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ON p-GROUPS AS GALOIS GROUPS

GUDRUN BRATTSTROM

The so-called Noether problem of determing which finite groups (all, conjec-
turally) can occur as Galois groups of extensions of the rational numbers has
been studied extensively, not least in recent years — see for instance [S]. Naturally
the same question can be asked for other fields than Q. Given a field K and a finite
group G, we say that G is realizable over K if there exists a Galois extension N of
K whose Galois group is isomorphic to G; we shall sometimes call such an
extension a G-extension of K. One can also look for pairs of finite groups G and
H such that for any field K, the realizability of G implies that of H. The obvious
example is when H is a homomorphic image of G. However, there are others,
most of which can be found in [J]. For instance, if you can realize the cyclic group
of odd prime order p over a field K, then you can realize all cyclic groups of order
p",n 2 1. (See [W] and [K-L]). In this paper we consider the two non-abelian
groups of order p3, where p is an odd prime number. (For p = 2, see [J].) I wish to
thank Professor Christian U. Jensen for suggesting this topic to me.

1.
The problem of realizing finite groups as Galois groups is closely related to what

I shall call the “Galois embedding problem”. Consider a finite Galois extension
L/K, and let G = Gal(L/K). Let

l1-A->E->G-1

be a group extension, where A is an abelian group with a fixed G-action, and let
¢€ H*(G, A) be the corresponding cohomology class. The Galois embedding
problem is then to find an E-extension N of K which contains L and is “compat-
ible” with the group extension, i.e. there should exist a surjective homomorphism
® making the following diagram commute:

Gal(K/K)

o/ 1¢
1A-E-G-1
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where ¢: Gal (K/K) = G is the homomorphism given by restriction to L. We then
say that the Galois embedding problem (L/K, ¢) is solvable. Without the condi-
tion that @ be surjective this is a purely cohomological problem, and its solution
is given by a theorem of Hoechsmann [Ho] stating that such a homomorphism
@ exists if and only if the element ¢*(¢) € H? (Gal (K/K), A) vanishes. The surjec-
tivity of @ generally has to be established by other means. In some cases it is
however automatic in the sense that ¢*(¢) = 0 implies the existence of a surjective
&. This is so when G and E are p-groups of the same rank (when in fact all
solutions @ are surjective), and also when K is a number field ((Ho], Satz 2.3 and
Satz 6.6 respectively). The two groups of order p* mentioned above are both
central extensions of a cyclic group of order p by an abelian group of type (p, p),
and both have rank two. If p is odd, which we shall henceforth be assuming, they
are given by the relations

Di: uP =P = wP =1, uv = vuw,
2
D, uP’ =vP = 1, uv = vul*?,

respectively. The center of D; (i = 1 or 2) clearly equals the cyclic kérnel of the
extension, and since a normal subgroup of order p of a p-group is central, we see
that a D;-extension N/K contains a unique (p, p)-extension L/K. Whenever
xP — 1 splits in K and K has characteristic different from p, the letter { will
throughout this paper denote a fixed non-trivial pth root unity in K. In this
situation the extension L/K can be described explicitly as a Kummer extension:
we have L = K (\”/;, \"/5), for some elements a and b of K* whose images in the
F,-vector space K*/K*” are linearly independent. In this case the Galois embed-
ding problem has been solved completely by R. Massy; we have the following
theorem (see [M], Corollaire pp. 523-524), with the notations and hypotheses of
this paragraph.

THEOREM 1 (Massy). Let K and the elements a and b be fixed; let L =

K(¥/a,/b). Then

(i) the extension L/K can be embedded in a D ,-extension if and only if b is a norm
from K(\’/;) to K, and

(ii) the extension L/K can be embedded in a D ,-extension if and only if there exist
o and B in K such that L = K (\‘7&, \‘75) and such that (B is a norm from

K(/a)t0 K.
We wish to prove the following.

THEOREM 2. IfD, isrealizable over K thensois D,. If K has characteristic p or if
xP* — 1 splits in K (1,), then the converse also holds.

Proor. If K has characteristic p then the realizability of a p-group G over
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K depends only on the rank of G (see [Wi], Satz p. 237),s0 D, and D, both having
rank two, the theorem follows. From now on let us assume char (K)  p.

If xP* — 1 splits in K, then the conditions (i) and (i) in Massy’s theorem are
equivalent, so the realizability of one of the groups D, implies that of the other,
with the same intermediate field L.

Now suppose that x? — 1 splits in K but x?* — 1 does not. Suppose that N is
a Galois extension of K with Gal(N/K) isomorphic to D,, and let L =
K(\'y:z, \‘71;) be the intermediate field. The images of a and b in K*/K*’ are
linearly independent and therefore cannot both be contained in the line gener-
ated by the image of {. Suppose for instance that the image of a lies outside this
line. Then the extension L = K(\‘f , \‘72) satisfies condition (ii) of Massy’s the-
orem, and we conclude that D, is realizable over K.

Finally, let us drop the assumption that x? — 1 splits in K. Suppose that N is
a Galois extension of K such that Gal(N/K) is isomorphic to D,. Then so is
Gal (N(u,)/K(u,)). Hence it follows from what we have already proved that there
exists a D,-extension M of K(u,). Moreover, if xP* — 1 splits in K(u,), then we
may choose M such that its intermediate (p, p)-subextension is the same as that of
N(u,); as before we call this field L. We know that L = L(u,), where L is the
intermediate (p, p)-subextension of N/K. It now follows from a theorem by R.
Gillard ([G], Théoréme 5; see also section 2 below) that L is contained in
a D,-extension of K. The converse follows similarly.

If xP* —1 does not split in K(u,), let L, and L, be the intermediate
(P, p)-subextensions of N(u,)/K(u,) and M/K(u,) respectively. Then L, =

K(up)(\%—z, \‘yl;) for some a and b in K(u,), and we may choose M so that

(interchanging a and b if necessary) L, = K(u ,,)(\"/5, \‘75). Note that L,, being the
composite of K(u,) and a (p, p)-extension of K, is abelian over K. In particular

K(yp)(\’yc_z) is abelian over K. So is K(u,,)(\‘"/(:) = K(u,2). Hence L, is also an
abelian extension of K, and since p does not divide [K(u,): K] there has to exist
a (p, p)-extension L, of K such that L, = L,(u,). Thus we can use Gillard’s
theorem again, and we are done.

The following example shows that the converse of our theorem need not hold
in the case when x? — 1, but not x?* — 1 splits in K(up).

ExaMPLE. Let | be a prime which is congruent to 1 (mod p) but not (mod p?),
and let K = Q,. Then

dimeK*/K*" =2,
and therefore by local class field theory

dime[NK(\'/E)/K(K(%)*)/ K*"]=1
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for any ae K*\ K**. On the other hand, a is a norm from K(\”/c-z) to K, so there

cannot exist b in Ny %),K(K(\’y;z)*) such that the images of a and b in K*/K*’ are
linearly independent. Hence by Massy’s theorem, D, is not realizable over K.
However, K does possess extensions of type D,: consider L = K(\"/;, \’73), where
{is a non-trivial pth root of unity (note that our assumptions on / imply that { is in
K* but not in K**) and ae K*\ y,K*’. By Massy’s theorem L is contained in
a D,-extension of K. More explicitly, an example of such an extension is

L(Z/a) = K(u,:)(/ ).

2,

This section is devoted to a somewhat more detailed investigation of the problem
of “descending” from a D-extension of K(u,) to one of K. We are assuming the
field K to have characteristic different from p. Gillard’s theorem, which we used
in the proof of Theorem 2, is the following:

THeOREM 3 (Gillard). Let L/K be a Galois extension with G = Gal (L/K) of type
(p,p), and let A be a cyclic group of order p. Let e H*(G, A) correspond to
a non-abelian group of order p>. Then the embedding problem (L/K, ¢) is solvable if
and only if (L(u,)/K(u,), 6*(e)) is, where 0* is induced by the isomorphism 0:
Gal (L(y,)/K (1,)) = Gal(L/K).

ReMARK. Gillard’s paper is for the most part concerned with number fields,
but this particular argument can be carried out using only Galois cohomology
and Satz 2.3 in [Ho].

If N/K is a solution to the problem (L/K,¢), then one of the solutions to
(L(u,)/K(n,), 0%(€)) is N(u,)/K(u,). Note, however, that neither solution is
uniquely determined by-e. Indeed, given one solution @: Gal(K/K)— E to
(L/K,e), the others are given by @¥ (pointwise multiplication), where
¥ e Hom (Gal (K/K), A) = Hom (Gal (K/K), E); ker (®) and ker (¢ ¥) need not
be equal. The analogous statement holds for L(u,)/K(u,). In particular, it is not
immediately clear how to construct an explicit solution to (L/K, ¢) from one to
(L(u,)/K (1), 6*(€)). This is however the object of the present section.

The following lemma is standard.

LeEMMA. Let E/F be a finite Galois extension, where F has characteristic differ-

ent from p and contains the pth roots of unity. Let x€ E* and let M = E(\’/)_c). Then
M is Galois over F if and only if for all 6 € Gal (E/F) there exists an integer m such
that a(x)/x™ lies in E*”. If Gal(E/F) is a p-group, then m may be taken to be 1.

Now let N/K(u,) be a solution to (L(u,)/K(u,), 0*(¢)), where ¢ + 0. Since
N/L{u,) is a Kummer extension there exists x in L{u,)*\ L{(u,)*’ such that

N = L(u,, \'7;). Let H = Gal (K(u,)/K), and let k be an integer such that k|H| =
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1 (mod p). For all pe H let i(p) be an integer such that p({) = {® and consider
9=k ,eni(p)p~ ' €Z[H]. The group ring Z[H] acts on K(u,)* in the obvious
fashion, and if we let H act trivially on L we get an action on L(u,)* too.

THEOREM 4. Let N’ = L(u,, &/y(x)). Then:
(i) N’ is Galois over K(u,) with Gal(N'/K(u,)) = Gal(N/K(u,)).
(ii) N’ is Galois over K with Gal(N'/K) = H x Gal(N/K(u,)).

PROOF. (i) Let B be the multiplicative group generated by x and L(u,)*". Then

by Kummer theory each ye B\ L(u,)*" yields a unique generator &, of
Gal (N/(L(u,)) such that

Iy

Sending ¢, to 1 € F, we obtain an identification Gal (N/(L(u,)) = F,, enabling us
to view the cohomology class ¢ corresponding to the group extension

1 - Gal (N/(L(,)) - Gal (N/K (u,)) = Gal (L{,)/K (u,)) = 1

as an element of HZ*(G,F,), where G = Gal(L(y,)/K(p,). The field

N = L(pp,\”/);) is Galois over K(u,), so from each ¢ € G we obtain an element
X, € L(u,)* such that o(x)/x = x5. Massy ([M], formula (3.2)) has an explicit
expression in terms of x, for a cocycle X (o, t) representing &:

ANV

X,0(x:)
X,

= (X9 g,1€G.

at

Let y = y(x). Then we have
o) _ oly(x) _ (a(x)) e,

y ()
so letting y, = y(x,), we get

$290s) _ y(x,a(x,)
ydt

) = Q.

ot

But

k k
") = [H p"(o“"’] = (H c) = g =,
peH peH
so we get the same cocycle and hence in particular
Gal(N'/K(u,)) = Gal(N/K(u,)).

(ii) Let 0eGal (L(n,)/K). Then ¢ may be written (uniquely) as a product o0,
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where g, fixes L and o, fixes K(u,). The field N = L(u,, \‘7;) is Galois over K(u,),
s0 a4(x)/x lies in L(u,)*", a relation which we write

0y(x) = xmod™ L(u,)*".
Hence

0(x) = Go(0,4(x) = oo(x)mod ™ Lij,)*",

SO

o(y(x)) = y(0(x)) = ¥(0o(x)) = oo(y(x)) mod™ L(u,)*".

Viewing g, as an element of H = Gal (K(u,)/K), we have

ooy =00k Y i(p)p~ )=k} i(p)aop™ ' =k Y, i(ag ' p)”! =i(ag ')y(mod pZ[H]).
peH peH peH
Therefore

a(y(x)) = y(x)®s Ymod* Liu,)*",

and we deduce from the lemma that the extension N'/K is Galois. Since
[N’ K(u,)] = p? is relatively prime to [K(y,): K], the Galois group Gal (N'/K)
will be the semidirect product of H = Gal (K(u,)/K) and Gal(N'/K(u,)), with
H acting on Gal(N'/K(u,)) by conjugation (see [Z], IV.7, Theorem 25). We shall
show that this product is in fact direct, i.e. that the action of H on Gal (N'/K(u,))
is trivial. The field L(u,) is abelian over K, so we already know that the action on
Gal (L(u,)/K(up)) is trivial. In other words, the group H acts via automorphisms
of E = Gal(N'/K(u,)) which fix E/®(E) elementwise, P(E) being the Frattini
subgroup of E. But by Theorem 12.2.2 in [H] the order of such an automorphism
is a power of p, whereas |H| is prime to p, so the action of H must be trivial.

COROLLARY. Under the hypotheses of Theorem 4, there exists a D-extension N,
of K such that N’ = Ny(u,).

PROOF. Let N, be the fixed field of the subgroup isomorphic to H.

3.
In this section we consider the case when either char (K) = p or x?* — 1 splits in
K; so D, is realizable over K if and only if D, is. We will show that there exists,
moreover, a fixed numerical relation between the number of D,-extensions and
the number of D,-extensions of K provided one of these numbers is finite. For
a field K and a finite group G, denote by v(G, K) the number (possibly infinite) of
G-extensions of K.

When char (K) # p we shall use cohomology to recognize the isomorphism
classes of the Galois groups of the field extensions we have constructed. More
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precisely, consider e€ H? (G, F,), with G of type (p, p) acting trivially on F,. Up to
isomorphism there are four possibilities for the middle group E in the short exact
sequence: type (p, p, p), type (p?, p), D, or D,. Which one it is can be read off easily
from the cohomology class e. Following [F] (see also [M]) we define ¢,:
G x G- F,and e*: G- F, by

£,(0,7) = X(0,7) — X(1,0);

o)=Y X(d,0),
r(mod p)
where X is a cocycle representing ¢; it can be seen that ¢, and ¢* are independent
of the choice of X. One can show (see [M]) that ¢, is an alternating bilinear form,
that ¢* is a linear form (thinking of G as a 2-dimensional F,-vector space), and that
¢ = 0if and only if &, = 0 and &* = 0. (Only the first of these three statements
remains true when p = 2, however.) It follows from the formulae (1.7) and (1.9) in
[M] that the isomorphism class of E depends only on whether ¢, and &* are
identically zero or not, as shown in the following table:

l =0 e*+0

e, =0 (pp)  (PD)
e ¥0 D, D,

THEOREM 5. Let K be a field which either has characteristic p or contains ..
Then if one of v(D,, K) and v(D,, K) is finite, so is the other, and we have

(D2, K) = (p* — 1) v(Dy, K).

Proor. First we deal with the case of characteristic p. Then by [Wi], p. 237 the
finiteness of v(G, K) for a p-group G depends only on K and not on G. Moreover,
applying the theorem on the same page to D, and D,, we find that if v(D, K) and
v(D,, K) are finite then

|Aut(D,)|

V02 K) = ut(D,)

v(D,, K).
Let u, v and w be as in section 1. Then any automorphism o of D, is of the form
a(u) = u'v*w™, a(v) = wv'w", where (i, k) and (j, ) constitute a basis for F, x F,
(thus (p* — 1)(p? — p) possibilities) and m, neF, (thus p? possibilities). So
|Aut(D,)| = p%(p?> — 1)(p* — p). The automorphisms of D, are given by a(u) =
u'v*, a(v) = uPip, where i is a generator of Z/p*Z (thus (p> — p) possibilities), and k,
Jj€F, (thus p? possibilities). So |Aut (D,)| = p*(p*> — p),and our theorem is proved
for fields of characteristic p.

Now let K be a field of characteristic different from p in which x?* — 1splits. By
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a previous remark any realization of D; over K contains a unique (p, p)-extension
of K, so it suffices to prove the formula

v(D,,L/K) = (p* — )¥(Dy, L/K),

where v(D;, L/K) is the number of D;-extensions of K which contain a fixed
(p, p)-extension L. Define an equivalence relation ~ on the set of non-abelian
Galois extensions N/K of degree p3 and containing L, by setting N ~ N’ if and
only if there exist xe I* and ae K* such that N = L(\’/;c) and N' = L(\‘VE). (If
N = L(\”/;), N = L(\’VE) = L(\”/;) and N" = L(\”/l;z), then there must exist an
integer i, not divisible by p, such that y = (ax)'mod* I**. Thus by = ba'x’
mod* I*, and we have N = L(W) and N” = L}/ba'x"), proving the transivity
of ~.)Since a(ax)/ax = a(x)/x for all 6 € Gal (L/K), the two extensions N/K and
N'/K together with £, and &,, respectively (defined as in the proof of Theorem 4)
give rise to the same cohomology class ¢ e H*(G, F,). In particular Gal (N/K) and
Gal(N'/K) are isomorphic. Next we note that L(/x) = L(/ax) only if either
xe ¥ K*,i.e. Gal (L(\"/;c)/K )is abelian of exponent p, a case we are excluding — or
aeI¥; conversely ae [** clearly implies that L(\"/;) = L(\’ya—x_). Hence each
equivalence class has the same number of elements, viz. (K*: ** ~ K*). What this
means is that it suffices to prove the formula with the number of equivalence
classes of D,- and D,-extensions in place of the number of actual extensions. We
shall do this by constructing a map A from the set of all equivalence classes of
D,-extensions of K containing L to the set of all equivalence classes of D,-
extensions of K containing L, and then showing that the inverse image of any
class of D,-extensions has exactly p> — 1 elements.

Let I', be an equivalence class of D,-extensions of K containing L, and let
N, = L(\'/;) be a representative. Let ¢, be the cohomology class corresponding
to N,/K and ¢,. Then &% is a homomorphism from G to F,, and by Kummer
theory there is a unique element ¢e([*" N K*)/K*" such that for any of its

representatives ¢ in I** N K* we have (2@ = a(\"/Z)/\"/E for all 6eG. Let
y =xJF/c™1. Now put (I';,) = I';, where T, is the equivalence class of N, =

L(\V;). Since two representatives of ¢ differ by an element of K*”, the class I', is
independent of which ¢ we pick. The class I', is also independent of x (as long as

N, = L(\’/;c)), since replacing x by x' replaces ¢* by ie%, and hence ¢ by ¢,
producing the extension L(W) = L(\’V;) = N,. Finally, replacing N, by an
equivalent extension b(\%;c_) gives L(\%—z;), which is equivalent to N,. So 4 is
well-defined. Let ¢, be the cohomology class corresponding to N, and &,. Choose

{s€u,2 € K for each ¢ such that a(%)/\’/_ = {,7; then a(y)/y = ({,x,)*. Thus
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we have

Cg;(,)= I—I CurxarO"(Co'xa) =C£;(a) n _C_a'C_a

r(mod p) Ca’* 1 Xgr+1 r(mod p) Ca’* 1

Choosing {,- =} forr =0,1,...,p — 1, we see that

Ca"ca _ Cg_lga r=? Ca"co _ P \'/; __ y—€5(0)
,ml,:!m Coren £ ,Uo =G a(&/c) =

so ¢} is identically zero. Since {, is left fixed by G, it follows from formula (3.2) in
[M] (quoted in section 2 above) that ¢, , = ¢, ,, 50 N, isindeed a D-extension.

Now fix aclass I'y of D, -extensions, and let N, = L(\”ﬂ) belongto I';. Suppose
that I, is such that A(I",) = TI';. Using the definition of ~ and A, we see that I',
must have a member of the form L(\’/E), where x = y \‘7;, for some ce [** n K*.

Thus we have to determine the number of inequivalent such extensions, for fixed
y. So let us suppose

LWy ¥/e) ~ LNy ¥/d),

where ¢,d € ¥’ n K*. Hence for some integer j not divisible by pand some ae K*,
ay\”/—s v .l d mod™ [*.

We claim that j = 1 (mod p). For if not thenwe get y = b \”/; mod ™ I** for some

be K* and some ee [** ~ K*; but then N, = L(~/ b%) ~ L(%), which is an

abelian extension of K, contrary to assumption. Hence j = 1(mod p), and we get

¢ YdaPe I*”’. Thus K(”,z/c‘ ! daP) is contained in L and therefore has degree at
most p (or else it would be cyclic of degree p? and would not fit inside L). This
means that ¢~ 'da?, hence ¢~ 'd belongs to K**. Conversely, it is clear that if

¢ =dmod” K*’ then
LWy 3fe) ~ Ly I/ d).

Using calculations similar to the ones above it is easy to see that x = y% gives
a D,-extension L(\/— if and only if ¢ is not a pth power in K.

Thus we conclude that the elements of the inverse image of I'; are in one-to-one
correspondence with the non-zero elements of (I*” n K*)/K*’. As there are
p* — 1 of these, the theorem is proved.
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