ADJUNCTION PROPERTIES OF POLARIZED SURFACES VIA REIDER'S METHOD (*)

ANTONIO LANTERI and MARINO PALLESCHI

Introduction.

In [S] Sommese investigated the spannedness and the very ampleness properties of the adjoint bundle $K_X \otimes \mathcal{L}$ to a very ample line bundle \mathcal{L} on a smooth complex algebraic surface. In $[LP_1]$ the ampleness of $K_X \otimes \mathcal{L}$ was studied for surfaces polarized by an ample line bundle \mathcal{L} .

Recently Reider's method [R], [Be] has changed the perspective in the study of adjoint bundles allowing one to consider more general line bundles \mathcal{L} . By this method Sommese and Van de Ven [SV] completed the study of the very ampleness of $K_X \otimes \mathcal{L}$ when \mathcal{L} is very ample, started in [S].

The purpose of this paper is to use Reider's method to obtain information on the spannedness and the very ampleness of the adjoint bundles $K_X \otimes \mathcal{L}^t$ for surfaces polarized by an ample and spanned line bundle. More generally let $\mathcal{L}_1, \ldots, \mathcal{L}_t$ be ample line bundles on a smooth surface X. We prove the following facts.

- (1.1) If $t \ge 3$, then $K_X \otimes \mathcal{L}_1 \otimes \ldots \otimes \mathcal{L}_t$ is very ample unless t = 3 and either a) $(X, \mathcal{L}_i) = (P^2, \mathcal{O}_{P^2}(1))$ for each i, or
- b) no \mathcal{L}_i is spanned and X contains an effective divisor E numerically equivalent to each \mathcal{L}_i such that $E^2 = 1$ and $h^0(E) = 1, 2$.

Many examples as in b) are discussed.

(1.6) If t = 2 and $c_1(\mathcal{L}_1)^2 \ge 2$, $c_1(\mathcal{L}_2)^2 \ge 3$, then $K_X \otimes \mathcal{L}_1 \otimes \mathcal{L}_2$ is very ample unless X contains an irreducible curve E satisfying $c_1(\mathcal{L}_{i|E}) = 1$, i = 1, 2 and $E^2 = 0$; if (X, \mathcal{L}_i) is not a scroll for one i at least, then \mathcal{L}_1 and \mathcal{L}_2 are not spanned.

As to the spannedness we prove

^{*} Partially supported by M.P.I. of the Italian Government Received November 25, 1987; in revised form October 25, 1988

(1.4) If $t \ge 2$, then $K_X \otimes \mathcal{L}_1 \otimes \ldots \otimes \mathcal{L}_t$ is spanned unless t = 2, $\mathcal{L}_{1\tilde{n}}\mathcal{L}_2$ and $c_1(\mathcal{L}_1)^2 = 1$; if $(X, \mathcal{L}_i) \ne (\mathsf{P}^2, \mathcal{O}_{\mathsf{P}^2}(1))$ for at least one i, then no \mathcal{L}_i is spanned.

In $[F_2]$ Fujita showed how results on the base locus of adjoint systems can follow from a slight variation of Reider's method; (1.4) provides some more detail.

The previous results have many applications.

In section 2 we provide some results on the spannedness and the very ampleness of powers of an ample line bundle on a minimal surface of Kodaira dimension 0. They unify and generalize results in [SD], [Co], [Ra].

In section 3 by combining (1.6) with the main result of [SV] we obtain the classification of surfaces polarized by an ample and spanned line bundle of genus 2 (see also [BLP] for related results). The corresponding classification in higher dimension is obtained via Bădescu's results on ample divisors [B].

In section 4 we get some specification of our previous results on polarized surfaces [LP₁] under the further assumption that the polarizing line bundle is spanned.

As a last thing, in section 5 we deduce the ampleness of the jacobian of an ample net on a smooth surface and obtain results on the ramification divisor of branched coverings of P^2 and of $P^1 \times P^1$.

We would like to thank A. J. Sommese for helpful conversations.

0. Notation and background.

Let X be a complex projective n-fold $(n \ge 2)$ and $\mathcal{L} = \mathcal{O}_X(L)$ a line bundle on X. We shall always confuse a line bundle with the associated invertible sheaf. Let

```
|\mathcal{L}| = \text{the complete linear system defined by } \mathcal{L};
\mathcal{L}^i = \text{the } i\text{-th tensor power of } \mathcal{L};
h^i(\mathcal{L}) = \dim_{\mathbb{C}} H^i(X, L);
\Delta(X, \mathcal{L}) = n + c_1(\mathcal{L})^n - h^0(\mathcal{L});
g(\mathcal{L}) = 1 + 1/2(c_1(K_X \otimes \mathcal{L}) \cdot c_1(\mathcal{L})^{n-1}),
```

where K_X is the canonical bundle of X.

A polarized pair is a pair (X, \mathcal{L}) consisting of a projective *n*-fold X and an ample line bundle \mathcal{L} on it. $(Q^n, \mathcal{O}_{Q^n}(1))$ will stand for the smooth hyperquadric $Q^n \subset \mathsf{P}^{n+1}$ polarized by its hyperplane bundle. We recall the standard names of some classes of polarized pairs which will frequently occur in what follows. (X, \mathcal{L}) is a scroll if X is a P^{n-1} -bundle over a smooth curve an $\mathcal{L}_{|f} = \mathcal{O}_{\mathsf{P}^{n-1}}(1)$ for every fibre f of X. Note that $(Q^2, \mathcal{O}_{Q^2}(1))$ is a scroll in two different ways. (X, \mathcal{L}) is a quadric bundle (conic bundle when n = 2) if there is a morphism $p: X \to C$ over a smooth curve C, whose general fibre F satisfies $(F, \mathcal{L}_{|F}) = (Q^{n-1}, \mathcal{O}_{Q^{n-1}}(1))$. (X, \mathcal{L}) is a $Del\ Pezzo\ pair\ if\ K_X \otimes \mathcal{L}^{n-1}$ is trivial.

We say that a line bundle \mathcal{L} is spanned to mean that it is spanned by its global sections.

Let X be a surface, i.e. n = 2, and C, $D \in Div(X)$; CD will stand for the intersection index of C and D and C^2 for CC.

Assume that the surface X is a P^1 -bundle over a smooth curve. The *invariant* e of X is the opposite of the minimum of the self-intersection indexes of the sections of X. A fundamental section of X is a section whose self-intersection index is -e. We shall always denote by ξ and f a fundamental section and a fibre of X respectively. The rational P^1 -bundle of invariant e, $\mathsf{P}(\mathscr{O}_{\mathsf{P}^1} \oplus \mathscr{O}_{\mathsf{P}^1}(-e))$, will be denoted by F_e .

(0.1) Let X be a surface and \mathcal{L} an ample line bundle on X. A smooth rational curve $E \subset X$ is said a (-1)-line (relative to \mathcal{L}) if $E^2 = -1$ and EL = 1. We recall that the number of the (-1)-lines is finite and that they are disjoint unless (X, \mathcal{L}) is a conic bundle. Apart from this case there exists a birational morphism $r: X \to X'$ onto a surface X' contracting all the (-1)-lines of X to a finite set $F \subset X'$.

Let $\mathscr{L}' = r_*\mathscr{L} = \mathscr{O}_{X'}(L)$; \mathscr{L}' is ample and the pair (X', \mathscr{L}') is referred to as the reduction of (X, \mathscr{L}) . We recall that

$$(0.1.1) L^2 \ge L^2.$$

The main tool we use in this paper is Reider's method, which we recall in the following form.

- (0.2) THEOREM. ([R], see also [SV]). Let D be a numerically effective divisor on a surface X.
- (0.2.1) If $D^2 \ge 5$, then $K_X \otimes \mathcal{O}_X(D)$ is spanned unless X contains an effective divisor E satisfying either

$$DE = 0$$
, $E^2 = -1$ or $DE = 1$, $E^2 = 0$.

(0.2.2) If $D^2 \ge 9$, then $K_X \otimes \mathcal{O}_X(D)$ is very ample unless X contains an effective divisor E satisfying either

(i)
$$DE = 0$$
, $E^2 = -1$ or -2 ,

(ii)
$$DE = 1$$
, $E^2 = -1$ or 0

(iii)
$$DE = 2$$
, $E^2 = 0$, or

(iv)
$$D_{\tilde{n}}3E$$
 (numerically equivalent) and $E^2 = 1$

(0.3) LEMMA. Let X be a surface polarized by an ample and spanned line bundle $\mathcal{L} = \mathcal{O}_X(L)$. If X contains an effective divisor E satisfying EL = 1, $E^2 = 0$, then (X, \mathcal{L}) is a scroll and E is a fibre.

PROOF. Let $\varphi: X \to P^N$ be the morphism associated with $|\mathcal{L}|$. From the equality

$$1 = LE = \deg \varphi_{|E} \, \deg \varphi(E)$$

we see that $E \simeq \mathsf{P}^1$ and then X is ruled by the Noether-Enriques theorem. The condition LE = 1 also says that (X, \mathcal{L}) is a scroll.

1. Very ampleness of certain adjoint bundles.

In this section X will be a surface and $\mathcal{L}_1, \mathcal{L}_2, \ldots, \mathcal{L}_t$ ample line bundles on X. As usual we shall put $\mathcal{L}_i = \mathcal{O}_X(L_i)$. We investigate the very ampleness and the spannedness of the line bundle $K_X \otimes \mathcal{L}_1 \otimes \ldots \otimes \mathcal{L}_t$.

- (1.1) PROPOSITION. Let $t \ge 3$. If $K_X \otimes \mathcal{L}_1 \otimes \ldots \otimes \mathcal{L}_t$ is not very ample, then t = 3 and either
- (1.1.1) $(X, \mathcal{L}_i) = (P^2, \mathcal{O}_{P^2}(1)), i = 1, 2, 3, or$
- (1.1.2) X contains an effective ample divisor E with $E^2 = 1$, $\Delta(X, [E]) = 1, 2$ and $L_{i,\bar{i}}[E]$, i = 1, 2, 3.

If furthermore \mathcal{L}_1 is spanned, then $K_X \otimes \mathcal{L}_1 \otimes \ldots \otimes \mathcal{L}_t$ is very ample unless t = 3 and (1.1.1) holds.

PROOF. As $c_1(\mathcal{L}_1 \otimes \ldots \otimes \mathcal{L}_t)^2 \geq 9$, if $K_X \otimes \mathcal{L}_1 \otimes \ldots \otimes \mathcal{L}_t$ is not very ample, (0.2.2) with $[D] = \mathcal{L}_1 \otimes \ldots \otimes \mathcal{L}_t$ shows that X contains an effective divisor E such that $3 \geq DE \geq t$. Therefore, t = 3 and E has to be as in (0.2.2) (iv). Moreover, $L_iE = 1$ and so $(L_i - E)E = 0$. Since $(L_i - E)^2 \geq 0$, the Hodge index theorem implies that $L_{i\,\tilde{n}}[E]$. In particular [E] is ample. As $0 \leq \Delta(X, [E]) \leq 2$, if we are not in case (1.1.2), then $\Delta(X, [E]) = 0$, which, combined with $E^2 = 1$, gives $(X, [E]) = (P^2, \mathcal{O}_{P^2}(1))$ $[F_1]$. Since $L_{i\,\tilde{n}}[E]$, this shows that we are in case (1.1.1). The last assertion is immediate once we consider that $h^0(\mathcal{L}_1) \geq 3$ by the spannedness and so $\Delta(X, \mathcal{L}_1) = 0$.

Here is a list of pairs (X, \mathcal{L}_i) as in (1.1.2); for all of them $K_X \otimes \mathcal{L}_1 \otimes \mathcal{L}_2 \otimes \mathcal{L}_3$ is not very ample.

- (1.2) EXAMPLES. 1. Let X be a Del Pezzo surface of degree 1, i.e. $X = B_{p_1...p_8}(\mathsf{P}^2)$, the blow-up of P^2 at 8 points in general position and let $\mathcal{L}_i = K_X^{-1}$, i = 1, 2, 3. If $E \in |K_X^{-1}|$, then $\Delta(X, [E]) = 1$. $K_X \otimes \mathcal{L}_1 \otimes \mathcal{L}_2 \otimes \mathcal{L}_3 = K_X^{-2}$ is not very ample: the associated map expresses X as a double cover of the quadric cone Q branched at the vertex and along the transverse intersection of Q with a cubic surface.
- 2. Let X be the P¹-bundle of invariant e = -1 over a smooth elliptic curve and let $\mathcal{L}_{i\tilde{n}}[\xi]$, i = 1, 2, 3. Take $E = \xi$; then $\Delta(X, [E]) = 2$. $K_X \otimes \mathcal{L}_1 \otimes \mathcal{L}_2 \otimes \mathcal{L}_3_{\tilde{n}}[\xi + f]$ is not very ample: actually, its restriction to the elliptic curve ξ has degree 2.
- 3. Let $X = C^{(2)}$ be the symmetric product of a smooth curve C of genus 2, let π : $C \times C \to X$ be the obvious projection and let $D = \pi(C)$; D is a smooth curve of

genus two and $\pi^*D = (C \times \{a\}) + (\{a\} \times C)$. Hence $\mathcal{L}_i = [D]$, i = 1, 2, 3 is ample. Letting E = D, we get $\Delta(X, [E]) = 2$. Moreover, $K_X \otimes \mathcal{L}_1 \otimes \mathcal{L}_2 \otimes \mathcal{L}_3$ is not very ample; actually, its restriction to D has degree $4D^2 = 4$ and so it cannot be very ample.

4. Let X be a Kynev surface, i.e. a minimal surface of general type with $c_1^2(X) = p_g(X) = 1$, q(X) = 0. The canonical system of X consists of a single smooth curve K of genus 2. If, in addition, X contains no (-2)-curves, then K_X is ample. Take $\mathcal{L}_i = K_X$, i = 1, 2, 3 and E = K. Then, $\Delta(X, [E]) = 2$ and $K_X \otimes \mathcal{L}_1 \otimes \mathcal{L}_2 \otimes \mathcal{L}_3 = K_X^4$ is not very ample: actually, its restriction to K cannot be very ample, as its degree is

$$\deg K_{X|K}^4 = 4c_1^2(X) = 4.$$

- 5. Let X be a minimal surface of general type with $c_1^2(X) = 1$, $p_g(X) = 2$, q(X) = 0. If X does not contain any (-2)-curves, then K_X is ample. Let $\mathcal{L}_i = K_X$ and $E \in |K_X|$. Then $\Delta(X, [E]) = 1$ and $K_X \otimes \mathcal{L}_1 \otimes \mathcal{L}_2 \otimes \mathcal{L}_3 = K_X^4$ is not very ample. Actually, its restriction to a general element of $|K_X|$, which is a smooth curve of genus two, cannot be very ample, having degree $4c_1^2(X) = 4$.
- (1.3) Many results are known on polarized surfaces (X, \mathcal{L}) with $\Delta(X, \mathcal{L}) = 1$ or 2, but a complete classification in case $c_1(\mathcal{L})^2 = 1$ is not yet available. This prevents us from getting a better statement in (1.1) without any further assumption on the \mathcal{L}_i 's. However, we note the following fact.
- (1.3.1) PROPOSITION. If $\mathcal{L}_1 \otimes \mathcal{L}_2 \otimes \mathcal{L}_3$ is very ample, then $K_X \otimes \mathcal{L}_1 \otimes \mathcal{L}_2 \otimes \mathcal{L}_3$ is very ample unless (X, \mathcal{L}_i) is either as in (1.1.1) or as in the examples (1.2.1), (1.2.2).

PROOF. Actually, for every curve $C \subset X$

$$\deg(\mathscr{L}_1\otimes\mathscr{L}_2\otimes\mathscr{L}_3)_{|C}\geqq 3.$$

Therefore the pair $(X, \mathcal{L}_1 \otimes \mathcal{L}_2 \otimes \mathcal{L}_3)$ can be neither $(\mathsf{P}^2, \mathcal{O}_{\mathsf{P}^2}(e))$, e = 1, 2, nor a scroll, nor a conic bundle and it is a Del Pezzo pair only in case (1.1.1). The assertion follows from the main result of [SV] since $(X, \mathcal{L}_1 \otimes \mathcal{L}_2 \otimes \mathcal{L}_3)$ cannot admit nontrivial reductions.

In the examples (1.2.3)(1.2.4)(1.2.5) $\mathcal{L}_1 \otimes \mathcal{L}_2 \otimes \mathcal{L}_3$ is not very ample, but it is spanned. As to (1.2.4)(1.2.5) this is due to the properties of the pluricanonical bundles (see [C, Th.1] and [Ho, pp. 128–129] respectively), while it follows from a computation in case (1.2.3). We ask the following

(1.3.2) QUESTION. Assume that $\mathcal{L}_1 \otimes \mathcal{L}_2 \otimes \mathcal{L}_3$ is spanned. How many exception to the very ampleness of $K_X \otimes \mathcal{L}_1 \otimes \mathcal{L}_2 \otimes \mathcal{L}_3$ can be found in addition to (1.1.1) and (1.2)?

(1.4) PROPOSITION. Let $t \geq 2$. If $K_X \otimes \mathcal{L}_1 \otimes \ldots \otimes \mathcal{L}_t$ is not spanned, then t = 2 and $\mathcal{L}_{1 \tilde{n}} \mathcal{L}_2$, $c_1(\mathcal{L}_1)^2 = 1$. If furthermore \mathcal{L}_1 is spanned, then $K_X \otimes \mathcal{L}_1 \otimes \ldots \otimes \mathcal{L}_t$ is spanned unless t = 2 and $(X, \mathcal{L}_i) = (\mathsf{P}^2, \mathcal{O}_{\mathsf{P}^2}(1))$, i = 1, 2.

PROOF. If t=2 and $L_1^2=L_2^2=L_1L_2=1$, the Hodge index theorem immediately shows that $\mathcal{L}_{1\tilde{n}}\mathcal{L}_2$. In all the remaining cases, by the obvious inequality

$$c_1(\mathscr{L}_1 \otimes \ldots \otimes \mathscr{L}_t)^2 = \sum_{i,j} L_i L_j \ge 5,$$

(0.2.1) applies with $[D] = \mathcal{L}_1 \otimes \ldots \otimes \mathcal{L}_t$. If $K_X \otimes \mathcal{L}_1 \otimes \ldots \otimes \mathcal{L}_t$ is not spanned, there exists an effective divisor E which has to satisfy

$$1 \ge DE \ge t$$
.

This gives a contradiction. The last assertion is immediate since the spannedness of \mathcal{L}_1 implies that $h^0(\mathcal{L}_1) \ge 3$ and so $\Delta(X, \mathcal{L}_1) = 0$.

- (1.5) REMARK. If in (1.4) we simply assume $\mathcal{L}_1 \otimes \mathcal{L}_2$, instead of \mathcal{L}_1 , to be spanned, then we get more exceptions to the spannedness of $K_X \otimes \mathcal{L}_1 \otimes \mathcal{L}_2$, e.g. (1.2.1) and (1.2.2). On the contrary in (1.2.4), (1.2.5) $K_X \otimes \mathcal{L}_1 \otimes \mathcal{L}_2 = K_X^3$ is spanned and gives a birational morphism [C], [Ho].
- (1.6) PROPOSITION. Let t=2 and assume $c_1(\mathcal{L}_1)^2 \geq 2$, $c_1(\mathcal{L}_2)^2 \geq 3$. If $K_X \otimes \mathcal{L}_1 \otimes \mathcal{L}_2$ is not very ample, then X contains an irreducible curve E satisfying

$$(1.6.1) EL_1 = EL_2 = 1, E^2 = 0.$$

If furthermore \mathcal{L}_1 is spanned, then $K_X \otimes \mathcal{L}_1 \otimes \mathcal{L}_2$ is very ample unless (X, \mathcal{L}_i) is a scroll for i = 1, 2.

PROOF. Due to the assumption, by the Hodge index theorem we get

$$(1.6.2) c_1(\mathcal{L}_1 \otimes \mathcal{L}_2)^2 \ge 2 + 2\sqrt{6} + 3 > 9.$$

So, if $K_X \otimes \mathcal{L}_1 \otimes \mathcal{L}_2$ is not very ample, (0.2.2) with $[D] = \mathcal{L}_1 \otimes \mathcal{L}_2$ shows that X contains an effective divisor E such that DE < 3 (strict inequality due to (1.6.2)). Then, in view of the ampleness of \mathcal{L}_i , E can only be as in (0.2.2, iii) and so (1.6.1) holds. In particular E is an irreducible curve. As to the last assertion, if $K_X \otimes \mathcal{L}_1 \otimes \mathcal{L}_2$ is not very ample, it follows from (1.6.1) and (0.3) that (X, \mathcal{L}_1) is a scroll; but then (X, \mathcal{L}_2) is a scroll as well.

(1.7) REMARK. Note that, if $c_1(\mathcal{L}_1)^2 = 2$ and \mathcal{L}_1 is spanned, then $\pi: X \to \mathsf{P}^2$ is a double cover, $\mathcal{L}_1 = \pi * \mathcal{O}_{\mathsf{P}^2}(1)$. In this case $K_X \otimes \mathcal{L}_1 \otimes \mathcal{L}_2$ is very ample by (1.6) unless $c_1(\mathcal{L}_2)^2 \leq 2$.

From (1.6) and (1.7) we immediately get the following

(1.8) COROLLARY. Let X be a surface polarized by an ample and spanned line bundle \mathcal{L} . Then $K_X \otimes \mathcal{L}^2$ is very ample unless either

- $(1.8.1) (X, \mathcal{L}) = (P^2, \mathcal{O}_{P^2}(1)),$
- (1.8.2) $\pi: X \to \mathsf{P}^2$ is a double cover and $\mathscr{L} = \pi * \mathscr{O}_{\mathsf{P}^2}(1)$, or
- (1.8.3) (X, \mathcal{L}) is a scroll.

2. Surfaces with numerically trivial canonical bundle.

In this section we give an application of the results of section 1 to minimal surfaces of Kodaira dimension zero.

- (2.1) PROPOSITION. Let X be a surface with numerically trivial canonical bundle and let $\mathcal{L}_1, \ldots, \mathcal{L}_t$ be ample line bundles on X. Then $\mathcal{L}_1 \otimes \ldots \otimes \mathcal{L}_t$ is
- (2.1.1) very ample for $t \ge 3$;
- (2.1.2) spanned for t = 2, and very ample if in addition \mathcal{L}_1 is spanned and $c_1(\mathcal{L}_2)^2 > 2$.

PROOF. To prove (2.1.1) we can assume t=3. We have $\mathscr{L}_1\otimes\mathscr{L}_2\otimes\mathscr{L}_3=K_X\otimes\mathscr{M}$, where $\mathscr{M}=\mathscr{L}_1\otimes\mathscr{L}_2\otimes(\mathscr{L}_3\otimes K_X^{-1})$. Then $\mathscr{L}_1\otimes\mathscr{L}_2\otimes\mathscr{L}_3$ is very ample by (1.1) unless X contains an effective divisor E with $E^2=1$. However, this cannot occur since, being $K_{X,\tilde{n}}0$, the genus formula shows that E^2 is even.

To prove (2.1.2) we can assume t=2. We have $\mathcal{L}_1\otimes\mathcal{L}_2=K_X\otimes\mathcal{N}$ with $\mathcal{N}=\mathcal{L}_1\otimes(\mathcal{L}_2\otimes K_X^{-1})$. Then $\mathcal{L}_1\otimes\mathcal{L}_2$ is spanned by (1.4) since, being $K_{X\tilde{n}}0$, it cannot happen that $c_1(\mathcal{L}_i)^2=1$. The last assertion in (2.1.2) follows from (1.6).

By taking $\mathcal{L}_i = \mathcal{L}$ for i = 1, ..., t, the above proposition provides a meaningful generalization of results proved by St. Donat [SD, Th. 8.3] for K3 surfaces and by Cossec [Co, Cor. 8.3.2] for Enriques surfaces. See also [Ra] for the case of abelian surfaces.

The very ampleness result in (2.1.2) can be further specified.

(2.2) PROPOSITION. Let X be a surface with numerically trivial canonical bundle and let \mathcal{L}_1 be an ample and spanned line bundle and \mathcal{L}_2 an ample line bundle on X. Then $\mathcal{L}_1 \otimes \mathcal{L}_2$ is very ample unless $\pi: X \to \mathsf{P}^2$ is the K3 double cover branched along a smooth sextic and $\mathcal{L}_1 = \mathcal{L}_2 = \pi * \mathcal{O}_{\mathsf{P}^2}(1)$.

PROOF. We have $\mathscr{L}_1 \otimes \mathscr{L}_2 = K_X \otimes \mathscr{L}_1 \otimes \mathscr{N}_2$ where $\mathscr{N}_2 = \mathscr{L}_2 \otimes K_X^{-1}$. Since $K_{X,\tilde{n}}0$ we know that

$$c_1(\mathcal{L}_1)^2 \ge 2$$
, $c_1(\mathcal{N}_2) = c_1(\mathcal{L}_2)^2 \ge 2$

and by the Hodge index theorem

(*)
$$L_1 N_2 \ge \sqrt{L_1^2} \sqrt{N_2^2} \ge 2.$$

In view of (2.1.2) we can assume $c_1(\mathcal{N}_2)^2 = 2$. Thus, since

$$c_1(\mathcal{L}_1 \otimes \mathcal{N}_2)^2 \ge c_1(\mathcal{L}_1)^2 + 2 + 2L_1N_2,$$

by using (*) we see that

$$c_1(\mathcal{L}_1 \otimes \mathcal{N}_2)^2 > 9$$

if either $c_1(\mathcal{L}_1)^2 \geq 3$ or $L_1N_2 \geq 3$. In both cases (0.2) shows that if $\mathcal{L}_1 \otimes \mathcal{L}_2$ is not very ample, then X contains an effective divisor E such that

$$L_1E = 1$$
, $E^2 = 0$.

But this would mean that (X, \mathcal{L}_1) is a scroll by (0.3), a contradiction. Therefore it only remains to consider the following case:

$$c_1(\mathcal{L}_1)^2 = c_1(\mathcal{N}_2)^2 = L_1 N_2 = 2.$$

In this case if $\mathcal{L}_1 \otimes \mathcal{L}_2$ is not very ample, then π : $X \to \mathsf{P}^2$ is a double cover and $\mathcal{L}_1 = \pi * \mathcal{O}_{\mathsf{P}^2}(1)$ by (1.7). Since $K_{X_{\tilde{n}}}0$, it follows that π is branched along a smooth sextic and X is a K3 surface. Finally as $(L_1 - L_2)L_1 = 0$ and $c_1(\mathcal{L}_1 \otimes \mathcal{L}_2^{-1})^2 = 0$, the Hodge index theorem implies that $\mathcal{L}_1 = \mathcal{L}_2$ and then we conclude that $\mathcal{L}_1 = \mathcal{L}_2$ since X is regular.

3. Sectional genus 2.

Reider's method combined with some recent results by Sommese and Van de Ven [SV] can also be used to classify projective manifolds polarized by an ample and spanned line bundle of genus 2. As to surfaces this supplies a generalization of a classical result by Castelnuovo (e.g. [I, Prop. 3.1]) and at the same time provides some specification to a more general result in [BLP].

- (3.1) THEOREM. Let X be a surface polarized by an ample and spanned line bundle $\mathscr L$ satisfying $g(\mathscr L)=2$. Then either
 - (3.1.1) (X, \mathcal{L}) is a scroll over a smooth curve of genus 2,
- (3.1.2) X is a P^1 -bundle over an elliptic curve, with invariant e = -1 and $L_{\tilde{n}} 2\xi$, where ξ is a fundamental section,
- (3.1.3) X is an $F_e(e \le 2)$ blown-up at $s \le 9$ points p_1, \ldots, p_s on distinct fibres and $L = \sigma * L_0 E_1 \ldots E_s$, where $\sigma: X \to F_e$ is the blowing-up, $E_i = \sigma^{-1}(p_i)$ and $L_{0,\tilde{\pi}} 2\xi + (e+3)f$,
- (3.1.4) $\pi: X \to \mathsf{P}^2$ is the K3 double cover branched along a smooth sextic and $\mathscr{L} = \pi * \mathscr{O}_{\mathsf{P}^2}(1)$, or
- (3.1.5) $\pi: X \to Q \subset \mathsf{P}^3$ is a double cover of a quadric cone Q branched at the vertex and along the transverse intersection of Q with a cubic surface and $\mathscr{L} = \pi * \mathscr{O}_Q(1)$.

PROOF. Let $C \in |\mathcal{L}|$ be a general element. Since C has genus 2 the 2-canonical map of C is not an embedding, hence by adjunction, $K_X^2 \otimes \mathcal{L}^2$ cannot be very ample not even birationally. Note that $K_X^2 \otimes \mathcal{L}^2 = K_X \otimes \mathcal{M}$, where $\mathcal{M} = K_X \otimes \mathcal{L}^2$ and \mathcal{M} is very ample unless (X, \mathcal{L}) is as in the exceptions of (1.8). But $g(\mathcal{L}) = 2$ can only happen in cases (1.8.2), (1.8.3), which respectively lead to (3.1.4) and (3.1.1). So apart from these cases we can assume that \mathcal{M} is very ample. Now assume that (X, \mathcal{M}) is none of the following pairs

(3.1.6) $(P^2, \mathcal{O}_{P^2}(e))$, (e = 1, 2), a scroll, a Del Pezzo pair, a conic bundle.

Then, by [SV] $K_X \otimes \mathcal{M}$ is very ample (out of the (-1)-lines of (X, \mathcal{M})) unless (X, \mathcal{M}) is one of the following pairs:

- a) X is P^2 blown up at seven points in general position and $\mathcal{M} = K_X^{-2}$;
- b) X is the blowing-up at one point p of a surface \hat{X} as in a) and $\mathcal{M} = \sigma * K_{\hat{X}}^{-2} \otimes \mathcal{O}_X(-\sigma^{-1}(p))$, where $\sigma: X \to \hat{X}$ is the blow-up;
- c) X is P^2 blown-up at eight points in general position and $\mathcal{M} = K_X^{-3}$;
- d) X is the P^1 -bundle of invariant e = -1 over an elliptic curve and \mathcal{M} is numerically equivalent to $\mathcal{O}_X(3\xi)$.

Cases a), b) and d) lead to numerical contradictions. Actually, in case a) we get $\mathcal{L}^2 = \mathcal{M} \otimes K_X^{-1} = K_X^{-3}$, hence

$$4c_1(\mathcal{L})^2 = 9c_1^2(X) = 18,$$

absurd. In case b) let $E = \sigma^{-1}(p)$; then $\mathscr{L}^2 = \mathscr{M} \otimes K_X^{-1} = \sigma * K_{\hat{X}}^{-3} \otimes [E]^{-2}$, hence

$$4c_1(\mathcal{L})^2 = 9c_1^2(\hat{X}) - 4 = 14$$

absurd. In case d) we have $\mathscr{L}^2 = \mathscr{M} \otimes K_X^{-1}_{\widetilde{n}} \mathscr{O}_X(5\xi - f)$ and the degree of $\mathscr{L}^2_{|f}$ would be odd, absurd. Note that all these numerical contradictions are independent of the assumption $g(\mathscr{L}) = 2$. In case c) we get $\mathscr{L} = K_X^{-2}$ and this gives (3.1.5). So it only remains to consider what happens when (X, \mathscr{M}) is as in (3.1.6). Since $g(\mathscr{L}) = 2$ it cannot be $X = \mathsf{P}^2$. Were (X, \mathscr{M}) a Del Pezzo pair, then (X, \mathscr{L}) would be a Del Pezzo pair too and then $g(\mathscr{L}) = 1$, contradiction. Were (X, \mathscr{M}) a scroll, by restricting \mathscr{M} to a fibre we would get a numerical contradiction. Finally, if (X, \mathscr{M}) is a conic bundle, by restricting to a fibre, we see that (X, \mathscr{L}) is a conic bundle too. By restricting the ruling projection to C, the Riemann-Hurwitz theorem shows that $h^{1,0}(X) \leq 1$; so either X is rational or ruled over an elliptic curve. Since $X \neq \mathsf{P}^2$ there exists a birational morphism η : $X \to X_0$ onto a P^1 -bundle X_0 . Let s be the number of the blowing-ups η factors through. Then $c_1^2(X) = 8(1 - h^{1,0}(X)) - s$. Since (X, \mathscr{L}) is a conic bundle we get

$$0 = c_1(K_X \otimes \mathcal{L})^2 = 8(1 - h^{1,0}(X)) - s + 4 - L^2,$$

and then $L^2 + s = 12$ or 4 according to whether X is rational or not. Note that $c_1(\mathcal{L})^2 \ge 3$; actually, since it is a conic bundle with $g(\mathcal{L}) = 2$, (X, \mathcal{L}) can be

neither $(\mathsf{P}^2, \mathscr{O}_{\mathsf{P}^2}(1))$, $(Q^2, \mathscr{O}_{Q^2}(1))$, nor a double cover of P^2 . Therefore $s \leq 9$ or $s \leq 1$ according to whether X is rational or not. Since $(X_0, \mathscr{L}_0 = \eta * \mathscr{L})$ is again a conic bundle, then $\mathscr{L}_{0\,\tilde{n}}\mathscr{O}_{X_0}(2\xi + bf)$, where the integer b satisfies the ampleness conditions for \mathscr{L}_0 [H, p. 382]. In the rational case the proof now continues as in [I, Prop. 3.1] and we get case (3.1.3). In the irrational case, let e be the invariant of the elliptic P^1 -bundle X_0 . The genus formula allows one to compute b and then the ampleness conditions for \mathscr{L}_0 show that either

$$e = 0$$
 and $\mathcal{L}_{0\tilde{n}}\mathcal{O}_{X_0}(2\xi + f)$, or $e = -1$ and $\mathcal{L}_{0\tilde{n}}\mathcal{O}_{X_0}(2\xi)$.

Since $\mathcal{L}_0 = K_{X_0} \otimes \mathcal{N}$, with \mathcal{N} ample, we have $h^1(\mathcal{L}_0) = h^2(\mathcal{L}_0) = 0$; so in both cases the Riemann-Roch theorem gives $h^0(\mathcal{L}_0) = 3$ and therefore if s > 0, the spannedness of \mathcal{L} gives

$$3 \le h^0(\mathcal{L}) < h^0(\mathcal{L}_0) = 3,$$

contradiction. This shows that $(X, \mathcal{L}) = (X_0, \mathcal{L}_0)$. In case e = 0, $\mathcal{L} = \mathcal{L}_0$ cannot be spanned since $\mathcal{L}_{0|\xi}$ is not spanned, having degree 1. Therefore (X, \mathcal{L}) is as in (3.1.2).

Known results on ample divisors [B, I] allow us to extend the above theorem to higher dimensions.

- (3.2) COROLLARY. Let X be a projective n-fold, $n \ge 3$, polarized by an ample and spanned line bundle \mathcal{L} with $g(\mathcal{L}) = 2$. Then either
 - (3.2.1) (X, \mathcal{L}) is a scroll over a smooth curve of genus 2,
 - (3.2.2) (X, \mathcal{L}) is a quadric bundle over P^1 , or
- (3.2.3) $\pi: X \to \mathsf{P}^n$ is a double cover branched along a smooth sextic hypersurface and $\mathscr{L} = \pi * \mathcal{O}_{\mathsf{P}^n}(1)$.

PROOF. A general element $X_{n-1} \in |\mathcal{L}|$ is a smooth (n-1)-fold and $\mathcal{L}_{n-1} = \mathcal{L}_{|X_{n-1}|}$ is ample and spanned. Iterate this procedure until you obtain a smooth 3-fold X_3 and an ample and spanned line bundle $\mathcal{L}_3 = \mathcal{L}_{|X_3|}$. Then the pair (X_2, \mathcal{L}_2) produced by a further step is as in Theorem (3.1). Note that (X_2, \mathcal{L}_2) cannot be as in (3.1.2) [B]. Moreover if (X_2, \mathcal{L}_2) is as in (3.1.1), then (X, \mathcal{L}) is as in (3.2.1) [B]. Similarly, cases (3.1.3), (3.1.4) ascend to cases (3.2.2), (3.2.3) respectively (see [I, Prop. 1.11]). On the other hand case (3.1.5) does not ascend. In fact, if \mathcal{N} is an ample and spanned line bundle on a 3-fold there is no smooth $S \in |\mathcal{N}|$ with $(S, \mathcal{N}_{|S})$ as in (3.1.5). To see this adapt the argument in [SV, Th. 1.7, first paragraph of the proof].

4. Further results about adjunction.

Reider's theorem and the argument used in section 2 show that if X is a surface, \mathscr{L} an ample and spanned line bundle and $c_1(\mathscr{L})^2 \geq 5$, then $K_X \otimes \mathscr{L}$ is spanned unless (X, \mathscr{L}) is a scroll.

As is known, if \mathcal{L} is ample, to get the ampleness of the adjoint bundle a reduction is needed [LP, Thm. 2.5]. We can provide a specification of the quoted result in the case of spanned ample line bundles.

(4.1) PROPOSITION. Let X be a surface and let \mathcal{L} be an ample and spanned line bundle such that $c_1(\mathcal{L})^2 \geq 5$. If (X,\mathcal{L}) is neither a scroll, a conic bundle, nor a Del Pezzo pair, then (X,\mathcal{L}) admits a reduction (X',\mathcal{L}') such that $K_{X'} \otimes \mathcal{L}'$ is ample and spanned.

PROOF. Let (X', \mathcal{L}') be the reduction of (X, \mathcal{L}) where $K_{X'} \otimes \mathcal{L}'$ is ample [LP, Th. 2.5] and let $r: X \to X'$ be the reduction morphism contracting all the (-1)-lines of X to points p_1, \ldots, p_s of X'. By contradiction, assume that $K_{X'} \otimes \mathcal{L}'$ is not spanned. In view of (0.1.1) we have $L'^2 \geq 5$ and so we can apply Theorem (0.2) with $\mathcal{O}_X(D) = \mathcal{L}'$ and conclude that X' contains an effective divisor E, which, due to the ampleness of \mathcal{L}' , has to satisfy

$$(4.1.1) L'E = 1, E^2 = 0.$$

Let $\tilde{E} = r^{-1}$ (E) be the proper transform of E on X and let $m_i \ge 0$ be the multiplicity of E at p_i , i = 1, ..., s. We have

$$0 < L\tilde{E} = L'E - \sum m_i = 1 - \sum m_i.$$

Hence $m_i = 0$ for i = 1, ..., s. Then we get from (4.1.1)

$$L\tilde{E}=1, \quad \tilde{E}^2=0,$$

which gives a contradiction in view of (0.3).

The following Corollary is another immediate consequence of [LP, Th. 2.5] and (1.4).

(4.2) COROLLARY. Let X be a surface polarized by an ample and spanned line bundle \mathcal{L} . Then $K_X \otimes \mathcal{L}^2$ is ample and spanned unless (X, \mathcal{L}) is either $(\mathsf{P}^2, \mathcal{O}_{\mathsf{P}^2}(1))$ or a scroll.

The very ampleness of $K_X \otimes \mathcal{L}$ up to a reduction can be studied under the assumption that $c_1(\mathcal{L})^2 \geq 9$ following the outline of [SV], but, since \mathcal{L} is not very ample, this leads to a large number of exceptions [P]. However, the method we used to prove Theorem (3.1) provides information on the exceptions to the very ampleness of $(K_X \otimes \mathcal{L})^2$ up to a reduction even with no assumption on $c_1(\mathcal{L})^2$.

(4.3) THEOREM. Let X be a surface polarized by an ample and spanned line bundle \mathcal{L} . Assume that (X,\mathcal{L}) is neither $(\mathsf{P}^2,\,\mathcal{O}_{\mathsf{P}^2}(e)),\,e=1,2,\,a$ scroll, a conic bundle, a Del Pezzo pair, nor as in (3.1.4), (3.1.5). Then (X,\mathcal{L}) admits a reduction (X',\mathcal{L}') on which $(K_{X'}\otimes\mathcal{L}')^2$ is very ample.

PROOF. The proof goes along the same lines as that of Theorem (3.1). Actually, if (X, \mathcal{L}) is not as in the exceptions of Corollary (1.8), then $\mathcal{M} = K_X \otimes \mathcal{L}^2$ is very ample. Note however that if (X, \mathcal{L}) is as in (1.8.2) and the branch locus of π : $X \to P^2$ has degree $\delta > 6$, then K_X is ample, so that \mathcal{M} is the tensor power of three ample line bundles. Then, by using (0.2.1) again, one can see that $(K_X \otimes \mathcal{L})^2$ is very ample. On the other hand, if $\delta = 6$, then (X, \mathcal{L}) is as in (3.1.4), while if $\delta \leq 4$, (X, \mathcal{L}) fits into the remaining exceptions.

So we can assume that \mathcal{M} is very ample. Assume that (X, \mathcal{M}) is not as in (3.1.6). Then, by $[SV](X, \mathcal{M})$ admits a reduction (X', \mathcal{M}') where $K_{X'} \otimes \mathcal{M}'$ is very ample. Let $\pi: X \to X'$ be the reduction morphism and put $\mathcal{L}' = \pi * \mathcal{L}$. Thus $(K_{X'} \otimes \mathcal{L}')^2 = K_{X'} \otimes \mathcal{M}'$ is very ample. On the other hand, if $E \subset X$ is a (-1)-curve, we have

$$EM = 2EL - 1$$

and this shows that $(X'\mathcal{L}')$ is exactly the reduction of (X, \mathcal{L}) . The remaining exceptions come from the pairs listed in (3.1.6).

5. A final application.

Consider a net \mathcal{N} of ample divisors on a surface X. Classically the Jacobian $J_{\mathcal{N}}$ of \mathcal{N} is defined as the locus of the singularities of the elements of \mathcal{N} (e.g. see [SR, p. 427]). Let \mathcal{L} be the line bundle whose complete linear system contains \mathcal{N} ; as is known the line bundle $[J_{\mathcal{N}}]$ depends on \mathcal{L} since

$$[J_{\mathscr{N}}] = K_X \otimes \mathscr{L}^3.$$

Then Theorem (1.1) implies the following

(5.1) COROLLARY. Let X be a surface polarized by an ample line bundle \mathcal{L} such that $|\mathcal{L}|$ contains a net \mathcal{N} . Then $[J_{\mathcal{L}}]$ is very ample unless $(X, L) = (\mathsf{P}^2, \mathcal{O}_{\mathsf{P}^2}(1))$.

PROOF. If $(X, \mathcal{L}) \neq (\mathsf{P}^2, \mathcal{O}_{\mathsf{P}^2}(1))$ and $[J_{\mathcal{N}}]$ is not very ample, then (X, \mathcal{L}) has to be as in (1.1.2), which gives $c_1(\mathcal{L})^2 = 1$. Then, as $h^0(\mathcal{L}) \geq \dim \mathcal{N} + 1 = 3$, we get $\Delta(X, \mathcal{L}) = 0$; contradiction.

In particular this implies the following fact.

(5.2) COROLLARY. Let X be a surface and let $f: X \to P^2$ be a finite morphism of degree ≥ 2 . Then the ramification divisor R of f is very ample.

PROOF. Actually, R is the jacobian of the net $f^* | \mathcal{O}_{P^2}(1) |$.

Similarly, from proposition (1.6) one deduces the following corollary (see also $[LP_2, Th. 3.2]$).

(5.3) COROLLARY. Let X be a surface and let $f: X \to Q^2$ be a finite morphism of degree ≥ 2 . Then the ramification divisor of f is very ample unless $(X, f * \mathcal{O}_{Q^2}(1))$ is a scroll and f gives rise to a commutative diagram

where p and q are scroll projections.

REFERENCES

- [B] L. Bădescu, On ample divisors, II, in Proceedings of the Week of Algebraic Geometry, Bucarest, 1980, Teubner-Texte zur Mat., Band 40, Leipzig, 1981.
- [Be] A. Beauville, Letter on Reider's method on March 17, 1986.
- [BLP] M. Beltrametti, A. Lanteri, M. Palleschi, Algebraic surfaces containing an ample divisor of arithmetic genus two, Ark. Mat. 25 (1987), 189-210.
- [C] F. Catanese, Surfaces with $K^2 = p_g = 1$ and their period mapping, in Algebraic Geometry, Proc. Copenhagen, 1978, 1-29, Lecture Notes Mathematics 732, Springer, New York-Heidelberg-Berlin, 1979.
- [Co] F. R. Cossec, Projective models of Enriques surfaces, Math. Ann. 265 (1983), 283-334.
- [F₁] T. Fujita, On the structure of polarized varieties with Δ-genera zero, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975), 103-115.
- [F₂] T. Fujita, Remarks on adjoint bundles of polarized surfaces, Preprint, 1986.
- [H] R. Hartshorne, Algebraic Geometry, Springer, Berlin-Heidelberg-New York, 1977.
- [Ho] E. Horikawa, Algebraic surfaces of general type with small c₁, II, Invent. Math. 37 (1976), 121-155.
- [I] P. Ionescu, Embedded projective varieties with small invariants, in Proc. of the Week of Algebraic Geometry, Bucharest, 1982, Lecture Notes Mathematics 1056, Springer, Berlin-Heidelberg-New York, 1984.
- [LP₁] A. Lanteri, M. Palleschi, About the adjunction process for polarized algebraic surfaces, J. Reine Angew. Math. 352 (1984), 15-23.
- [LP₂] A. Lanteri, M. Palleschi, On the ampleness of $K_X \otimes E$ for a polarized threefold (X, L), Atti Acc. Naz. Lincei Rend. (8) 78 (1985), 213–217.
- [P] M. Palleschi, On the adjoint line bundle to an ample and spanned one, in Algebraic Geometry, Proc., L'Aquila, 1988. Lecture Notes Mathematics 1417, Springer, Berlin-Heidelberg-New York, 1989.
- [Ra] S. Ramanan, Ample divisors on abelian surfaces, Proc. London Mat. Soc. (3) 51 (1985), 231-245.
- [R] I. Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. of Math. 127 (1988), 309-316.
- [SD] B. Saint Donat, Projective models of K3 surfaces, Amer. J. Math. 96 (1974), 602-648.

[SR] J. G. Semple, L. Roth, Introduction to Algebraic Geometry, Clarendon Press, Oxford, 1949.

[S] A. J. Sommese, Hyperplane sections of projective surfaces 1 - The adjunction mapping, Duke Math. J. 46 (1979), 377-401.

[SV] A. J. Sommese, A. van de Ven, On the adjunction mapping, Math. Ann. 278 (1987), 593-603.

DIPARTIMENTO DI MATEMATICA "F. ENRIQUES" – UNIVERSITÀ VIA C. SALDINI, 50 I-20133 MILANO ITALY