ON p-GROUPS AS GALOIS GROUPS

GUDRUN BRATTSTRÖM

The so-called Noether problem of determing which finite groups (all, conjecturally) can occur as Galois groups of extensions of the rational numbers has been studied extensively, not least in recent years – see for instance [S]. Naturally the same question can be asked for other fields than Q. Given a field K and a finite group G, we say that G is realizable over K if there exists a Galois extension N of K whose Galois group is isomorphic to G; we shall sometimes call such an extension a G-extension of K. One can also look for pairs of finite groups G and G such that for any field G, the realizability of G implies that of G. The obvious example is when G is a homomorphic image of G. However, there are others, most of which can be found in G in G instance, if you can realize the cyclic group of odd prime order G over a field G in this paper we consider the two non-abelian groups of order G in G and G in this paper we consider the two non-abelian groups of order G is an odd prime number. (For G is G is G is G in this paper we consider the two non-abelian groups of order G is an odd prime number. (For G is G is G in this paper we consider the two non-abelian groups of order G is an odd prime number. (For G is G is G in this paper we consider the two non-abelian groups of order G is an odd prime number. (For G is G is G is an odd prime number. (For G is G is G is an odd prime number. (For G is G is G is also in the probability of G is G in the probability of G in the probability of G is G in the probability of G in the probability of G is G in the probability of G is G in the probability of G in the probability of G in the probability of G is G in the probability of G in the probability of

1.

The problem of realizing finite groups as Galois groups is closely related to what I shall call the "Galois embedding problem". Consider a finite Galois extension L/K, and let G = Gal(L/K). Let

$$1 \rightarrow A \rightarrow E \rightarrow G \rightarrow 1$$

be a group extension, where A is an abelian group with a fixed G-action, and let $\varepsilon \in H^2(G,A)$ be the corresponding cohomology class. The Galois embedding problem is then to find an E-extension N of K which contains L and is "compatible" with the group extension, i.e. there should exist a surjective homomorphism Φ making the following diagram commute:

$$Gal(\overline{K}/K)$$

$$\Phi \swarrow \downarrow \phi$$

$$1 \to A \to E \to G \to 1$$

where $\phi: \operatorname{Gal}(\bar{K}/K) \to G$ is the homomorphism given by restriction to L. We then say that the Galois embedding problem $(L/K, \varepsilon)$ is solvable. Without the condition that Φ be surjective this is a purely cohomological problem, and its solution is given by a theorem of Hoechsmann [Ho] stating that such a homomorphism Φ exists if and only if the element $\phi^*(\varepsilon) \in H^2(\operatorname{Gal}(\bar{K}/K), A)$ vanishes. The surjectivity of Φ generally has to be established by other means. In some cases it is however automatic in the sense that $\phi^*(\varepsilon) = 0$ implies the existence of a surjective Φ . This is so when G and E are p-groups of the same rank (when in fact all solutions Φ are surjective), and also when K is a number field ([Ho], Satz 2.3 and Satz 6.6 respectively). The two groups of order p^3 mentioned above are both central extensions of a cyclic group of order p by an abelian group of type (p, p), and both have rank two. If p is odd, which we shall henceforth be assuming, they are given by the relations

$$D_1$$
: $u^p = v^p = w^p = 1$, $uv = vuw$,
 D_2 : $u^{p^2} = v^p = 1$, $uv = vu^{1+p}$,

respectively. The center of D_i (i=1 or 2) clearly equals the cyclic kernel of the extension, and since a normal subgroup of order p of a p-group is central, we see that a D_i -extension N/K contains a unique (p,p)-extension L/K. Whenever x^p-1 splits in K and K has characteristic different from p, the letter ζ will throughout this paper denote a fixed non-trivial pth root unity in K. In this situation the extension L/K can be described explicitly as a Kummer extension: we have $L=K(\sqrt[p]{a},\sqrt[p]{b})$, for some elements a and b of K^* whose images in the F_p -vector space K^*/K^{*p} are linearly independent. In this case the Galois embedding problem has been solved completely by R. Massy; we have the following theorem (see [M], Corollaire pp. 523–524), with the notations and hypotheses of this paragraph.

THEOREM 1 (Massy). Let K and the elements a and b be fixed; let $L = K(\sqrt[p]{a}, \sqrt[p]{b})$. Then

- (i) the extension L/K can be embedded in a D_1 -extension if and only if b is a norm from $K(\sqrt[p]{a})$ to K, and
- (ii) the extension L/K can be embedded in a D_2 -extension if and only if there exist α and β in K such that $L = K(\sqrt[p]{\alpha}, \sqrt[p]{\beta})$ and such that $\zeta\beta$ is a norm from $K(\sqrt[p]{\alpha})$ to K.

We wish to prove the following.

THEOREM 2. If D_1 is realizable over K then so is D_2 . If K has characteristic p or if $x^{p^2} - 1$ splits in $K(\mu_n)$, then the converse also holds.

PROOF. If K has characteristic p then the realizability of a p-group G over

K depends only on the rank of G (see [Wi], Satz p. 237), so D_1 and D_2 both having rank two, the theorem follows. From now on let us assume char $(K) \neq p$.

If $x^{p^2} - 1$ splits in K, then the conditions (i) and (ii) in Massy's theorem are equivalent, so the realizability of one of the groups D_i implies that of the other, with the same intermediate field L.

Now suppose that $x^p - 1$ splits in K but $x^{p^2} - 1$ does not. Suppose that N is a Galois extension of K with Gal(N/K) isomorphic to D_1 , and let $L = K(\sqrt[p]{a}, \sqrt[p]{b})$ be the intermediate field. The images of a and b in K^*/K^{*p} are linearly independent and therefore cannot both be contained in the line generated by the image of ζ . Suppose for instance that the image of a lies outside this line. Then the extension $L = K(\sqrt[p]{a}, \sqrt[p]{\zeta})$ satisfies condition (ii) of Massy's theorem, and we conclude that D_2 is realizable over K.

Finally, let us drop the assumption that $x^p - 1$ splits in K. Suppose that N is a Galois extension of K such that Gal(N/K) is isomorphic to D_1 . Then so is $Gal(N(\mu_p)/K(\mu_p))$. Hence it follows from what we have already proved that there exists a D_2 -extension M of $K(\mu_p)$. Moreover, if $x^{p^2} - 1$ splits in $K(\mu_p)$, then we may choose M such that its intermediate (p, p)-subextension is the same as that of $N(\mu_p)$; as before we call this field L. We know that $L = L(\mu_p)$, where L is the intermediate (p, p)-subextension of N/K. It now follows from a theorem by R. Gillard ([G], Théorème 5; see also section 2 below) that L is contained in a D_2 -extension of K. The converse follows similarly.

If $x^{p^2}-1$ does not split in $K(\mu_p)$, let L_1 and L_2 be the intermediate (p,p)-subextensions of $N(\mu_p)/K(\mu_p)$ and $M/K(\mu_p)$ respectively. Then $L_1=K(\mu_p)(\sqrt[p]{a},\sqrt[p]{b})$ for some a and b in $K(\mu_p)$, and we may choose M so that (interchanging a and b if necessary) $L_2=K(\mu_p)(\sqrt[p]{a},\sqrt[p]{\zeta})$. Note that L_1 , being the composite of $K(\mu_p)$ and a (p,p)-extension of K, is abelian over K. In particular $K(\mu_p)(\sqrt[p]{a})$ is abelian over K. So is $K(\mu_p)(\sqrt[p]{\zeta})=K(\mu_p^2)$. Hence L_2 is also an abelian extension of K, and since p does not divide $[K(\mu_p):K]$ there has to exist a (p,p)-extension L_2 of K such that $L_2=L_2(\mu_p)$. Thus we can use Gillard's theorem again, and we are done.

The following example shows that the converse of our theorem need not hold in the case when $x^p - 1$, but not $x^{p^2} - 1$ splits in $K(\mu_p)$.

EXAMPLE. Let l be a prime which is congruent to $1 \pmod{p}$ but not $\pmod{p^2}$, and let $K = Q_l$. Then

$$\dim_{\mathsf{F}_n} K^*/K^{*^p} = 2,$$

and therefore by local class field theory

$$\dim_{\mathsf{F}_p} \left[\mathsf{N}_{K(\sqrt[p]{a})/K} (K(\sqrt[p]{a})^*) / K^{*^p} \right] = 1$$

for any $a \in K^* \setminus K^{*^p}$. On the other hand, a is a norm from $K(\sqrt[p]{a})$ to K, so there cannot exist b in $N_{K(\sqrt[p]{a})/K}(K(\sqrt[p]{a})^*)$ such that the images of a and b in K^*/K^{*^p} are linearly independent. Hence by Massy's theorem, D_1 is not realizable over K. However, K does possess extensions of type D_2 : consider $L = K(\sqrt[p]{a}, \sqrt[p]{\zeta})$, where ζ is a non-trivial pth root of unity (note that our assumptions on l imply that ζ is in K^* but not in K^{*^p}) and $a \in K^* \setminus \mu_p K^{*^p}$. By Massy's theorem L is contained in a D_2 -extension of K. More explicitly, an example of such an extension is $L(\sqrt[p]{a}) = K(\mu_{p^2})(\sqrt[p]{a})$.

2.

This section is devoted to a somewhat more detailed investigation of the problem of "descending" from a D_i -extension of $K(\mu_p)$ to one of K. We are assuming the field K to have characteristic different from p. Gillard's theorem, which we used in the proof of Theorem 2, is the following:

THEOREM 3 (Gillard). Let L/K be a Galois extension with $G = \operatorname{Gal}(L/K)$ of type (p,p), and let A be a cyclic group of order p. Let $\varepsilon \in H^2(G,A)$ correspond to a non-abelian group of order p^3 . Then the embedding problem $(L/K,\varepsilon)$ is solvable if and only if $(L(\mu_p)/K(\mu_p), \theta^*(\varepsilon))$ is, where θ^* is induced by the isomorphism θ : $\operatorname{Gal}(L(\mu_p)/K(\mu_p)) \xrightarrow{\sim} \operatorname{Gal}(L/K)$.

REMARK. Gillard's paper is for the most part concerned with number fields, but this particular argument can be carried out using only Galois cohomology and Satz 2.3 in [Ho].

If N/K is a solution to the problem $(L/K, \varepsilon)$, then one of the solutions to $(L(\mu_p)/K(\mu_p), \theta^*(\varepsilon))$ is $N(\mu_p)/K(\mu_p)$. Note, however, that neither solution is uniquely determined by ε . Indeed, given one solution Φ : $Gal(\bar{K}/K) \to E$ to $(L/K, \varepsilon)$, the others are given by $\Phi\Psi$ (pointwise multiplication), where $\Psi \in Hom(Gal(\bar{K}/K), A) \longrightarrow Hom(Gal(\bar{K}/K), E)$; ker (Φ) and ker $(\Phi\Psi)$ need not be equal. The analogous statement holds for $L(\mu_p)/K(\mu_p)$. In particular, it is not immediately clear how to construct an explicit solution to $(L/K, \varepsilon)$ from one to $(L(\mu_p)/K(\mu_p), \theta^*(\varepsilon))$. This is however the object of the present section.

The following lemma is standard.

LEMMA. Let E/F be a finite Galois extension, where F has characteristic different from p and contains the pth roots of unity. Let $x \in E^*$ and let $M = E(\sqrt[p]{x})$. Then M is Galois over F if and only if for all $\sigma \in Gal(E/F)$ there exists an integer m such that $\sigma(x)/x^m$ lies in E^{*p} . If Gal(E/F) is a p-group, then m may be taken to be 1.

Now let $N/K(\mu_p)$ be a solution to $(L(\mu_p)/K(\mu_p), \theta^*(\varepsilon))$, where $\varepsilon \neq 0$. Since $N/L(\mu_p)$ is a Kummer extension there exists x in $L(\mu_p)^* \setminus L(\mu_p)^{*^p}$ such that $N = L(\mu_p, \sqrt[p]{x})$. Let $H = \operatorname{Gal}(K(\mu_p)/K)$, and let k be an integer such that $k|H| \equiv$

1 (mod p). For all $\rho \in H$ let $i(\rho)$ be an integer such that $\rho(\zeta) = \zeta^{i(\rho)}$ and consider $\gamma = k \sum_{\rho \in H} i(\rho) \rho^{-1} \in \mathsf{Z}[H]$. The group ring $\mathsf{Z}[H]$ acts on $K(\mu_p)^*$ in the obvious fashion, and if we let H act trivially on L we get an action on $L(\mu_p)^*$ too.

THEOREM 4. Let $N' = L(\mu_p, \sqrt[p]{\gamma(x)})$. Then:

- (i) N' is Galois over $K(\mu_n)$ with $Gal(N'/K(\mu_n)) \cong Gal(N/K(\mu_n))$.
- (ii) N' is Galois over K with $Gal(N'/K) \cong H \times Gal(N/K(\mu_p))$.

PROOF. (i) Let B be the multiplicative group generated by x and $L(\mu_p)^{*^p}$. Then by Kummer theory each $y \in B \setminus L(\mu_p)^{*^p}$ yields a unique generator ξ_y of $Gal(N/(L(\mu_p)))$ such that

$$\frac{\xi_{y}(\sqrt[p]{y})}{\sqrt[p]{y}} = \zeta$$

Sending ξ_x to $\overline{1} \in F_p$ we obtain an identification $\operatorname{Gal}(N/(L(\mu_p)) \xrightarrow{\sim} F_p$, enabling us to view the cohomology class ε corresponding to the group extension

$$1 \rightarrow \operatorname{Gal}(N/(L(\mu_p)) \rightarrow \operatorname{Gal}(N/K(\mu_p)) \rightarrow \operatorname{Gal}(L(\mu_p)/K(\mu_p)) \rightarrow 1$$

as an element of $H^2(G, \mathsf{F}_p)$, where $G = \operatorname{Gal}(L(\mu_p)/K(\mu_p))$. The field $N = L(\mu_p, \sqrt[p]{x})$ is Galois over $K(\mu_p)$, so from each $\sigma \in G$ we obtain an element $x_{\sigma} \in L(\mu_p)^*$ such that $\sigma(x)/x = x_{\sigma}^p$. Massy ([M], formula (3.2)) has an explicit expression in terms of x_{σ} for a cocycle $X(\sigma, \tau)$ representing ε :

$$\frac{x_{\sigma}\sigma(x_{\tau})}{x_{\sigma\tau}} = \zeta^{X(\sigma,\tau)}, \ \sigma, \tau \in G.$$

Let $y = \gamma(x)$. Then we have

$$\frac{\sigma(y)}{y} = \frac{\sigma(\gamma(x))}{\gamma(x)} = \gamma\left(\frac{\sigma(x)}{x}\right) = \gamma(x_{\sigma})^{p},$$

so letting $y_{\sigma} = \gamma(x_{\sigma})$, we get

$$\frac{y_{\sigma}\sigma(y_{\sigma})}{y_{\sigma\tau}} = \gamma \left(\frac{x_{\tau}\sigma(x_{\tau})}{x_{\sigma\tau}}\right) = \gamma(\zeta)^{X(\sigma,\tau)}.$$

But

$$\gamma(\zeta) = \left[\prod_{\rho \in H} \rho^{-1}(\zeta)^{i(\rho)} \right]^k = \left(\prod_{\rho \in H} \zeta \right)^k = \zeta^{k|H|} = \zeta,$$

so we get the same cocycle and hence in particular

$$\operatorname{Gal}(N'/K(\mu_p)) \cong \operatorname{Gal}(N/K(\mu_p)).$$

(ii) Let $\sigma \in Gal(L(\mu_p)/K)$. Then σ may be written (uniquely) as a product $\sigma_0 \sigma_1$,

where σ_0 fixes L and σ_1 fixes $K(\mu_p)$. The field $N = L(\mu_p, \sqrt[p]{x})$ is Galois over $K(\mu_p)$, so $\sigma_1(x)/x$ lies in $L(\mu_p)^{*p}$, a relation which we write

$$\sigma_1(x) \equiv x \bmod^{\times} L(\mu_n)^{*^p}.$$

Hence

$$\sigma(x) = \sigma_0(\sigma_1(x)) \equiv \sigma_0(x) \operatorname{mod}^{\times} L(\mu_p)^{*p},$$

so

$$\sigma(\gamma(x)) = \gamma(\sigma(x)) \equiv \gamma(\sigma_0(x)) = \sigma_0(\gamma(x)) \bmod^{\times} L(\mu_n)^{*p}$$

Viewing σ_0 as an element of $H = \operatorname{Gal}(K(\mu_p)/K)$, we have

$$\sigma_0\gamma=\sigma_0(k\sum_{\rho\in H}i(\rho)\rho^{-1})=k\sum_{\rho\in H}i(\rho)\sigma_0\rho^{-1}\equiv k\sum_{\rho\in H}i(\sigma_0^{-1}\rho)^{-1}\equiv i(\sigma_0^{-1})\gamma(\operatorname{mod} p\mathsf{Z}[H]).$$

Therefore

$$\sigma(\gamma(x)) \equiv \gamma(x)^{i(\sigma_0^{-1})} \operatorname{mod}^{\times} L(\mu_p)^{*p},$$

and we deduce from the lemma that the extension N'/K is Galois. Since $[N': K(\mu_p)] = p^3$ is relatively prime to $[K(\mu_p): K]$, the Galois group Gal(N'/K) will be the semidirect product of $H = Gal(K(\mu_p)/K)$ and $Gal(N'/K(\mu_p))$, with H acting on $Gal(N'/K(\mu_p))$ by conjugation (see [Z], IV.7, Theorem 25). We shall show that this product is in fact direct, i.e. that the action of H on $Gal(N'/K(\mu_p))$ is trivial. The field $L(\mu_p)$ is abelian over K, so we already know that the action on $Gal(L(\mu_p)/K(\mu_p))$ is trivial. In other words, the group H acts via automorphisms of $E = Gal(N'/K(\mu_p))$ which fix $E/\Phi(E)$ elementwise, $\Phi(E)$ being the Frattini subgroup of E. But by Theorem 12.2.2 in [H] the order of such an automorphism is a power of P, whereas |H| is prime to P, so the action of P must be trivial.

COROLLARY. Under the hypotheses of Theorem 4, there exists a D_i -extension N_0 of K such that $N' = N_0(\mu_p)$.

PROOF. Let N_0 be the fixed field of the subgroup isomorphic to H.

3.

In this section we consider the case when either char (K) = p or $x^{p^2} - 1$ splits in K; so D_1 is realizable over K if and only if D_2 is. We will show that there exists, moreover, a fixed numerical relation between the number of D_1 -extensions and the number of D_2 -extensions of K provided one of these numbers is finite. For a field K and a finite group G, denote by $\nu(G, K)$ the number (possibly infinite) of G-extensions of K.

When char $(K) \neq p$ we shall use cohomology to recognize the isomorphism classes of the Galois groups of the field extensions we have constructed. More

precisely, consider $\varepsilon \in H^2(G, \mathbb{F}_p)$, with G of type (p, p) acting trivially on \mathbb{F}_p . Up to isomorphism there are four possibilities for the middle group E in the short exact sequence: type (p, p, p), type (p^2, p) , D_1 or D_2 . Which one it is can be read off easily from the cohomology class ε . Following [F] (see also [M]) we define ε_* : $G \times G \to \mathbb{F}_p$ and ε^* : $G \to \mathbb{F}_p$ by

$$\varepsilon_{\star}(\sigma,\tau) = X(\sigma,\tau) - X(\tau,\sigma);$$

$$\varepsilon^*(\sigma) = \sum_{r \pmod p} X(\sigma^r, \sigma),$$

where X is a cocycle representing ε ; it can be seen that ε_* and ε^* are independent of the choice of X. One can show (see [M]) that ε_* is an alternating bilinear form, that ε^* is a linear form (thinking of G as a 2-dimensional F_p -vector space), and that $\varepsilon=0$ if and only if $\varepsilon_*=0$ and $\varepsilon^*=0$. (Only the first of these three statements remains true when p=2, however.) It follows from the formulae (1.7) and (1.9) in [M] that the isomorphism class of E depends only on whether ε_* and ε^* are identically zero or not, as shown in the following table:

$$\epsilon^* = 0 \qquad \epsilon^* \neq 0$$

$$\epsilon_* = 0 \qquad (p, p, p) \qquad (p^2, p)$$

$$\epsilon_* \neq 0 \qquad D_1 \qquad D_2$$

THEOREM 5. Let K be a field which either has characteristic p or contains μ_{p^2} . Then if one of $v(D_1, K)$ and $v(D_2, K)$ is finite, so is the other, and we have

$$v(D_2, K) = (p^2 - 1) v(D_1, K).$$

PROOF. First we deal with the case of characteristic p. Then by [Wi], p. 237 the finiteness of v(G, K) for a p-group G depends only on K and not on G. Moreover, applying the theorem on the same page to D_1 and D_2 , we find that if $v(D_1, K)$ and $v(D_2, K)$ are finite then

$$\nu(D_2, K) = \frac{|\text{Aut}(D_1)|}{|\text{Aut}(D_2)|} \nu(D_1, K).$$

Let u, v and w be as in section 1. Then any automorphism α of D_1 is of the form $\alpha(u) = u^i v^k w^m$, $\alpha(v) = u^j v^l w^n$, where (i, k) and (j, l) constitute a basis for $\mathsf{F}_p \times \mathsf{F}_p$ (thus $(p^2 - 1)(p^2 - p)$ possibilities) and $m, n \in \mathsf{F}_p$ (thus p^2 possibilities). So $|\mathrm{Aut}(D_1)| = p^2(p^2 - 1)(p^2 - p)$. The automorphisms of D_2 are given by $\alpha(u) = u^i v^k$, $\alpha(v) = u^{pj} v$, where i is a generator of $\mathsf{Z}/p^2 \mathsf{Z}$ (thus $(p^2 - p)$ possibilities), and k, $j \in \mathsf{F}_p$ (thus p^2 possibilities). So $|\mathrm{Aut}(D_2)| = p^2(p^2 - p)$, and our theorem is proved for fields of characteristic p.

Now let K be a field of characteristic different from p in which $x^{p^2} - 1$ splits. By

a previous remark any realization of D_i over K contains a unique (p, p)-extension of K, so it suffices to prove the formula

$$v(D_2, L/K) = (p^2 - 1)v(D_1, L/K),$$

where $v(D_i, L/K)$ is the number of D_i -extensions of K which contain a fixed (p,p)-extension L. Define an equivalence relation \sim on the set of non-abelian Galois extensions N/K of degree p^3 and containing L, by setting $N \sim N'$ if and only if there exist $x \in L^*$ and $a \in K^*$ such that $N = L(\sqrt[p]{x})$ and $N' = L(\sqrt[p]{ax})$. (If $N = L(\sqrt[p]{x}), N' = L(\sqrt[p]{ax}) = L(\sqrt[p]{y})$ and $N'' = L(\sqrt[p]{by})$, then there must exist an integer i, not divisible by p, such that $y \equiv (ax)^i \mod^x L^{*p}$. Thus $by \equiv ba^i x^i$ $\operatorname{mod}^{\times} L^{*p}$, and we have $N = L(\sqrt[p]{x^{i}})$ and $N'' = L\sqrt[p]{ba^{i}x^{i}}$, proving the transivity of \sim .) Since $\sigma(ax)/ax = \sigma(x)/x$ for all $\sigma \in \text{Gal}(L/K)$, the two extensions N/K and N'/K together with ξ_x and ξ_{ax} respectively (defined as in the proof of Theorem 4) give rise to the same cohomology class $\varepsilon \in H^2(G, \mathbb{F}_p)$. In particular $\operatorname{Gal}(N/K)$ and Gal(N'/K) are isomorphic. Next we note that $L(\sqrt[p]{x}) = L(\sqrt[p]{ax})$ only if either $x \in L^{*p}K^*$, i.e. Gal $(L(\sqrt[p]{x})/K)$ is abelian of exponent p, a case we are excluding – or $a \in L^{*p}$; conversely $a \in L^{*p}$ clearly implies that $L(\sqrt[p]{x}) = L(\sqrt[p]{ax})$. Hence each equivalence class has the same number of elements, viz. $(K^*: L^{*^p} \cap K^*)$. What this means is that it suffices to prove the formula with the number of equivalence classes of D_1 - and D_2 -extensions in place of the number of actual extensions. We shall do this by constructing a map λ from the set of all equivalence classes of D_2 -extensions of K containing L to the set of all equivalence classes of D_1 extensions of K containing L, and then showing that the inverse image of any class of D_1 -extensions has exactly $p^2 - 1$ elements.

Let Γ_2 be an equivalence class of D_2 -extensions of K containing L, and let $N_2 = L(\sqrt[p]{x})$ be a representative. Let ε_2 be the cohomology class corresponding to N_2/K and ξ_x . Then ε_2^* is a homomorphism from G to F_p , and by Kummer theory there is a unique element $\tilde{c} \in (L^{*p} \cap K^*)/K^{*p}$ such that for any of its representatives c in $L^{*p} \cap K^*$ we have $\zeta^{\varepsilon_2^*(\sigma)} = \sigma(\sqrt[p]{c})/\sqrt[p]{c}$ for all $\sigma \in G$. Let $y = x\sqrt[p]{c^{-1}}$. Now put $\lambda(\Gamma_2) = \Gamma_1$, where Γ_1 is the equivalence class of $N_1 = L(\sqrt[p]{y})$. Since two representatives of \tilde{c} differ by an element of K^{*p} , the class Γ_1 is independent of which c we pick. The class Γ_1 is also independent of x (as long as $x = L(\sqrt[p]{x})$), since replacing $x = L(\sqrt[p]{y}) = L(\sqrt[p]{y}) = N_1$. Finally, replacing N_2 by an equivalent extension $L(\sqrt[p]{qx})$ gives $L(\sqrt[p]{qy})$, which is equivalent to N_1 . So λ is well-defined. Let ε_1 be the cohomology class corresponding to N_1 and ξ_y . Choose $\zeta_{\sigma} \in \mu_{p^2} \subseteq K$ for each σ such that $\sigma(\sqrt[p]{c})/\sqrt[p]{c} = \zeta_{\sigma}^{-p}$; then $\sigma(y)/y = (\zeta_{\sigma}x_{\sigma})^p$. Thus

we have

$$\zeta^{\varepsilon_1^*(\sigma)} = \prod_{r \pmod p} \frac{\zeta_{\sigma^r} x_{\sigma^r} \sigma^r (\zeta_{\sigma} x_{\sigma})}{\zeta_{\sigma^{r+1}} x_{\sigma^{r+1}}} = \zeta^{\varepsilon_2^*(\sigma)} \prod_{r \pmod p} \frac{\zeta_{\sigma^r} \zeta_{\sigma}}{\zeta_{\sigma^{r+1}}}.$$

Choosing $\zeta_{\sigma^r} = \zeta_{\sigma}^r$ for r = 0, 1, ..., p - 1, we see that

$$\prod_{r \pmod p} \frac{\zeta_{\sigma^r} \zeta_{\sigma}}{\zeta_{\sigma^{r+1}}} = \frac{\zeta_{\sigma}^{p-1} \zeta_{\sigma}}{\zeta_{\sigma}^0} \prod_{r=0}^{p=2} \frac{\zeta_{\sigma^r} \zeta_{\sigma}}{\zeta_{\sigma^{r+1}}} = \zeta_{\sigma}^p = \frac{\sqrt[p]{c}}{\sigma(\sqrt[p]{c})} = \zeta^{-\epsilon_2^*(\sigma)},$$

so ε_1^* is identically zero. Since ζ_{σ} is left fixed by G, it follows from formula (3.2) in [M] (quoted in section 2 above) that $\varepsilon_{1,*} = \varepsilon_{2,*}$, so N_1 is indeed a D_1 -extension.

Now fix a class Γ_1 of D_1 -extensions, and let $N_1 = L(\sqrt[p]{y})$ belong to Γ_1 . Suppose that Γ_2 is such that $\lambda(\Gamma_2) = \Gamma_1$. Using the definition of \sim and λ , we see that Γ_2 must have a member of the form $L(\sqrt[p]{c})$, where $x = y \sqrt[p]{c}$, for some $c \in L^{*p} \cap K^*$. Thus we have to determine the number of inequivalent such extensions, for fixed y. So let us suppose

$$L(\sqrt[p]{y\sqrt[p]{c}}) \sim L(\sqrt[p]{y\sqrt[p]{d}}),$$

where $c, d \in L^{*p} \cap K^*$. Hence for some integer j not divisible by p and some $a \in K^*$,

$$ay \sqrt[p]{c} \equiv y^j \sqrt[p]{d^j} \operatorname{mod}^{\times} L^{*p}.$$

We claim that $j \equiv 1 \pmod p$. For if not then we get $y \equiv b \sqrt[p]{e} \mod^{\times} L^{*p}$ for some $b \in K^*$ and some $e \in L^{*p} \cap K^*$; but then $N_1 = L(\sqrt[p]{b}\sqrt[p]{e}) \sim L(\sqrt[p^2]{e})$, which is an abelian extension of K, contrary to assumption. Hence $j \equiv 1 \pmod p$, and we get $c^{-1}da^p \in L^{*p^2}$. Thus $K(\sqrt[p^2]{c^{-1}da^p})$ is contained in L and therefore has degree at most p (or else it would be cyclic of degree p^2 and would not fit inside L). This means that $c^{-1}da^p$, hence $c^{-1}d$ belongs to K^{*p} . Conversely, it is clear that if $c \equiv d \mod^{\times} K^{*p}$ then

$$L(\sqrt[p]{y\sqrt[p]{c}}) \sim L(\sqrt[p]{y\sqrt[p]{d}}).$$

Using calculations similar to the ones above it is easy to see that $x = y\sqrt[p]{c}$ gives a D_2 -extension $L(\sqrt[p]{x})$ if and only if c is not a pth power in K.

Thus we conclude that the elements of the inverse image of Γ_1 are in one-to-one correspondence with the non-zero elements of $(L^{*^p} \cap K^*)/K^{*^p}$. As there are $p^2 - 1$ of these, the theorem is proved.

REFERENCES

[F] A. Fröhlich, The rational characterization of certain sets of relatively abelian extensions, Philos. Trans. Roy. Soc. London Ser. A 251 (1959), 385-425.

- [G] R. Gillard, Plongement d'une extension d'ordre p ou p² dans une surextension non abelienne d'ordre p³, J. Reine Angew. Math. 268-269 (1974), 418-426.
- [H] M. Hall, The Theory of Groups, Macmillan, 1959.
- [Ho] K. Hoechsmann, Zum Einbettungsproblem, J. Reine Angew. Math. 229 (1968), 81-106.
- [J] C. U. Jensen, On the representations of a group as a Galois group over an arbitrary field, Copenhagen University Preprint Series No. 14, 1987.
- [J-Y] C. U. Jensen and N. Yui, Quaternion extensions, Copenhagen University Preprint Series No. 10, 1987.
- [K-L] W. Kuyk and H. W. Lenstra, Abelian extensions of arbitrary fields, Math. Ann. 216 (1975), 99-104.
- [M] R. Massy, Construction de p-extensions galoisiennes d'un corps de caractéristique différente de p, J. of Alg. 109 (1987), 508-535.
- [S] J.-P. Serre, Groupes de Galois sur Q, Sém. Bourbaki 1987-88, exposé no. 689.
- [W] G. Whaples, Algebraic extensions of arbitrary fields, Duke Math. J. 24 (1957), 201-204.
- [Wi] E. Witt, Konstruktion von galoisschen Körpern der Characteristik p zu vorgegebener Gruppe der Ordnung pf, J. Reine Angew. Math. 174 (1936), 237-245.
- [Z] H. Zassenhaus, The Theory of Groups, Chelsea Publishing Company, 1949.

MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET BOX 6701 I1385 STOCKHOLM SWEDEN