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ON THE RELATIVE ADJUNCTION MAPPING

MAURO BELTRAMETTI AND ANDREW JOHN SOMMESE

Introduction.

Let ¢: X — Y be a proper algebraic map with connected fibres from a connec-
ted quasi-projective n-dimensional manifold, n = 2, onto a complex quasi-pro-
jective variety Y. Let L be an algebraic line bundle on X that is very ample
relatively to ¢. In this article we use Reider’s technique [4] in a local setting to
generalize results about the adjunction bundle Ky ® I~ ! that are standard
when Y is a point (see [9] for statement in this case and references to the
literature).

For simplicity we will state only the dim Y > 0 results and only the algebraic
version in this introduction, but actually prove both algebraic and analytic
versions of a number of results in the paper.

THEOREM [ ((4.1),(5.1)). The natural morphism p*@ (Ky @ L) > Ky @ ' !
is onto unless ¢ is a P"~ ! bundle over a smooth curve and Ly = Opn-1 (1) for a fibre
F of o.

Assuming the above map is onto it is easy to construct a normal quasi-pro-
jective space X’ with a surjective morphism ¢": X’ — Y, an algebraic morphism
with connected fibres ¢: X — X', and a commutative diagram

x —* L, x

o\ S

Y

such that K, ® ' ! ~ ¢* Z for a line bundle ¥ on X' which is ample and
spanned by global sections relatively to ¢’.

THEOREM II (5.3). If dim X > dim X' then either:
i) n23,dimY = 2and ¢: X - YisaP"~ % bundle over a surface with Ly = O (1)
for a fibre F; or
i) dim Y = 1 and either ¢: X — Y has a n — 1 dimensional quadric Q for a gen-
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eral fibre with Ly the pull-back of @p~ (1) under the embedding Q — P" or X is
a linear P"~ 2 bundle over a surface X' that fibres over the curve Y.

THeOREM III (5.3). If dim X = dim X', X" is smooth and ¢ expresses X as X'
with a finite set B blown up. There is a line bundle L on X' that is ample relatively to
@' and such that L~ ¢*L @ [¢ " '(B)] ™" and Ky @' ~ ¢*(Ky. @ L")
Further Ky. ® L™~ is very ample relatively to ¢'.

The proof of the above results depends on relative forms of Reider’s results for
proper morphisms ¢: X — Y, where X is a smooth surface, and line bundles L on
X. These results are proved in (1.3), (2.1) and (3.1).

We give local criteria for certain bundles to be k-spanned. The k-spannedness
is a notion of higher order emdedding introduced and extensively studied in [3]
and [2]. It should be noted that 0-spanned is equivalent to be spanned and
1-spanned is equivalent to be very ample. The proofs of these local results are
simple reductions to the compact case when X and Y are quasi-projective and L,
¢ are algebraic. We also show the analytic case, when Y is a surface and
¢ a modification, based on an elaborate reduction to results of Elkik and Artin
[1].

We would both like to thank the Max-Planck-Institut fiir Mathematik for
making our collaboration possible. The second author would also like to thank
the University of Notre Dame and the National Science Foundation (DMS
87-22330) for their support.

§0. Preliminaries.

We work over the complex numbers field C. Through the paper we shall
denote by n: S — Y a desingularization of either a germ Y of an isolated surface
singularity {y} or a normal Stein (respectively affine) surface Y. Then there exist
a holomorphic surjection 4: &% — % of a smooth projective surface & onto
a projective surface % and a commutative diagram (see §1 for details)

s 2 Y
! !

Y —L

where the vertical arrows are holomorphic embeddings of open sets in the
complex analytic topology.

Let Z be a line bundle on S (resp. on &). We say that & is numerically effective,
nef for short, if & - C = 0 for every effective compact divisor C on § (resp. curve
C on ¥). We say that a nef line bundle £ on & is big if ¥+ % > 0. We shall
denote by K and K ., the canonical sheaves of the holomorphic 2-forms on S and
& respectively. We simply write (%) or £,(£) to mean the Leray’s sheaves
Rin (L)or R4, (L), i>0.
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(0.1) We fix some more notation.
~ (resp. =), the numerical (respectively linear) equivalence of divisors;

x(&) = Y.(— 1) H(Z), the Euler characteristic of a line bundle %, where h'(%)
stands for the complex dimension of H'(-, &);

|Z|, the complete linear system associated to % and I'(%), the space of its global
sections. We say that £ is spanned if it is spanned by I'(%);

Kx, the canonical bundle of the holomorphic n-forms of a n-dimensional analytic
(or algebraic) manifold X.

As usual we don’t distinguish between locally free sheaves and vector bundles
nor between line bundles and Cartier divisors. Hence we shall freely switch from
the multiplicative to the additive notation and viceversa.

We recall the definition of k-spannedness and the basic construction for it
given in [2].

(0.2) k-spannedness. Let & be aline bundle on S (resp. on &). Wesay that £ is
k-spanned for k = 0, if for any admissible 0-cycle Z of degree k + 1 on S (resp. on
&) the map

NZL)-rZeos)

is onto. Here admissible means that the ideal sheaf #, defining & is isomorphic
to O, (resp. to Oy ,) for z¢Supp(Z) and £, is generated by (u;, v at

z;€Supp(Z) where Y k; = k + 1 and (u;,v;) are local coordinates at z;. Note

deg & = length(0/ #s). Note also that O-spanned is equivalent to ¥ being
spanned by I'(#) and 1-spanned is equivalent to very ample.

(0.3) THEOREM ([2], (2.1)). With the notation as above, let ¥ be a nef and big
line bundle on & and let ¥+ % = 4k + 5. Then either K, + ¥ is k-spanned or
there exists an effective divisor D on & such that & — 2D is Q-effective, D contains
some admissible 0-cycle of degreek’ + 1 < k + 1 where the k-spannedness fails and

FLD—kK—-1=DD<¥ D2<k +1

Let us recall the following definition.

(0.4) We say that (S, L) is a conic bundle if there exists a proper holomorphic
surjection m: S — C where C is a smooth curve, the fibers of = are connected and
Ks® L = n*H where H is ample and L is both relatively ample with respect to
n and nef and big.

§1. The local k-spannedness Theorem.

We need the following simple consequence of Elkik’s approximation theorem
([1], pp. 49-50 and p. 55).
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(1.1) THEOREM. Let m: S — Y be a desingularization of a germ Y of an isolated
surface singularity {y}. Let E be a vector bundle on S. Then there exists a holomor-
phic surjection p: & — % of a smooth projective surface & onto a projective
surface % with an isolated singularity y such that n: S — Y is the pull-back of
#: & — % under a biholomorphism ¢ of Y into %. Further there is a holomorphic
vector bundle & on & which gets pulled back to E under the map S — & induced as
above.

ProoF. Let (Y,Ey) be the pair consisting of Y and the coherent sheaf
Ey = nE. By Elkik’s approximation theorem quoted above, there exists a pair
(Y', E') where E' is a coherent algebraic sheaf on an algebraic (affine) surface Y’
and E’ is locally free outside of an isolated singularity g. Further there exists
a biholomorphism ¢’ of Y into Y’ with ¢'(y) = y and E, = ¢"*E'. Now, choose
a projective compactification Y” of Y’ and let Y be the desingularization of it
away from g. After possibly blowing up Y” away from g we obtain a normal
projective surface % such that the pull-back, modulo torsion, of E' to % is
a coherent sheaf &” locally free away from g; furthermore the morphism ¢’ gives
rise to a biholomorphism ¢ of Y into #. Let 4: & — % be a desingularization of
% at the singular point » = ¢(y), constructed by replacing a smoll neighborhood
V' of 4 with n~!(V) where V is a neighborhood of y in Y biholomorphic to V".
Then clearly S = Y x 4% and ¢ induces a biholomorphism of S into . Since
#*& and E agree on some open set of the form 4~ '(%)\ 4~ '(y), where % is
a neighborhood of y, £*&’ and E patch together to give a locally free vector
bundle & on & agreeing with E over 4~ '(%). This completes the proof.

Note that the same argument as above and the Kawamata-Viehweg vanishing
theorem lead to the Grauert-Riemenschneider vanishing theorem in the follow-
ing special case we need.

(1.2) THEOREM. Let m: S — Y be a desingularization of a germ Y of an isolated
surface singularity. Let L be a nef line bundle on S. Then ny,(Ks ® L) = 0.

PROOF. The notation are as in Theorem (1.1). Let . be the extension of L on
& given by (1.1). Choose a very ample line bundle # on % and set

M=LQpH", N>O.

Note that .# is spanned outside of 4~ '(y), # the singular point of %, for N > 0.
Indeed,

(S M) T, py M) = T(poy & Q H")

and 4,.% ® #" is spanned for N > 0 by Serre’s Theorem A. Further, for any
irreducible component C of £~ '(y), #-C=L-C=L-C 20 since *H is
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trivial on C and L is nef. Thus .# is nef and big for N > 0,
H@, p Ky ® M) = H Y, Ky ® L) ® #™) = (0)

by Serre’s Theorem B and H(¥,K, ® .#) = (0) by the Kawamata-Viechweg
vanishing theorem. Thus from the Leray’s spectral sequence for £and K, ® .#
we infer that H*(@, 4,(K » ® #)) = (0) and hence

#01) Ky @ M) =11 (Ks®@L)=0
since £;)(K s ® ) is supported at the singular point of %.

(1.3) CoroLLARY (The local k-spannedness Theorem). Letn: S — Y be a de-
singularization of a germ Y of an isolated singularity {y} and let L be a nef line
bundle on S. Given an admissible 0-cycle (Z,04) of degree k + 1 with
Supp(Z) « n (), then H'(S,Ks ® L ® #) = (0) where y is the defining ideal
of (Z, Oy) and the map

is onto, unless there exists a compact effective divisor D with Supp (D) = n~(y)
such that D contains some non-trivial sub 0-cycle of (Z,0q) of degree k' + 1 <
k + 1 and

(13.1) LD-kK—-1<D-D<O.

PrROOF. Let & be the extension of L on & guaranteed by (1.1) and set
M =L R p*HN,N > 0,asin the proof of (1.2). Then applying Theorem (0.3) to
the pair (¥, .#) we see that the map

2 (S Ky @ M)>T(Z, Ky ®@ MR Ug)

is onto, unless there exists a compact effective divisor D on & containing some
non-trivial sub 0-cycle of (2,0 4) of degree k' + 1 < k + 1 and

MD—k—-—1ZDD<M D/2<k +1.

Since #-D/2>k'+1 if D-p*# >0 and N >0, we conclude that
D-4p*# =0.ThusD<n"'(y)on S, # D= L-Dand

L-D-k—-1ZD-D<0O.
Now if + is surjective then clearly the map
I'S,Ks®L)-»T'(Z,Ks®L® 0Oy)

is also surjective and hence H!(S,Ks ® L ® #5) = (0) since H'(S,Ks® L) =
= H'(Y,n,(Ks® L)) = (0) in view of Theorem (1.2).
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§2. Piecing together local results.

In this section we prove the following “global” k-spannedness criterion. Let us
set

2,(L) = {effective compact divisors Don S,L-D —k— 1< D-D <0}.

(2.1) THEOREM. Let m: S — Y be a desingularization of a normal Stein (re-
spectively affine) surface. Let L be a nef line bundle on S. Then given any admiss-
ible O-cycle (Z,04) of degree k + 1 with Supp(Z)c< S\ D,(L) one has
HY(S,Ks® L ® #5) = (0) for the defining ideal sheaf fa of (Z,0y) and the map

F(S,K5®L)‘*F(S,K5®L®0_«z)
is onto.

Proor. Let Sing(Y)denote the singular locus of Y and let Z = n(2) U Sing(Y).
Let D,, D, be two Cartier divisors on Y such that D; n D, is a finite set containing
Z. By using the local k-spannedness Theorem (1.3) it thus follows that if we show
the surjectivity of the map

p:r(S,Ks®L)_'r((g’Ks®L®(O‘€)’

where % is the O-cycle of S defined as ¥ = (k + )z~ '(D,) n (k + Drn~*(D,),
we will be done. Indeed Supp(Z)cn '(D;)nn"'(D,), therefore
Z c(k+ 1)n"(D,)nn"Y(D,) since degZ <k + 1. This implies that
Fa D Fe Fe the defining ideal of €. Hence there is a surjective map

M@, Ks®L® 0) > (%, Ks® L® Oy)

so we get the result after proving that p is onto. To see this, by using the
hypercohomology spectral sequence of the Koszul complex

0> *Op(—(k + 1)(D; + D,)) ®Ks® L — ...
- *[Oy(—(k + 1)D;) ® Oy(—(k + 1)D;)]] ® Ks @ L —
> Kis®L—-+KsQ®L®Og—>0
we are reduced to showing that, for i > 0,
(2.1.1) H'(S, n*Oy(—(k + 1)(D; + D,)) ® Ks ® L) = (0).

Note that the same proof as in Theorem (1.2) gives us n;,(Ks ® L) = 0 fori > 0.
Therefore, by the projection formula

o (n*Oy(—(k + 1)(Dy + D)) ® Ks ® L) =

ni(Ks ® L) ® Oy(—(k + 1)(Dy + D,)) =0

and hence (2.1.1) follows by the Leray’s spectral sequence for = and the fact that
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Y is either a Stein or an affine surface. In the same way, 7;(Ks ® L) = Ofori > 0
leads to H'(S, Ks ® L) = (0), whence H'(S,Ks ® L® #») = (0).

The following consequence of the Theorem above generalizes a result of Sakai

(5], §7.

(2.2) COROLLARY. Let m: S - Y be a minimal desingularization of a Stein
(respectively affine) surface Y. Then
(2.2.1) Kg is k-spanned outside of 2(0s) = {effective compact divisors D,
—k—1Z<D-D<0};
(2.2.2) K is k-spanned outside of the set of —2 rational curves for t = k + 2;
(2.2.3) ifv = min, {D- Kg} where D is an effective compact divisor and Supp (D) is
not made up with only — 2 rational curves, K¥ is k-spanned outside of the set of —2
rational curves for (t — 1)v 2 k + 1.

PRrooOF. First, note that K is nef since 7 is the minimal desingularization. Then
Theorem (2.1) applies to say that for any admissible O-cycle & of degree k + 1,
with Supp (Z2) = S\ 2,(0), the map

I'S,Ks) > TI'(Z,Ks ® 0y)

is onto, that is K is k-spanned outside of 2,(0s) and (2.2.1) is proved.
Similarly we know that for any admissible O-cycle & of degree k + 1 with
Supp(Z) = S\ Z,((t — 1)K;) the map

I'(S,K5) - I'(Z,Ks ® Og)

is onto and hence Kj is k-spanned outside of Z,((t — 1)K). Now, since we are
looking for the k-spannedness outside of —2 rational curves, we can assume
Kg-D > 0. Therefore 2,((t — 1)Ks) = & whenever t = k + 2, which proves
(2.2.2). The same argument gives us (2.2.3).

Let us point out the following consequence of Theorem (2.1) in the case when
the line bundle L is assumed to be k-spanned.

(2.3) COROLLARY. Let m: S — Y be a desingularization of a Stein (respectively
affine) surface Y and let L be a k-spanned line bundle on S. Then
(2.3.1) Kg® Lis (k — 1)-spanned;
(2.3.2) Kg® L is k-spanned if n is the minimal desingularization.

ProOF. It runs parallel to that of Corollary (2.2). Note that, since L is
k-spanned, L D = k for any effective compact divisor D on S. So (2.3.1) is clear.

As to (2.3.2), we see that Kg ® L is k-spanned unless there exists an effective
compact divisor Dsuchthat L-D = k,D-D = —1.Now, h°(D, Lp) = k + 1since
L, and hence L, is k-spanned. Then D is a smooth P!, contradicting the
minimality of .
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§3. The case of algebraic morphisms onto a curve.

In this section we carry out the analogues of the main results of sections 1 and
2 in the case of a smooth surface with a given algebraic morphism onto a smooth
affine curve.

The following is the analogue of the local k-spannedness Theorem (1.3).

(3.1) THEOREM. Let p: S — C be a proper algebraic morphism from a smooth
surface S onto a smooth affine curve C. Let L be a spanned line bundle on S such that
the restriction of L to the general fibre of p has positive degree. Given a finite set of
points ¢y,...,¢, on C and an admissible 0-cycle (Z,0y) of degree k + 1 with
Supp(Z) < u;p~*(c;),i = 1,...,t, then the map

INKs®L)»TI'(Ks®L® 0g)

is onto and H (S,Ks ® L ® #4) = (0) where ¢ 4 is the defining ideal of & in S,
unless there exists a compact effective divisor D on S with
Supp(D) = p~*(c,) U...u p~!(c,) such that D contains a non-trivial sub 0-cycle of
(Z,0q) of length k' + 1 <k + 1 and

L-D—-k—-1<D-DZ0O.
Proor. First, note that there exists a commutative diagram

S — V

vl i

C —— R

where V, R are both projective and smooth, r is a proper algebraic morphism with
connected fibres and S — V, C — R are embeddings. Further there exists a line
bundle £ on V such that

L= L.

To construct the above diagram, take projective compactifications §’, C' of S,
C and let §”, R be the desingularizations (away from S and C) of §', C’ respective-
ly. Let L be the extension of L to S’ and let L' be the pull-back of L to S”. After
possibly blowing up S” away from S we obtain a smooth surface V' and a line
bundle .# on V, the pull-back modulo torsion of L on V, with the requested
properties.

Now, let H be an ample line bundle on R and set

M=FLRr*H", N >O0.

Clearly we can assume that the support of H is contained in R\ C, so we have
# = Lon S. Furthermore we claim that .# is nef on V. Indeed

IV, #)=TR,r, M)=T(r,% Q H")
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andr, £ ® H" is spanned for N > 0 by Serre’s Theorem A. Then I'(V, .#) spans
the restriction .#g because Lis spanned on S and .# agrees with Lon S. Therefore
the base locus Bs|.#| of .# is contained in V\ S. By possibly replacing .# with

M\ {divisorial components of Bs|.#|}, we can assume Bs|.#| to be finite and
hence ./ to be nef.

Note also that # - .# > 0 for N » 0 since L restricted to the general fibre of
p has positive degree. Then by Theorem (3.1) of [2] applied to the pair (V, .#)(see
also (0.2), (0.3) in this paper) we know that the restriction

p: Ky ® M)—>T(K,® MR Og)

is onto, unless there exists an effective divisor 4 on V containing some sub 0-cycle
of (Z,04) of degree k' + 1 < k + 1 and such that

MA—K—1SA A< M-A2<k + 1.

After replacing integer N above with M = N + mfor some m > 2k’ + 2 we infer
that

MA2 = (L Qr*HM)-4/2> K + 1

whenever r*H - 4 = 0, a contradiction. Thus we conclude that the support of 4 is
contained in the union of fibres of r. Let D be the restriction of 4 to S; then
Supp (D) = u; p~!(c;) and it is not empty. Therefore, since 4 -D = L-D on S,

L-D—k—-1ZD-D<L-D)2<k + 1.
Now from the commutative diagram

rK, ® #) —2— (K, ® M ® Oy)
! N
INKs ® L) —2— I'Ks @ L® Uy)

we see that p is surjective whenever p is also. Finally we claim that
ray(Ky ® #) = 0.

It thus follows that H'(S,Ks® L ® #5) =(0). Indeed r (K, ® #)=0
implies p;,(Ks ® L) = 0; hence by Leray’s spectral sequence H 1S, Ks® L) =
H'(C,p,(Ks® L)) = (0), so that the surjectivity of p gives the result.

To prove r;)(Ky ® .#) = 0 note that, for N > 0,

H'R,r (K, ® #)) = H'(R,r (K, ® £)® H") = (0)

by the projection formula and Serre’s Theorem B. By using again Leray’s spectral
sequence one sees that

HOR, 7K, ® M) = H\(V,K, ® )



198 MAURO BELTRAMETTI AND ANDREW JOHN SOMMESE

and the right-hand group is zero by the Kawamata-Viehweg vanishing. It thus
follows that r;,(K, ® .#) = 0: otherwise by the projection formula and Serre’s
Theorem A it would be

H°(R,r)(Ky ® #)) = H°(R,r(Ky ® £) ® H") # (0),
a contradiction. This completes the proof.

Note that the analogue of Theorem (2.1) is now an obvious consequence of the
Theorem above. Here 2, (L) denotes the set of the effective compact divisors D on
Ssuchthat L-D—-k—-1<D-DZ0.

(3.2) THEOREM. Let p,S,C and L be as in (3.1). Then given any admissible
O-cycle (Z,0y) of degree k+ 1 with Supp(Z)c< S\Z,(L) one has
H'(S,Ks ® L® fo) = (0) for the defining ideal sheaf $4 of (Z,0y) and the map

I'S,Ks®L)->I(Z,Ks® L® 0Oy)
is onto.

In the case when L is k-spanned we have another easy consequence of Theorem
(3.1) (compare with (2.3)).

(3.3) COROLLARY. Let p: S — C be a proper algebraic morphism from a smooth
surface S onto a smooth affine curve C. Let L be a k-spanned line bundle on S. Then
(3.3.1) K¢ ® L is (k — 2)-spanned;

(3.3.2) K5 ® Lis(k — 1)-spanned unless p is a P* bundle and L = Op:(k) for every
fibre f of p;

(3.3.3) If p is a minimal fibration (i.e. no — 1 rational curves are contained in the
fibres), then K5 ® L is k-spanned unless either p is a P' bundle and L, = Op: (k) for
any fibre f of p,or LD =k + 1,D-D = 0 and D is a degree k + 1 curve in P*.

Proor. Since L is k-spanned, L- D = k for any effective compact divisor D on
S. So (3.3.1) is clear. Further, Ks® L is (k — 1)-spanned unless there exists an
effective compact divisor D such that

L-D=k, D-D=0.

Now, H°(D, Lp) 2 k + 1 since L and hence Ly, is k-spanned. Then D embeds in
a PX, under the morphism given by I'(Lp), as a smooth P! and it is a fibre of p. It
thus follows that p is a P* bundle since A5 = 0, so that D deforms. This gives
(3.3.2).

Finally Kg ® L is k-spanned unless there exists an effective compact divisor
D such that either

L-D=k+1and D-D=0
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or
L-D =k and either DD =0 or —1.

Thecase L-D = kand D- D = —1isexcluded by the minimality assumption and
we are done.

§4. The relative adjunction mapping, part I.

In this section we use the results of §§1, 2 to generalize, in both the analytic and
algebraic cases, results about the adjoint bundle Ky ® L7~ that are standard in
the absolute case. Here we deal with morphisms onto surfaces.

(4.1) THEOREM. Let X be a n-dimensional connected analytic (respectively alge-
braic) manifold and let n: X — Y be a holomorphic (respectively algebraic) proper
morphism from X onto a normal analytic (respectively algebraic) surface Y. Let L be
a holomorphic (respectively algebraic) line bundle on X that is very ample relative to
n and such that the natural morphism n*n, L — L is onto. Then n*n (Kx @ '™ 1)
— Kx ® I ! is onto. Further, either:

(4.1.1) there exists a commutative diagram

x 2, x

e

where X is the blowing up of a discrete set B on an analytic (respectively algebraic)
manifold X', L ~ ¢*L. ® Ox(¢~'(B)) for a line bundle L on X' that is ample
relatively to ', i.e. Ky @ I' ' ~ ¢*(Ky- ® L" ') and Ky. ® L" ' is very ample
relatively to n'; or

(4.1.2) n = 3 and n is a P"~ 2 bundle with Ly = Opn-2(1) for any fibre F of =.

ProoF. It suffices to prove the statement under the assumption that Y is
a normal Stein (respectively affine) surface and L is very ample. Then note that
Ky ® L'') - Ky ® I’ ! onto simply means Ky ® I~ ! to be spanned.

First, let us assume n = 2. Thus clearly Ky ® L is spanned by Theorem (2.1).
Further Ky ® L is 1-spanned unless there exists an effective compact divisor D,
passing through some O-cycle of degree < 2 where the 1-spannedness fails, such
that

L-D-2£D-D<O.

Therefore L-D =1, DD = —1 and hence D is a smooth rational —1 curve.
Note that (Ky ® L), = Op for such curves. Note also that these curves are
disjoint; since otherwise D, D, >0, D= —1, i=1,2, would imply
(Dy + D,)* 2 0, contradicting the fact that they are both contracted by 7. Let X"
denote X with all such smooth rational —1 curves D with L-D = 1 contracted
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and let ¢: X — X' be the contraction. Let L be the line bundle associated to the
divisor ¢(A) for a general Ae|L|. Then Ky ® L ~ ¢*(Ky. ® L), Ky ® L is
1-spanned and we are as in (4.1.1).

Now let n = 3. Through any point xe X we can choose a smooth surface
S obtained as transversal intersection of n — 2 general elements of |L|. Let s be the
sectionof & = L@ ... ® L (n — 2 copies) associated to the sections defining the
n — 2 general elements of |L|. Let

0-Ky®@L-Ky®RL®E>Ky®LR A& —...
oo Ky@L® A28 > (KxyQL® A" 28)5—0

be the tensor product of Ky ® L and the hypercohomology spectral sequence
associated to s. Since A""2& ~ I"~? we see that

Ky®L® A" 28 ~xKx®I" " and (Ky® L ® A" 28)s ~ Ks ® Ls.

By Theorem (2.1), Kg® Lg is spanned by global sections and thus by the
hypercohomology spectral sequence, Ky ® L'~ ! is spanned by global sections at
xif Ky ® L® A" 27¢¢) = 0for0 <i < n— 2 Since A" 27! & isadirect sum
of copies of I~2~% we are reduced to showing that h'(Ky ® "' ~%) = 0 for
0 < i £ n— 2. By using Leray’s spectral sequence and the fact that S is a Stein
(respectively affine) surface, this follows from the relative Kodaira vanishing
theorem which states that R'n (K ® L)) = 0 for i > 0, > 0.

To prove the second part of the statement choose a finite number of global
sections which span Ky ® [~ ! and look at the morphism g: X — P associated
to 'Ky ® I"1). Let (n,6): X - Y x P be the holomorphic (respectively alge-
braic) proper map induced by = and ¢ and let so¢ be the Remmert-Stein
factorization. Look at the commutative diagram

X =2, yxP

Ny

Let F be a general fibre of n. Note that the restriction of ¢ to F is the mor-
phism associated to I'(F,Ky ® L"~'). To see this it suffices to show that
HY(Ky ® ' ' ® J¢) = (0) where Ji is the ideal sheaf of F. By the Leray spectral
sequence and the fact that Y is Stein (affine) we are reduced to showing that
HY(Ky ® L% ' ® Jp) = (0) where U = n~}(V) for some Stein (affine) neighbor-
hood V of n(F). Since F is a general fibre, we can choose V so that there are
w = dim Y = dim X — dim F holomorphic (algebraic) functions {g,,...,g,,} on
V that generate the maximal ideal sheaf m of n(F) on V. We have the usual Koszul
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complex; use the tensor product of K, ® L, ! with the Koszul complex obtained
by wedging exterior products of O} by g, ®... ® g,

0-Ky®Ly'Q@0y - Ky @@Ly ' Q0 » Ky QL' ® A208— ... >
Ky QLy'®J:—0.

Now compute the cohomology using the Grauert-Riemenschneider vanishing
theorem and the hypercohomology spectral sequence.

Thus well known properties of the adjunction mapping say us that either
(Kx ® ' Y)p ~ Kp ® L¥™F* 1 is trivial or dim F = dim ¢(F). In the former case
F =~ P" 2and Ly = Opn-2(1) (see f.e. [7], 0.3); it thus follows that 1 X — Y is
a P"~2 bundle in view of [8], (3.3), so we find class (4.1.2). In the latter case
dim ¢(F) = n — 2 where ¢(F) is nothing but the general fibre of n’ and therefore
dim X' = n.

From now on, let us assume n = 3; the proof in the general case is an easy
modification of the arguments below. Let E be any connected divisor which
contracts to a single point under ¢ and let S be a smooth general element in the
complete linear system |L|. Then by the above the intersection EnSis a —1
rational curve £ such that E-L-L = L-¢ = Lg-£ = 1. It thus follows that E is
reduced and irreducible: further E = P2 and Lg = 0p2(1). Now (Kx ® I*); ~
since clearly Ky ® I* ~ ¢*M for some (ample) line bundle M on X'. Therefore
the adjunction formula gives Agx = Op2(— 1) which means that ¢(E) is a smooth
point on X'.

Next, let C be an irreducible component of some 1-dimensional fibre of ¢. Let
{¢y,...c,} be the set of points cut out on C by a general element A €|L|. Again the
result we proved for n = 2 applies to say that Ky ® Lg is very ample outside of
— 1 rational curves. Then we see that there is a line ¢ passing through all the
points, c;,...,c, and which contracts to the point ¢(C). Now we claim that there
exists a compact divisor A5 of X containing /s and such that ¢(A4s) = ¢(C). Then,
from the fact that there are at most a countable number of divisors which
contracts to points, it thus follows that there exists a divisor 4, among the Ag’s,
which contains the curve C. Hence the previous argument applies again to show
that 4 = P2,

The claim above follows from standard arguments of deformation theory and
it is proved in [6], (0.5.4). We give here a sketch of the proof for reader’s
convenience. Write £ = /g and note that there is an exact sequence

0 O—1) > Nyx = O(1) > 0

where either A x = O, ® O, or My x = O[1) D O —1). If Npx=0,® 0, one
sees that deformations of ¢ fill out a neighborhood of # in X and hence
dim ¢(X) < 3 since dim ¢(¢) = 0 implies dim ¢(#,) = O for small deformations 7,
of 7, a contradiction. Therefore A4, x = 0,(1) ® O (—1); this implies that defor-
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mations of ¢ lie on a divisor 4 of X and dim ¢(4) < 2. It thus follows that 4 is
smooth in a neighborhood of # and .47, = @ ,(1). Then, since ¢ - ¢, = 1, any small
deformation ¢, of £ meets ¢ and hence n(¢,) = n(¢). Therefore there exists an
irreducible component A4, of 4 which contains £ and lies over a point of Y, so that
A, is the requested compact divisor.

Thus we have proved that X' is smooth and ¢: X — X' is the blowing up of X’
at a finite set B of points. Further the arguments above show that Ky ® L? is
1-spanned outside of ¢ !(B). Then K,® I? = ¢*(Ky. ® L?) where
L =~ (¢,L)** and Ky ® L' is very ample; so we are as in (4.1.1).

§5. The relative adjunction mapping, part II.

In this section we use the results of previous sections to generalize, in the
algebraic case only, results about the adjoint bundle K, ® "~ ! that are standard
in the absolute case.

(5.1) THEOREM. Let X be a n-dimensional connected quasi-projective manifold
and let p: X — Y be an algebraic proper morphism from X onto a normal quasi-
projective variety Y of dimension = 1. Let L be a line bundle on X that is very ample
relative to p. Then the natural map p*p (Kx ® L'~ ') - Kx ® L' ! is onto unless
dimY = 1 and pis a P"~! bundle on Y with L; = O(1) for any fibre F of p.

ProoF. It sufficies to assume that Y is affine with L very ample and to look at
the spannedness of K, ® "~

The case when dim Y = 2 has been worked out in (4.1). Note also that, by
slicing X with general elements of |L| and by looking over the proof of (4.1), one
sees that Ky ® [~ ! is spanned by global sections whenever dim Y > 3.

Thus we reduce to the case whendim Y = 1. First, let usassume n = 2. Then by
Theorem (3.1), Ky ® Lis spanned unless there exists an effective compact divisor
D passing through some point where the spannedness fails and sucht that

L-D-1=D-DZO.

Hence L-D = 1,D- D = 0. Therefore D is a smooth P! and it is a fibre of p. It thus
follows that p is a P* bundle since A5 = Op, so that D deforms.

Then from now on we can assume n = 3 (and dim Y = 1). Fix a general fibre
F of p. Let S be the smooth surface on X obtained as transversal intersection of
n — 2 general members of |L| and let ps: S — Y be the restriction of p to S. Denote
by f= F S a general fibre of ps. From the above we know that Ky ® L is
spanned and (K5 ® I%) , ~ (Kx ® L"), is trivial on f. Again, the same argu-
ments as in the proof of (4.1) show that Ky ® L' is spanned by global sections. Let
¥ be the morphism associated to I'(K; ® L). Then ¥ is the restriction to F of the
morphism associated to I'(Ky ® L*). General properties of the adjunction map-
ping say us that either dim ¥(F) = O or dim ¥(F) = dim F = n — 1. In the former
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case Ky ® L§™F* 1 is trivial so that F = P"~! and L = Op.-(1); it thus follows
that p: X — Yis a P"~! bundle in view of [8], (3.3). The latter case is excluded

since (Ky ® L), ~ (K ® L), is trivial and f varies with S to cover the whole F.
So we are done.

To prove the structure Theorem (5.3) below, the following Proposition is
useful.

(5.2) PROPOSITION. Let p: S — C be a proper algebraic morphism from a quasi-
projective smooth surface S to a smooth quasi-projective curve C. Let L be a line
bundle on S that is ample and spanned relative to p and assume the natural map
p*p.(Ks ® L) - K5 ® L to be onto. Then Kg ® L is very ample relative to p unless
either p: S — Cis a conic bundle and L, = ()(2) for any fibre f of p or there exists
a commutative diagram

.

P\ 7

where ¢ is the blowing up of a discrete set B on a smooth surface S,
L~ ¢*L ® Og(¢ ~'(B)) for anampleline bundle Lon §',i.e. Ks ® L ~ ¢p*(Kg ® L)
and K. ® L is very ample relative to p'.

Proor. It suffices to prove this when C is affine. By Theorem (3.1) we see that
K5 ® L is 1-spanned unless there exists an effective compact divisor D, passing
through some 0-cycle of degree < 2 where the 1-spannedness fails, such that

L-D-22D-D=0.
Hence either
L-D=1, D-D=0or —1,
or
L-D=2,D-D=0.

Case L-D = 1, D- D = 0 is excluded since K5 ® L is assumed to be spanned. If
L-D =2,D-D = 0, then |Lp| embeds D as a degree 2 curve and D is a fibre of p. It
thus follows that p is a conic bundle since Ap,s = Op, so that D deforms. Finally, if
L-D=1,D-D = —1 then D is a smooth P! and it is contained in a fibre of p;
indeed p(D) is a point since D is compact. Note that (K5 ® L), = @). Note also
that such P'’s are contained in disjoint fibres: otherwise D, D, = 1, D} = —1,
i = 1,2, would imply (D, + D,)* =0, L-(D, + D,) =2 and D, + D, would be
a reducible connected fibre of a conic bundle as in the case above.

Let S’ denote S with all such smooth rational —1 curves D with L-D =1
contracted and let ¢: S — S be the contraction. Let L' be the line bundle
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associated to the divisor ¢(A) for a general A€|L|. Then K ® L =~ ¢*(Ks ® L)
is 1-spanned.

(5.3) THEOREM. Let p: X — Y and L be as in(5.1) and let assume the natural map
P*P(Kx® L' ') > Ky ® " to be onto. Then either:
(53.1) n=3,dimY = 2and p: X - YisaP" " ? bundle over Y with Ly = Or(1) for
any fibre F of p;
(5.3.2)dim Y = 1and either p: X — Y hasn — 1 dimensional quadric Q for general
fibre with Ly, the pull-back of Opn(1) under the embedding Q < P", or X is a linear
P"~2 bundle over X’ a surface that fibres over the curve Y,
(5.3.3) there exists a commutative diagram

x —* . x

Ny

’

where X' is smooth, ¢ expresses X as the blowing up of X' at a finite set B,
L~ ¢*L ® Ox(¢~*(B)) for some relatively ample line bundle L on X', i.e.
Ky®I' ' =~ ¢*Ky ® L"), and Ky ® L™ ! is very ample relatively to p'.

PrOOF. It suffices to show the case when Y is affine and Ky ® L’ ™! is spanned.
Choose a finite number of global sections which span Ky ® I~ ! and look at the
morphism o: X — P associated to I'(Ky ® L' '). Let (p,0): X = Y x P be the
algebraic proper morphism induced by pand ¢ and let s 0 ¢ be the Remmert-Stein
factorization of (p, ). Look at the commutative diagram

x 22, vy« P

First, assume dim X > dim X' and let F be a general fibre of p. Then
(Ky® [ ') % K ® Ly ! and the restriction of ¢ to F is the morphism as-
sociated to I'(K; ® L !). Note also that dim X > dim X’ if and only if
dim F > dim ¢(F). Let 4 be a general fibre of the induced map ¢p: F — ¢(F).
Then K, ~ — L', !, hence by a classical result due to Kobayshi-Ochiai (see e.g.
[71,(0.3)), we have n — 1 < dim 4 + 1, so that

n—1<dmada+1n—dimY + 1.

Therefore dimY £ 2. If dimY = 2, one has dim4 =n — 2, that is 4 =F,
dim ¢(F) =0 and Ky ~ — L3™F*! Hence F = P"~? and Ly = @pn-2(1); by the
smoothness of X and the argument in [8], §3 it thus follows that p: X — Y is
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a P"~2 bundle, so we find class (5.3.1). Ifdim Y = 1, theneitherdim4 =n — 1 or
dim 4 = n — 2. In the former case 4 = F,dim ¢(F) = Oand K; ~ — L§™F; hence
F = Q, Q aquadricin P", with L = (y(1), so we are in class (5.3.2). In the latter
case one has dim ¢(F) = 1 and K, ~ —[3™4*!; therefore A = P""? and L, =
Opn-2(1). From this we conclude that X to X' is a scroll over a surface, that is
Ky + (n — 1)L = ¢*.&Z for some ample line bundle .# on X'. By the smoothness
of X it follows that X to X' is a linear P"~ 2 bundle over the surface X' that fibres
over the curve Y, so we are again in class (5.3.2).

Thus we can assume dim X = dim X'. Let S be a smooth surface obtained as
transversal intersection of n — 2 general members of |L|. If the general fibre F of
p is of positive dimension, denote by f = S N F the general fibre of the restriction
ps: S— Y of p to S. Note that pg: S — Y cannot be a conic bundle. Otherwise
(Ks ® Ls); would be trivial, then, since the restriction of ¢ to S is the map
associated to I'(Kg ® Lg), f would be contracted to a point under ¢ and therefore
dim F > dim ¢(F), that is dim X > dim X', a contradiction. Now, by using (5.2)
we see that X' is smooth, ¢ is the blowing up of X’ at a finite set of points and we
arein class(5.3.3). If dim F = 0 an analysis of the positive dimensional fibres of ¢,
as done in the proof of Theorem (4.1), shows that we fall again in class (5.3.3).
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