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ADJUNCTION PROPERTIES OF POLARIZED SURFACES
VIA REIDER’S METHOD (*)

ANTONIO LANTERI and MARINO PALLESCHI

Introduction.

In [S] Sommese investigated the spannedness and the very ampleness properties
of the adjoint bundle Ky ® & to a very ample line bundle ¥ on a smooth
complex algebraic surface. In [LP,] the ampleness of Ky ® . was studied for
surfaces polarized by an ample line bundle .#.

Recently Reider’s method [R], [Be] has changed the perspective in the study of
adjoint bundles allowing one to consider more general line bundles .#. By this
method Sommese and Van de Ven [SV] completed the study of the very
ampleness of Ky ® £ when % is very ample, started in [S].

The purpose of this paper is to use Reider’s method to obtain information on
the spannedness and the very ampleness of the adjoint bundles Ky ® #* for
surfaces polarized by an ample and spanned line bundle. More generally let
£1s. .., %, be ample line bundles on a smooth surface X. We prove the following
facts.

(L) Ift=23,thenKy® ¥, ® ... %, is very ample unless t = 3 and either
a) (X, %) = (P?,05:(1)) for each i, or
b) no %, is spanned and X contains an effective divisor E numerically equivalent to
each &, such that E* = 1 and h°(E) = 1,2.

Many examples as in b) are discussed.

(1.6) If t =2and c,(&,)? = 2,¢,(ZL,)* 2 3,then Ky ® £, ® &, isvery ample
unless X contains an irreducible curve E satisfying c,(ZL;g) =1, i=1,2 and
E? = 0; if (X, &) is not a scroll for one i at least, then £, and &, are not spanned.

As to the spannedness we prove
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(1.4) If t 22, then Ky ® £, ® ... ® &, is spanned unless t = 2, ¥, ¥, and
(&) = 1;if (X, &) # (P2, 0p:(1)) for at least one i, then no ¥, is spanned.

In [F,] Fujita showed how results on the base locus of adjoint systems can
follow from a slight variation of Reider’s method; (1.4) provides some more
detail.

The previous results have many applications.

In section 2 we provide some results on the spannedness and the very ample-
ness of powers of an ample line bundle on a minimal surface of Kodaira
dimension 0. They unify and generalize results in [SD], [Co], [Ra].

In section 3 by combining (1.6) with the main result of [SV] we obtain the
classification of surfaces polarized by an ample and spanned line bundle of genus
2 (see also [BLP] for related results). The corresponding classification in higher
dimension is obtained via Badescu’s results on ample divisors [B].

In section 4 we get some specification of our previous results on polarized
surfaces [LP,] under the further assumption that the polarizing line bundle is
spanned.

As alast thing, in section 5 we deduce the ampleness of the jacobian of an ample
net on a smooth surface and obtain results on the ramification divisor of
branched coverings of P2 and of P! x P!,

We would like to thank A. J. Sommese for helpful conversations.

0. Notation and background.

Let X be a complex projective n-fold (n = 2) and ¥ = O (L) a line bundle on
X. We shall always confuse a line bundle with the associated invertible sheaf. Let

|| = the complete linear system defined by .%;
#' = the i-th tensor power of .Z;
h(¥) = dim¢ H' (X, L);
AX, &) =n+c, (L) — h(2)
9(&) =1+ 1/2(c,(Kx ® L) c,(LY 1),

where K is the canonical bundle of X.

A polarized pair is a pair (X, .#) consisting of a projective n-fold X and an
ample line bundle % on it. (Q", Og~(1)) will stand for the smooth hyperquadric
Q" = P"*! polarized by its hyperplane bundle. We recall the standard names of
some classes of polarized pairs which will frequently occur in what follows.
(X, &)isascrollif X is a P"~ !-bundle over a smooth curve an &, = Opn- (1) for
every fibre f of X. Note that (Q?, 0g:(1))is a scroll in two different ways. (X, £)is
a quadric bundle (conic bundle when n = 2) if there is a morphism p: X — C over
a smooth curve C, whose general fibre F satisfies (F, Zr) = (Q" !, Ogn-:(1)).
(X, Z)is a Del Pezzo pair if Ky ® £" ! is trivial.
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We say that a line bundle & is spanned to mean that it is spanned by its global
sections.

Let X be a surface, i.e. n =2, and C, DeDiv(X); CD will stand for the
intersection index of C and D and C? for CC.

Assume that the surface X is a P!-bundle over a smooth curve. The invariant
e of X is the opposite of the minimum of the self-intersection indexes of the
sections of X. A fundamental section of X is a section whose self-intersection
index is —e. We shall always denote by £ and f a fundamental section and a fibre

of X respectively. The rational P!-bundle of invariant e, P(0p: @ Op:(—e)), will
be denoted by F,.

(0.1) Let X be a surface and .# an ample line bundle on X. A smooth rational
curve E < X is said a (— 1)-line (relative to #)if E2 = —1 and EL = 1. We recall
that the number of the (— 1)-lines is finite and that they are disjoint unless (X, ¥)
is a conic bundle. Apart from this case there exists a birational morphism r:
X — X' onto asurface X' contracting all the (— 1)-lines of X to a finiteset F < X'.

Let & =r, ¥ = Oy (L), &' is ample and the pair (X', &’) is referred to as the
reduction of (X, #). We recall that

(0.1.1) Lz r.

The main tool we use in this paper is Reider’s method, which we recall in the
following form.

(0.2) THEOREM. ([R], see also [SV]). Let D be a numerically effective divisor on
a surface X.

(0.2.1) If D* = 5, then Ky ® Ox(D) is spanned unless X contains an effective
divisor E satisfying either

DE=0, E*= —1 or DE=1, E*=0.

(0.2.2) IfD* = 9, then Ky ® Oy(D) is very ample unless X contains an effective
divisor E satisfying either

(i) DE=0, E*= —1lor -2,
(i) DE=1, E*= —10r0
(iii) DE=2, E?>=0,or
(iv) D ;3E (numerically equivalent) and E* = 1

(0.3) LEMMA. Let X be a surface polarized by an ample and spanned line bundle
&£ = Ox(L). If X contains an effective divisor E satisfying EL = 1, E* = 0, then
(X, L) is a scroll and E is a fibre.

PROOF. Let ¢: X —» P¥ be the morphism associated with |#|. From the
equality

1 = LE = deg ¢y deg@(E)



178 ANTONIO LANTERI AND MARINO PALLESCHI

we see that E ~ P! and then X is ruled by the Noether-Enriques theorem. The
condition LE = 1 also says that (X, %) is a scroll.

1. Very ampleness of certain adjoint bundles.

In this section X will be a surface and %, %,,. .., %, ample line bundles on X.
As usual we shall put Z; = Oy(L;). We investigate the very ampleness and the
spannedness of the line bundle K, ® 4, ® ... ® %Z,.

(1.1) PROPOSITION. Let t 2 3. If Ky ® £, ® ... ® &, is not very ample, then
t = 3 and either

(1.1.1) (X, &) =(P%0p:(1)), i =1,2,3, 0r
(1.1.2) X contains an effective ample divisor E with E* = 1, A(X,[E]) = 1,2 and
Li;[E], i=1,2,3.

If furthermore ¥, is spanned,then Ky ® £, ® ... ® &, isvery ample unlesst = 3
and (1.1.1) holds.

PROOF. Asc (£, ®...® Z)* 29,if Ky® £, ® ... ® Z,isnot very ample,
(0.2.2) with [D] = %, ® ... ® &£, shows that X contains an effective divisor
E such that 3 = DE > t. Therefore, t = 3 and E has to be as in (0.2.2) (iv).
Moreover, L,E = 1 and so (L; — E)E = 0. Since (L, — E)? 2 0, the Hodge index
theorem implies that L; ;[ E]. In particular [E] is ample. As0 < A(X,[E]) £ 2,if
we are not in case (1.1.2), then 4(X, [E]) = 0, which, combined with E2 = 1, gives
(X,[E]) = (P%,05:(1)) [F,]. Since L, ;[E], this shows that we are in case (1.1.1).
The last assertion is immediate once we consider that h°(#,) = 3 by the spanned-
ness and so 4(X, %) = 0.

Here is a list of pairs (X, %;) asin(1.1.2), for all of them K, ® ¥, ® £, ® ¥;
is not very ample.

(1.2) ExampLES. 1. Let X be a Del Pezzo surface of degree 1, ie. X =
B, .., (P?), the blow-up of P? at 8 points in general position and let &, = Ky ',
i=1231fEe|Ky',then AX,[E])=1. Ky® %, ® £, ® ¥3 = Kx?isnot
very ample: the associated map expresses X as a double cover of the quadric cone
Q branched at the vertex and along the transverse intersection of Q with a cubic
surface.

2. Let X be the P!-bundle of invariant e = —1 over a smooth elliptic curve
and let Z;;[£],i=1, 2, 3. Take E = ¢&; then AX,[E])=2. Kx® %, ® ¥, ®
£ 37L& + f] is not very ample: actually, its restriction to the elliptic curve & has
degree 2.

3. Let X = C® be the symmetric product of a smooth curve C of genus 2, let 7:
C x C - X be the obvious projection and let D = n(C); D is a smooth curve of
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genustwo and n*D = (C x {a}) + ({a} x C).Hence &, = [D],i = 1,2,3isample.
Letting E = D, we get A(X,[E]) = 2. Moreover, Ky ® ¥, ® ¥, ® ¥, is not very
ample; actually, its restriction to D has degree 4D? = 4 and so it cannot be very
ample.

4. Let X be a Kynev surface, i.e. a minimal surface of general type with c?(X) =
p,(X) = 1, q(X) = 0. The canonical system of X consists of a single smooth
curve K of genus 2. If, in addition, X contains no (—2)-curves, then Ky is
ample. Take %, =K,, i=1,2,3 and E =K. Then, A(X,(E])=2 and
Ky® %, ® ¥, ® ¥ = K% is not very ample: actually, its restriction to K can-
not be very ample, as its degree is

deg Ky x = 4ci(X) =4

5. Let X be a minimal surface of general type with c¢}(X) =1, p,(X) =2,
q(X) = 0. If X does not contain any (—2)-curves, then K is ample. Let &; = K
and E€|Ky|. Then 4(X,[E])=1and Ky ® ¥, ® ¥, ® ¥, = K% is not very
ample. Actually, its restriction to a general element of |K |, which is a smooth curve
of genus two, cannot be very ample, having degree 4c?(X) = 4.

(1.3) Many results are known on polarized surfaces (X, .#) with 4(X, #) = 1 or
2, but a complete classification in case c,(%£)* = 1 is not yet available. This
prevents us from getting a better statement in (1.1) without any further assumption
on the Z;’s. However, we note the following fact.

(1.3.1) PROPOSITION. If ¥, ® £, ® & is very ample, then Ky ®@ ¥, @ ¥, ®
2L, is very ample unless (X, &) is either as in (1.1.1) or as in the examples (1.2.1),
(1.2.2).

PROOF. Actually, for every curve C ¢ X
deg(Z, ® £, @ L3)c 2 3.

Therefore the pair (X, %, ® %, ® ;) can be neither (P2, 0p:(e)), e = 1,2, nor
a scroll, nor a conic bundle and it is a Del Pezzo pair only in case (1.1.1). The
assertion follows from the main result of [SV] since (X, %, ® £, ® £3) cannot
admit nontrivial reductions.

In the examples (1.2.3) (1.2.4) (1.2.5) &, ® &£, ® £, is not very ample, but it is
spanned. As to (1.2.4) (1.2.5) this is due to the properties of the pluricanonical
bundles (see [C, Th.1] and [Ho, pp. 128-129] respectively), while it follows from
a computation in case (1.2.3). We ask the following

(1.3.2) QUESTION. Assume that ¥, ® ¥, ® ¥ is spanned. How many excep-
tionto the very ampleness of Ky ® £, ® ¥, ® £; canbefoundinadditionto(1.1.1)
and (1.2)?
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(1.4) PROPOSITION. Lett 2 2. If Ky ® ¥, ® ... ® &, isnot spanned, thent = 2
and #, L5, c(L,)* = 1. If furthermore ¥, is spanned,thenKy @ ¥, ® ... ® &,
is spanned unless t = 2 and (X, %;) = (P2, 0p:(1)),i = 1,2.

ProOF. If t =2 and L} = L3 = L, L, = 1, the Hodge index theorem immedi-
ately shows that &, ;.%,. In all the remaining cases, by the obvious inequality

cl($l®"‘®$t)2 =ZL,L,; 5,
iJj

0.2.1) applieswith[D] =%, ®... ® Z,. If Ky ® £, ® ... ® %, is not spanned,
there exists an effective divisor E which has to satisfy

1=2DE=t

This gives a contradiction. The last assertion is immediate since the spannedness of
%, implies that h°(#,) = 3 and so A(X, .#;) = 0.

(1.5) REMARK. If in (1.4) we simply assume %, ® .%,, instead of .#,, to be
spanned, then we get more exceptions to the spannedness of Ky ® ¥, ® £,,e.g.
(1.2.1) and (1.2.2). On the contrary in (1.2.4), (1.2.5) Ky ® ¥, ® %, = K} is
spanned and gives a birational morphism [C], [Ho].

(1.6) PROPOSITION. Let t=2 and assume c,(¥,)* 22, ¢, (&£)*=23. If
Ky ® %, ® &, is not very ample, then X contains an irreducible curve E satisfying

(1.6.1) EL,=EL,=1, E*=0.

If furthermore ¥, is spanned, then Ky ® £, ® &, is very ample unless (X, ¥)) is
a scroll fori = 1,2.

Proor. Due to the assumption, by the Hodge index theorem we get

(1.6.2) (L®L)Y22+2./6+3>0.

So,if Ky ® £, ® &, isnot very ample, (0.2.2) with [D] = &£, ® &, shows that
X contains an effective divisor E such that DE < 3 (strict inequality due to (1.6.2)).
Then, in view of the ampleness of .#;, E can only be as in (0.2.2, iii) and so (1.6.1)
holds. In particular E is an irreducible curve. As to the last assertion, if
Ky ® &, ® &, is not very ample, it follows from (1.6.1) and (0.3) that (X, .Z,) is
a scroll; but then (X, %,) is a scroll as well.

(1.7) REMARK. Note that, if ¢,(#,;)* = 2 and &, is spanned, then n: X — P2 is
adouble cover, &, = n* Op:(1). In thiscase Ky ® £, ® £, is very ample by (1.6)
unless ¢,(%,)* £ 2.

From (1.6) and (1.7) we immediately get the following
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(1.8) COROLLARY. Let X be a surface polarized by an ample and spanned line
bundle &#. Then Ky ® #? is very ample unless either

(1.8.1)  (X,2) = (P 0p(1)),
(1.8.2)  m X — P%isadouble cover and ¥ = n* Op:(1), or
(1.8.3) (X, &) is a scroll.

2. Surfaces with numerically trivial canonical bundle.

In this section we give an application of the results of section 1 to minimal
surfaces of Kodaira dimension zero.

(2.1) PROPOSITION. Let X be a surface with numerically trivial canonical bundle
and let &,..., %, be ample line bundles on X. Then ¥, ® ... ® &, is

(2.1.1) very ample for t = 3;
(2.1.2) spanned for t = 2, and very ample if in addition £, is spanned and
(&) > 2.

ProOOF. To prove (2.1.1) we can assume t = 3. We have ¥, ® ¥, ® &¥; =
Ky® M, where M =%, R %, (L3R Ky!). Then £, ® ¥, ® &L, is very
ample by (1.1) unless X contains an effective divisor E with E2 = 1. However, this
cannot occur since, being Ky 70, the genus formula shows that E? is even.

To prove (2.1.2) we can assume t = 2. We have ¥, ® ¥, = Ky ® & with
N =2 ®(L,®Kx'). Then £, ® ¥, is spanned by (1.4) since, being K x ;0, it
cannot happen that ¢,(Z;)* = 1. The last assertion in (2.1.2) follows from (1.6).

By taking &, = Zfori = 1,...,t,the above proposition provides a meaningful
generalization of results proved by St. Donat [SD, Th. 8.3] for K3 surfaces and by
Cossec [Co, Cor. 8.3.2] for Enriques surfaces. See also [Ra] for the case of abelian
surfaces.

The very ampleness result in (2.1.2) can be further specified.

(2.2) PROPOSITION. Let X be a surface with numerically trivial canonical bundle
and let ¥, be an ample and spanned line bundle and £, an ample line bundle on X .
Then ¥, ® &, isvery ample unless m: X — P? is the K3 double cover branched along
a smooth sextic and ¥, = £, = 1 * 0p2(1).

ProoOF. We have %, ® %, = Ky ® £, ® A, where #; = £, ® Kx . Since
Ky 70 we know that

(£ 22, M) =c(Z)’ 22
and by the Hodge index theorem

® LN, 2 B N 22
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In view of (2.1.2) we can assume c,(43)?> = 2. Thus, since
(L ® M) 2 (L) + 2 + 2L\ N,,
by using (*) we see that
(£, ® M) > 9

ifeither ¢,(#,)* = 3 or LN, 2 3. In both cases (0.2) shows that if #; ® &, is not
very ample, then X contains an effective divisor E such that

LE=1 E*=0.

But this would mean that (X, %) is a scroll by (0.3), a contradiction. Therefore it
only remains to consider the following case:

01(2)1)2 = Cl(-/‘/z)z =L;N, =2

In this case if £, ® &, is not very ample, then m: X — P? is a double cover and
2, = n*0p.(1) by (1.7). Since Ky 70, it follows that = is branched along a smooth
sextic and X is a K3 surface. Finally as (L, — L,)L, = Oand ¢,(¥;, ® £;)?* =0,
the Hodge index theorem implies that &, ; %, and then we conclude that &, = &,
since X is regular.

3. Sectional genus 2.

Reider’s method combined with some recent results by Sommese and Van de
Ven [SV] can also be used to classify projective manifolds polarized by an ample
and spanned line bundle of genus 2. As to surfaces this supplies a generalization
of a classical result by Castelnuovo (e.g. [I, Prop. 3.1]) and at the same time
provides some specification to a more general result in [BLP].

(3.1) THEOREM. Let X be a surface polarized by an ample and spanned line
bundle & satisfying () = 2. Then either

(3.1.1) (X, .2) is a scroll over a smooth curve of genus 2,

(3.1.2) X is a P'-bundle over an elliptic curve, with invariant e = — 1 and L;2¢,
where & is a fundamental section,

(3.1.3) XisanF,(e < 2) blown-upat s £ 9 pointsp,,. .., p,ondistinct fibres and
L=0¢*Ly— E, —... — E,,where: X — F, is the blowing-up, E; = ¢~ *(p;) and
Lo728 + (e + 3)f,

(3.1.4) m: X — P2 is the K3 double cover branched along a smooth sextic and
&L =n*0pl), or

(3.1.5) m: X - Q = P3 is a double cover of a quadric cone Q branched at the
vertex and along the transverse intersection of Q with a cubic surface and
L =n*0y(1).
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PrOOF. Let Ce|.%| be a general element. Since C has genus 2 the 2-canonical
map of C is not an embedding, hence by adjunction, K% ® #? cannot be very
ample not even birationally. Note that K2 ® %? =K, ® .#, where
M = Ky ® ¥? and A is very ample unless (X, #) is as in the exceptions of (1.8).
But g(£) = 2 can only happen in cases (1.8.2), (1.8.3), which respectively lead to
(3.1.4) and (3.1.1). So apart from these cases we can assume that .# is very ample.
Now assume that (X, .#) is none of the following pairs

(3.1.6) (P2, 0p2(e)), (e = 1,2), a scroll, a Del Pezzo pair, a conic bundle.

Then, by [SV] Ky ® .# is very ample (out of the (— 1)-lines of (X, .#)) unless
(X, #) is one of the following pairs:

a) X is P2 blown up at seven points in general position and .# = K3 %

b) X is the blowing-up at one point p of a surface X asina)and # = 6 * K> ®
Ox(—0~1(p)), where o: X — X is the blow-up;

¢) X is P2 blown-up at eight points in general position and .# = K 3;

d) X is the P'-bundle of invariant e = —1 over an elliptic curve and .# is
numerically equivalent to Ox(3¢).

Cases a), b) and d) lead to numerical contradictions. Actually, in case a) we get
P? =M ®Kx' = K3 hence

4c,(2L)? =9c3(X) = 18,

absurd. In case b) let E = ¢~ !(p); then L= 4/ @ Kx' =0*K;*®[E] 2,
hence

d4c, (L) =9c3(X) — 4 = 14,

absurd. In case d) we have L% = # ® Ky ' ;04(5¢ — f) and the degree of
Zf, would be odd, absurd. Note that all these numerical contradictions are
independent of the assumption g(#) = 2. In case c) we get £ = Ky *and this
gives (3.1.5). So it only remains to consider what happens when (X, .#) is as in
(3.1.6). Since g(#) = 2 it cannot be X = P2, Were (X, .#) a Del Pezzo pair, then
(X, #) would be a Del Pezzo pair too and then g(#) = 1, contradiction. Were
(X, ) a scroll, by restricting .# to a fibre we would get a numerical contradic-
tion. Finally, if (X, .#) is a conic bundle, by restricting to a fibre, we see that
(X,.%2) is a conic bundle too. By restricting the ruling projection to C, the
Riemann-Hurwitz theorem shows that h':°(X) < 1; so either X is rational or
ruled over an elliptic curve. Since X # P? there exists a birational morphism #:
X — X, onto a P!-bundle X,. Let s be the number of the blowing-ups 7 factors
through. Then c3(X) = 8(1 — h*'°(X)) — s. Since (X, &) is a conic bundle we get

0=c,(Kxy®£) =801 -h°X) —s+4-L,

and then I? + s = 12 or 4 according to whether X is rational or not. Note that
¢4(£)? Z 3; actually, since it is a conic bundle with g(&£) = 2, (X, £) can be
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neither (P2, 0p2(1)), (Q%, 0g2(1)), nor a double cover of P2 Therefore s <9 or
s < 1 according to whether X is rational or not. Since (X,, £, = n * ¥) is again
aconic bundle, then %, ; Oy (2¢ + bf), where the integer b satisfies the ampleness
conditions for £, [H, p. 382]. In the rational case the proof now continues as in
[L, Prop. 3.1] and we get case (3.1.3). In the irrational case, let e be the invariant of
the elliptic P*-bundle X,. The genus formula allows one to compute b and then
the ampleness conditions for £, show that either

e=0 and %,;04 (2% +f), or

Since £, = Ky, ® A ,with A ample, we have h (%,) = h*(ZL,) = 0; so in both
cases the Riemann-Roch theorem gives h°(#,) = 3 and therefore if s > 0, the
spannedness of £ gives

3 < h(P) < h(L,) = 3,

contradiction. This shows that (X, &) = (X, %,). Incasee = 0, ¥ = ¥, cannot
be spanned since %, is not spanned, having degree 1. Therefore (X, %) is as in
(3.1.2).

Known results on ample divisors [B, I] allow us to extend the above theorem
to higher dimensions.

(3.2) COROLLARY. Let X be a projective n-fold, n = 3, polarized by an ample
and spanned line bundle & with g(¥) = 2. Then either

(3.2.1) (X, &) is a scroll over a smooth curve of genus 2,

(3.2.2) (X, &) is a quadric bundle over P, or

(3.2.3) m: X — P"is adouble cover branched along a smooth sextic hypersurface
and £ = n* Opn(1).

PROOF. A general element X, _, €|.%] is a smooth (n — 1)-fold and &£,_, =
Zx,_, is ample and spanned. Iterate this procedure until you obtain a smooth
3-fold X; and an ample and spanned line bundle #; = £|x.. Then the pair
(X5, %,) produced by a further step is as in Theorem (3.1). Note that (X,, %)
cannot be asin (3.1.2) [B]. Moreover if (X, #,)isasin (3.1.1), then (X, ¥)isasin
(3.2.1) [B]. Similarly, cases (3.1.3), (3.1.4) ascend to cases (3.2.2), (3.2.3) respect-
ively (see [1, Prop. 1.11]). On the other hand case (3.1.5) does not ascend. In fact,
if #"is an ample and spanned line bundle on a 3-fold there is no smooth S|4
with (S, #js) as in (3.1.5). To see this adapt the argument in [SV, Th. 1.7, first
paragraph of the proof].
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4. Further results about adjunction.

Reider’s theorem and the argument used in section 2 show that if X is a surface,
& an ample and spanned line bundle and c,(#)? = 5, then K, ® # is spanned
unless (X, &) is a scroll.

As is known, if £ is ample, to get the ampleness of the adjoint bundle
a reduction is needed [LP, Thm. 2.5]. We can provide a specification of the
quoted result in the case of spanned ample line bundles.

(4.1) PROPOSITION. Let X be a surface and let & be an ample and spanned line
bundle such that c,(£)* 2 5. If (X, #) is neither a scroll, a conic bundle, nor a Del
Pezzo pair, then (X, &) admits areduction (X', ') such that K y. ® %' is ample and
spanned.

ProOOF. Let (X', #’) be the reduction of (X, £) where Ky, ® £’ is ample [LP,
Th. 2.5] and let r: X — X’ be the reduction morphism contracting all the
(—1)-lines of X to points p,,. .., p,of X'. By contradiction, assume that K, ® ¥’
is not spanned. In view of (0.1.1) we have L'* = 5 and so we can apply Theorem
(0.2) with Ox(D) = &’ and conclude that X' contains an effective divisor E,
which, due to the ampleness of #’, has to satisfy

4.1.1) LE=1, E*=0.

Let £ =r~! (E) be the proper transform of E on X and let m; > 0 be the
multiplicity of E at p;,i = 1,...,s. We have

O<LE=LE-Ym=1-Ym,.
Hence m; = 0fori = 1,...,s. Then we get from (4.1.1)
LE=1, E*=0,
which gives a contradiction in view of (0.3).

The following Corollary is another immediate consequence of [LP, Th. 2.5]
and (1.4).

(4.2) COROLLARY. Let X be a surface polarized by an ample and spanned line
bundle &. Then K x ® &2 is ample and spanned unless (X, ) is either (P, 0p2(1))
or a scroll.

The very ampleness of Ky ® £ up to a reduction can be studied under the
assumption that c,(£)? = 9 following the outline of [SV], but, since £ is not
very ample, this leads to a large number of exceptions [P]. However, the method
we used to prove Theorem (3.1) provides information on the exceptions to the

very ampleness of (Ky ® #)* up to a reduction even with no assumption on
¢, (L)
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(4.3) THEOREM. Let X be a surface polarized by an ample and spanned line
bundle ¥. Assume that (X, %) is neither (P2, Op:(e)), e = 1,2, a scroll, a conic
bundle, a Del Pezzo pair, nor as in (3.1.4), (3.1.5). Then (X, ¥) admits a reduction
(X', &) on which (K. ® £')? is very ample.

Proor. The proof goes along the same lines as that of Theorem (3.1). Actually,
if (X, ) is not as in the exceptions of Corollary (1.8), then # = Ky ® #?is very
ample. Note however that if (X, .#) is as in (1.8.2) and the branch locus of «:
X — P2hasdegree 6 > 6,then K is ample, so that .# is the tensor power of three
ample line bundles. Then, by using (0.2.1) again, one can see that (K, ® #)? is
very ample. On the other hand, if = 6, then (X, #)is asin (3.1.4), whileif § < 4,
(X, &) fits into the remaining exceptions.

So we can assume that .# is very ample. Assume that (X, .#)is not asin (3.1.6).
Then, by [SV] (X, #4) admits a reduction (X', #') where K y. ® .#'is very ample.
Let n: X - X' be the reduction morphism and put ¥ =n*<¢. Thus
(Ky ® Z')> =Ky ® #' is very ample. On the other hand, if Ec X is
a (— 1)-curve, we have

EM =2EL -1
and this shows that (X'.#’) is exactly the reduction of (X, .¥). The remaining
exceptions come from the pairs listed in (3.1.6).
5. A final application.

Consider a net A4'of ample divisors on a surface X. Classically the Jacobian J,,
of A is defined as the locus of the singularities of the elements of A"(e.g. see [SR,
p. 427]). Let Z be the line bundle whose complete linear system contains 4} as is
known the line bundle [J, ] depends on & since

[yl =Ky ® £
Then Theorem (1.1) implies the following

(5.1) CoROLLARY. Let X be a surface polarized by an ample line bundle & such
that | #| contains a net A .Then [J,] is very ample unless (X, L) = (P?, Op2(1)).

Proor. If (X, %) # (P2, 0p(1)) and [J, ] is not very ample, then (X, £) has to
be asin(1.1.2), which gives ¢, (£)? = 1. Then, as h°(¥) = dim & + 1 = 3, we get
A(X, &) = 0; contradiction.

In particular this implies the following fact.

(5.2) COROLLARY. Let X be a surface and let f: X — P2 be a finite morphism of
degree 2 2. Then the ramification divisor R of fis very ample.
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PROOF. Actually, R is the jacobian of the net f* |@p.(1).

Similarly, from proposition (1.6) one deduces the following corollary (see also
[LP,, Th. 3.2]).

(5.3) COROLLARY. Let X be a surface and let f- X — Q? be a finite morphism of
degree 2 2. Then the ramification divisor of fis very ample unless (X, f * 0y:(1)) is
a scroll and f gives rise to a commutative diagram

p

X — B

f
q

QZ Pl

where p and q are scroll projections.
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