g))-

PROOF. Let a(x) be a CZ(R?) function such that « = 1 in a neighbourhood of
R3\ Q. Taking the Fourier transform of (1 — a)u and using the inequality (1.2)
and the elliptic estimate for a coercive elliptic boundary value problem:
L(0,)(au) = feL*(Qg), au =0 on 002z where Qg =Qn{x:|x| <R} and
suppa < {x:|x| < R}, we have the desired (2.6). The proof is completed.

The first component of an element of D(A) satisfies the conditions of Lemma
2.4. So we have

THEOREM 2.5. i) Theorem 2.2 and its corollary 2.3 hold for all solutions u of the
form [U(t)f],, where f isin H.

ii) Let F be the set of data f such that | Af |g + | f|lg £ C, then F is precompact
in the local energy norm || f || , that is the energy of f on &', for any bounded subset
Q' of Q.
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Making use of Theorem 2.5, we have the following

THEOREM 2.6 (see Lemma 2.2, 2.3 and 2.4 in Chapter V of [4]). If 4 has no
point spectrum, then the local energy decay

(2.8) lim |U@fIE =0

1=

holds for all f in H and every bounded subdomain Q' of €.

In order to prove the assumption of Theorem 2.6 we shall define a operator
J;(j =1,2) for CF(R x S?) given by

(2.9) (Jk)(x) = "{ | Pw)k(p; ' xw, w)dw, — | P{w)(d.k)(p; ' xw, w)dw}/(2np}’?),

where P,(w) is the 3 x 3 matrix given by w'w and P,(w)a = (E; — Py(w))a =
—w x (w x a). Since for any ¢ = (¢,, p,)e CF(R?)

(2.10) ik, @) = [k(s, 0)P(@)(@, + p; 0, $2)(p;s, w)ds dw/p}’?,

we can extend the operator J; for ke 2'(R x S?) as the weak limit of the right
hand side of (2.10). The following properties of J; are easily proved from (2.9):
0 E . .
Ji(—0d) = (pfA 0 3) Jj = A;J;, where A; is defined by the last equality,
(J, + J,)To(g) = gforge Hy, J (v x (@ x k)) = J,((w" k)w) = 0, the rotations of
the first three components and the last three components of J;k are zero, and the
divergences of the first three components and the last three components of J,k
are zero. We also need to define similar operators ¢; (j = 1,2) which are defined

by (2.9) as P,(w) = E; when j = 2, and as P,(w) = 1 and for scalar functions
0

E
k(s,w) when j = 1. The operators g; satisfy that (pz 4 0>yj = —g,;0,, where
j
E=1ifj=1and E = E, ifj = 2, and the following

THEOREM 2.7 (see Theorem 3.2 in Chapter IV of [4]). Let | be a distribution
which is zero for |s| > r; then g;l is zero for |x| > r/p; if and only if | satisfies the
orthogonal conditions {s?Y,(w),!> = 0 for all B < m and all spherical harmonics
Y.(w) of order m.

Making use of the operators and Theorem 2.7, we can prove the following
THEOREM 2.8. The generator A has no point spectrum.

PrOOF. We assume that there is f = {f}, f,} € D(4) such that (4 — io)f = 0.
First we assume o = 0, i.e., L(3,)f; = 0, f, = 0. Take an inner product L(0,)f,
and g e CP(Q) in I?(R); then by the integration by parts we see that (f,g)p = Ofor
all ge C® (), where (, ) is the inner product of Hp,. Since C3’(£2) is a dense set of
Hp, 0 is not in the spctrum of A.
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Next we shall consider the case a F 0. Let &(x) be a scalar C* function which
vanishes near 0Q2 and is equal to one for |x| > p. Then by the ellipticity of L(d,)
g = &f satisfies the equation (4, — io)g = h = ‘(hy,hy)e CP(R3). Since f be-
longs to D(A), the translation representer k(s,w) of g satisfies the following
conditions: d;ke *(R x S%) and — (0, + ig)k = T,(h). These conditions imply
that the support of k(s, w) is compact, becasue the support of Ty(f) is compact.
Taking the divergence of the first three components and the last three compo-
nents of the both side of (4, — io)J,(w" k)w) = J (0" To(h))w) = h — J,(Ty(h))
and making use of the properties on J;, we have

0 1 . _ . .
(2.10) {(pzA 0) — w}yl(pl Yw-d,k) = {div hy,div h, }.
Since the left hand side of (2.10) is equal to —g,((d, + io)(p; '@ d,k)), and the
supports of (J, + io)(w- d;k) and div h; have compact suports, we can apply
Theorem 2.7 as I = (0, + io)(w - 0,k), which implies that for all spherical har-
monics Y, (w) of ordermand f < m

io {(s? Y (w), w0,k — B{sP 1Y, (w), w: O,k) = 0.

By the induction with respect to f we see that for all f <m and Y, (w)
{sp¥Y, (), 0,k) = 0. It follows from Theorem 2.7 that ¢, (w - k) has the com-
pact support. By taking the divergences of the first three components and the last
three components of ¢,(w* k), we can conclude that (J;k)(x) has the compact
support. Similarly taking rotations of the first three components and the last
three components of (4, — ig)(J,(w X (w x k))), we see that J,(k)(x) has the
compact support. Thus g = (J; + J,)k has the compact support. From this fact
and the analyticity of f; in Q the function f vanishes on Q. The proof is
completed.

3. Theorems on the propagation of singularities.

In this section we shall study the propagation of singularities of solutions to the
boundary value problem of elastic wave equations with the Dirichlet condition:

3.1) 0*u — (A + p)grad(divu) — pudu = f in Q x R,
(3.2) u=g on 0Q x R,

where Q is an arbitrary domain with the smooth boundary in R* and f and g are
smooth functions. In the free boundary condition case, i.e., the boundary condi-

tionis Y. n,(x)o;(u) = 0, where the stress tensor o;(u) is A (div u)d;; + p(du;/0x; +

0u;/0x;) and n(x) is the unit outer normal vector at x € d2, the same problem is
discussed in Chapter I of [9]. Since in the case of the Dirichlet boundary
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condition the proofs of theorems, which will be mentioned below, are almost
same as these of theorems appeared in Chapter I of [9], we state these on
a propagation of singularities without proofs. In order to state the theorems we
need the notion of the set WF,(u) in (T*(Q2 x R\ 0) u (T*(022 x R)\ 0) for
asolution u(x, t) of (3.1) and (3.2), which is defined in Definition 1.7 of [6]. It is not
easy to completely understand the meaning of W F,(u). That is a generalization of
singularities of u(t, x) in @ x R in the following sense: Let 7 be the projection from
T*(Q x R)u T*(0Q x R)toQ x R.Then (t,, x,) does not belong to n(W F,(u)) if
and only if there exists an open neighbourhood of V, of (t,,x,) such that
u(t, x)e C*(82 N V,). Thus if we consider the projected rays to 2 x R of the rays
appeared in the following theorems, our theorems are regarded as these on the
propagation of singularities along the projected ray in Q x R to solutions of (3.1)
and (3.2).

Since (3.1) is rotation free, we may assume that in a neighbourhood of 0 € 0Q
Q is defined by x5 > g(x’) with (grad g)(0) = (Vg)(0) = 0, where x' = (x,, x,). By
the coordinate transform x in T*(R® x R):y' = X, y; = x5 —g(x), t=t, ' =
&+ (Vg)(x)&3,n3 = &3, T = 1, the determinant of the principal symbol of (3.1)
becomes to (12 — | + Gns|?)? (12 — (4 + 2u) | + Gns|?) =
— WA + 21)IGI* {(n3 — @) + 12} {(ns — @)* + 1}, where G = (= Vg, 1),
a(y',n’) = (n'-Vg(y)/|GI*, 7 = (', 0) and

(3.3) n(n, 1) = {(pFIn1? — )IGI* — pi(n’'-Vg)*}/(pi |GI*)

with p, = (A + 2u)'/? and p, = u'/2. Here we remark that « is identical if x = 0
and (0,t,,&,7) belongs to T*(R x 0Q) if and only if &3 = 0. All points in
T3 (R x ) are classified in the following five classes: i) r,(0, &5, 70) > 0, ii)
(r172)(0, &5, 70) <0, iii) r4(0, $o, 7o) < 0, iV) r2(0, &5, 7) = 0, V) r4(0, &5, 7o) = 0,
because (r, — r,)(0,&,7) = (A + p)yr?/(u(A + 2u)) = 0. First we shall consider the
case i). By the similar argument of proving Theorem 1.6 of [9] we have the
following

THEOREM 3.1. If (0, &, 7o) is an elliptic point, i.e., r,(0, &, o) > O, then for any
to € R the point of (0,t4,&p,0,70)€ T*(02 x R)\ 0 does not belong to WF,(u).

Let us consider the null bicharacteristic of 12 — p?||> passing through
(0,20, &, &5,7,), Where &4 = &(t2/p? — |£p]?)"/* with &* = 1. We denote by y; the
ray given by {(— p2E5(t — to)/To, £, €9 7o) € TH(E x R)}, where & = (&, £5). The
equivalent condition that (0, &, 7,) satisfies ii) is p? |Eo|? > 13 > p3|E,|% In this
case by the similar argument of proving Theorem 1.8 of [9] we can prove the
following

THEOREM 3.2. We assume (0,&p,7o) satisfies the condition ii). Then
Yi(e = +, —) does not exist and if WF,(u) N5 is empty, then the point (0, ty, &,
0,7,) does not belong to WF,(u) and WF,(u) N y; © is also empty.
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In the case iii), that is p3|£p|2 > 12, there exist % and y% for ¢ = 1. By the
similar argument of proving Theorem 1.9 of [9] we have the following

THEOREM 3.3. In the case iii) if WFy(u) N (y5 v v%) is empty, (0, o, &y, To) does
not belong to WF,(u) and WF,(u) N (y{ * U y; %) is also empty.

If (0, &,,1,) = 0, the null bicharacteristic of 12 — p?|¢|® passing through
Po = (0,20, &y, 0,70) is tangent to T*(022 x R). In this case we need a notion of
a generalized bicharacteristic y; of 12 — p;|£|2, which is denoted in Definition 3.1
of [7]. In T*(Q x R) y, is a null bicharacteristic of 1> — p,|¢|> and near p,
satisfying if) or iii) that is a broken null bicharacteristic defined by 7, Uy, . If
0 = R3\ Qis convex near 0, then for any (0, £, 7,) belong iv) or v) y, is uniquely
defined as the null bicharacteristic of 12 — p, |£|? passing through p,. Therefore if
0 is a convex set, the following theorems are easily understood as theorems on the
propagation of singularities along the broken characteristic curves of 12 — p, |€|?
in @ x R to the solution u(x, ). On the other hand if @ is concave near 0, then for
(0, &5, To) belonging to iv) or v) y, is the projected ray to T*(022 x R) of the ray
Kk~ 1(y'(2),0, ¢, a(y,(y), n'(t), (1)), where the ray {(y'(¢), ¢, 7'(t), (t)): |t| < o} is the null
bicharacteristic of — p? |G|?r, passing through (0, t,, &, 7o) parametrized by time
t. If a null bicharacteristic is a tangential ray to T*(02 x R) of order oo, generally
¥, is not unique. Thus let I';" (I';”) be a union of all half generalized bicharacteris-
tics of 12 — pZ |&|? starting at (0, to, &, To) Whose t component is greater (less) than
to. Then by the similar argument of proving Theorem 1.24 in [9] we have the
following

THEOREM 3.4. We assume the casc iv). Then y, does not exist and if W Fy(u) N I'%
is empty, then (0,t,&;, 0,7,) does not belong to WFy(u) and WFy(u) N I'; ¢ is also
empty, where ¢ = + or —.

In the case v) by the similar argument of proving Theorem 1.26 of [9] we have
the following

THEOREM 3.5. In the case v) we assume WF,(u)n(y4 U %) is empty. Then
(0,¢,&5,0,7,) does not belong to WF,(u) and WF,(u) N (y;°w I'1 %) is also empty,
where ¢, &' are + or —.

4. Exponential energy decay.

In this section we shall show exponential energy decay of solutions of elastic wave
equations with the Dirichlet condition for non-trapping obstacles. In order to
define non-trapping obstacles we use generalized bicharacteristics stated in
Section 3. The projection into 2 of the generalized bicharacteristics is called
generalized geodestics. We say that Q is non-trapping if for any sufficiently large
R there exists Ty such that no generalized geodesic of length Ty lies completely
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within Qg = {x€Q:|x| < R}. By theorems in Section 3 and the remark on Wf,(u)
and generalized bicharacteristics convex obstacles are non-trapping. Since we
can prove that star-shaped obstacles are also non-trapping, the following the-
orem is a generalized one of [2].

THEOREM 4.1. We assume that Q is non-trapping. Then for any R there exists

positive contants a = (2, R) and C = C(€, R) such that if the support of f € H is
contained in Qg = QN {x: |x| < R}, then

@ E(U@/: Q) £ Ce™ E(f),

where E(f) is the total energy of f in Q,i.e., E(f) = || f || and E(g: Qg) is the local
energy in Qpg.

In order to prove the above theorem we use an argument due to Morawetz in
[8], where she considered the wave equation. Instead of Bertrami’s form, which is
used in the proof of Lemma 2 in [8], if we use the following lemma, we can use
Theorem 1 of [8] for elastic wave equations.

LEMMA 4.2. Let K be the subset (0, T) x {x: |x| < R} of R, x R*. We suppose
that (02 — L(0,))u = O for (t,x)eR, x R3\ K, (&/u)(0,x) =0 for |x| > R + p,T
and supp d/u(T, x) is compact, where j = 0,1 and p, = u''?. Then u vanishes in
pat — T)> R + |x|.

ProoF. The lemma is true for the wave equation 9, — v24 by Beltrami’s form
(seep. 575 of [1]). Since div u and rot u satisfy the wave equation with the speed p,
and p,, respectively, divu = rotu = 0in p,(t — T) > R + |x]. It follows that 6?u
vanishes there. However from Corollary 1.3 and the assumption that supp
0lu(T, x) = {x: |x| < Ry} for some Ry, we see that u vanishes in p,(t — T) >
R, + |x|. This implies that for fixed x we have u(x, Ty) = (3,u)(x, Ty) = 0 if Ty is
sufficiently large. Thus by the equality

u(x, t) = u(x, Ty) + (0,u)(x, Tp)(t — Tp) + J‘t ds JS (0%u)(x, t)dt
T, T,

it follows that u(t, x) = 0if p,(t — T) > R + |x|. The proof is completed.
In order to show (4.1) by Theorem 1 of [8] we only prove that there exists

a function p(t) such that lim p(t) = 0 and

4.2) E(UQ®)f: Q&) £ POE(S).

Let us give a proof of (4.2), by using the idea of [5]. Let a(x) be an element of
C2({x: |x| < R})suchthata = 1for|x| < R/2,where we assume {x: |x| < R/2} >
0R. Since Q is non-trapping, by the theorems of Section 3 there exists T such that

4.3) U(t)f e C*({x,t)e 2 x [T, 0);|x| < R + p,(t — T)})
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for all feX = {feH:supp f = Qg}. First we shall show that the function
p1(t) = sup {E(U(®)(@U(T)f)): Qg): f € X,}, where Xo = X n{f E(f) = 1},con-
verges to 0 as t trends to co. By the closed graph theorem it follows that the
mapping x(f) = aU(T)f from X to C®(Q) is continuous. Now we assume that
p1(t) does not converge to 0 as ¢ tends to oo. Then there exist sequences {t,} of
R and {f,} of X such that t, tends to oo and for any ¢, and f,

4.4) EU(t,)@U(T)f,): 2g)> 5> 0.

By the continuity of k and Ascoli-Arzela’s theorem we may assume that there
exists g€ H such that aU(T)f, converges to g in H. Then by (4.4) it follows that

lim E(U(t,)g: Qg) # 0, which contradicts (2.8).

tn—wo
Next we shall consider U(t)(1 — a)U(T)f. First we prove the following
4.5) U@t)aU(T)feC®(2 x R,).

By (4.3) and Lemma 2.2 it follows that g = Ut)aU(T)f = U(t + T)f — U(t)
(1 —aU(T)f is a C® function in {(x,0)eQ@ x R:t20, |x|<R/2-
(32 + 4u)*/2t}. If we assume that (%, t, €, ) € W Fy(g), then by theorems of Section
3 there exists a ray p(t) consisting of generalized bicharacteristics of 12 — p?|¢|? or
12 — p2|¢® such that p(f) = (%,1,&,7) and p(t)e WF,(g) for all t <t Let
p(0) = (x0,0, &y, T0); then R/2 < |xo| < R. Since for @€ C(U,) with & = 1 near
Xo, Where U, is a small neighbourhood of x,, U(t)aU(T) f isequal to U(t)@aU(T) f
near (x,,0), which is in C*(Q x R) because #aU(T)f € D(A®), we have a contra-
diction. Next we shall show the following

(4.6) wix,t) = Up(D)(1 — ))U(T)f e C*({x:|x| < R/2} x R, }).

From Lemma 2.2 w(x, t) is equal to U(t)(1 — «)U(T)f in Q x {¢: |t| < &} for small
d. By this fact, (4.3) and (4.5) it follows that w(x,t)e C*{(x,t)eR® x R: |x| <
R + p,t,0 <t < 8}. Let p = (%, 1, &, 7) belongs to WF(w), where |%| < R/2,t 2 0:
then there exists the null bicharactristic p(tf) passing through g of
12 — p2 &% (k = 1,2) such that p(t) e WF(w) for t < t. Since the absolute value of
the x component x(0) of p(0) is greater than R, the absolute value of the
x component x(t) of p(t) is a decreasing function of ¢. For small ¢t > 0p(t)e
WFE,U@®)(1 — )U(T)f) = WF,(U(t + T)f) by (4.5. This implies that
p(t)e WF,(U(t + T)f)neart = — T. Since |x(t)| is decreasing, |x(— T)| > R. This
is a contradiction to fe X.

Let us consider the mapping k(f) = w(x,t) from X to C*{(x,t): |x| < R/2,
te[0, Ty]}, where Ty, is an arbitrary positive number; then from the closed graph
theorem we have

@.7) sup {|6/03w(x, 1)l: te[0, Tol, x| < R/2} < C; E(f).



EXPONENTIAL ENERGY DECAY OF SOLUTIONS. . . 219

By Huygen’s principle and Lemma 2.2 it is not difficult to construct #(x,t) =
(5,02} € H*™(Q x R,) N &' (g x (8, T,)) such that L(0,)(5; — w;) = 0 on 9,
wherej=1,2,k=0,1,...,m,0 < 6 < T, w(x,t) = "{w,,w,}, and

(4.8) 151 lgzm + 182 llg2m < C ), sup |6] 05w(x, t)|

jtla|sM (x,1)eD
for some positive constants C and M, where D = {(x,t): te[0, T, ], |x| < R/2}.
Then w — # satisfies the following

(4.9) @ — Aw—9) = fix,0, (w—0)x0)=(1—oUTf,

where f'= —'{0,5, — #,,0,5, — L(,)5,}. Here we remark that (w — 9)(t,")e
D(A*™)and f(t, ) e D(A*™~?)for all . If f belongs to D(A), then by the representa-
tion theorem to solutions of (4.9) we have (w — 9)(x,t) = U(¢)(1 — )U(T)f +

t
f U(t — s)f(s," )ds. It follows that if ¢ is sufficiently large, U(t)(1 — e)U(T)f =
0

To

U(t)g, where g(x) = ~J U (—5)f(s, - )ds, which belongs to D(4%>™~ %) n &'(Qg,),

0 .
where R, only depends on R. Since E(U(t)(1 — a)U(T)f: Q) £ E(U(t)g: Qg), we
shall show that p,(t) = sup {E(U(t)g: Qg): f € X, D(A)} converges to 0 as
t tends to co. By the way of proving the property on p,(t), we may show that for all

feXonD(A)E,(9) = lIg1 | gzm+1 + g2 | g2 S C, where m’ is sufficiently large.
By the similar way of proving (2.6) we have
(4.10) 191 llgzm+1 + Ig2llgam < C{E(A*™ ~'g) + E(4*™ g)}.

From (4.7), (4.8) and (4.10) it follows that for all f € X, N D(A) E,,.(g) is bounded
by some positive constant C that is independent of f. Since X n D(A)is a dense set
of X, the proof is completed as p(t) = p,(t) + p,(t).
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