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ON THE UPPER SEMICONTINUITY INTERSECTION
DEFECT

LEOVIGILDO ALONSO TARRIO and ANTONIO G. RODICIO

Abstract,

Let X be a locally noetherian scheme. We prove that the complete intersection defect function is
upper semi-continuous on X in the following two cases: i) X is locally immersible in a locally complete
intersection scheme, ii) X is excellent.

Let (A4, m, K) be alocal noetherian ring. The complete intersection defect of A is
defined to be the integer

d(A) = dim(A) — eo(A) + &,(A)

where dim denotes Krull dimension, and ¢(A) is the i-th deviation of 4 [2].

The function d( ) has the following properties [2]:

i) d(A) = 0,and equality holds if and only if A is a complete intersection (i.e the
m-adic completion 4 of 4 is isomorphic to a quotient of a regular local ring by an
ideal generated by a regular sequence),

ii) d(d) = d(4),

iii) d(A4,) < d(A) for every p e Spec(A4)

iv) If A = R/I, where R is a regular local ring, then

d(A) = u(I) — (dim(R) — dim(4)),

where y(I) = minimum number of generators of I.

Using the equality of iv) and previous results of A. Grothendieck, L. L.
Avramov has proved in [2, Proposition 3.4] the following result:

If X is a localy noeterian scheme, locally immersible in a regular scheme, then
the function x+ d(0y ,) is upper semi-continuous.

It is also noted in [2, Remark 3.5] that not every X has this property.

In the present paper we obtain a generalization of Avramov’s result, namely:

THEOREM. Let X be a locally noetherian scheme. Then, the function x +— d(Oy ,)
is upper semi-continuous in the following two cases:
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a) X is locally immersible in a locally complete intersection scheme
b) X is excellent.

We shall use the André-Quillen homology functors H,(A4, B,-) [1] and some
results on the openness of the complete intersection loci due to S. Greco and M.
G. Marinari [3]. The ideas used here have been applied by A. Ragusa [5] to
smilar problems, namely the study of the semicontinuity of André deviations
d,(4) = dimgH, (A, K, K).

LEMMA 1. Let A be aring, B an A-algebra and n an integer number. Assume that
H{(A, B, B) is a flat B-module for 0 < i < n. Then H(A, B,W) ~ H,(A, B, B)® W
for every B-module W.

Proor. This follows from the spectral sequence
El, = Tor)(H(A,B,B,W=H,, (A4, B,W.

LEMMA 2. Let (A, m, K) be alocal noetherian ring and let p € Spec(A) be such that
H{(A, A/p, A/p) is A/p-free,i =1, 2. Then

—&o(A) + £,(A) £ —&o(4)) + €1(A,) — &o(4/p) + &1(A/p).

ProoF. Recall that ¢;_,(A4) = dim, H(4, K, K), i = 1, 2 [2, Remark 1.4].
Let k(p) = A,/pA, be the residue field of 4,. Since H(A, A/p, A/p is A/p-free,
i =1, 2, we obtain from lemma 1 and [1, lemme 3.20 and corollaire 5.27]

dimgH{(A, A/p, K) = dimyH{(A, A/p, A/p) ® 4,K =
dimk(p)Hi(Aa A/p, A/p) ® A/pk(p) = dimk(p)Hi(Ap’ k(p), k(p)) = &; - I(Ap)’i =12

Consider the Jacobi-Zariski exact sequence [ 1, theoreme 5.1]associated to the
homomorphisms A —— A/p — K

HZ(A9 A/P’ K) -_— HZ(A’ K’ K) L HZ(A/pa K9 K) I
HJ(A’ A/p9 K) EE— Hl(Aa K, K) —_ HI(A/p’ K, K) — 0.

Let N = Ker¢. We obtain
dim,N — ¢,(A) + &,(4/p) — dimgH (A, A/p, K) + &o(A) — eo(A/p) = 0.
Moreover dimgN < dimgH,(A4, A/p,K) = &,(A,). Therefore
€1(A4,) — €1(4) + &,(4/p) — &o(A4,) + £o(A) — &o(4/p) 2 0.

COROLLARY 3. Let (A, m, K) be a local noetherian ring and let p € Spec(A) be
such that dim(A) = dim(A4,) + dim(A4/p) (this is true for all peSpec(A) if A is
catenary). Assume that H(A, A/p, A/p) is A/p-free for i = 1, 2. Then

d(A) = d(4,) + d(A/p).
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PROPOSITION 4. Let A be anoetherian catenary ring and p € Spec(A). Then there

exists an open neighbourhood U of p in Spec(A) such that, for every g€ U n p), we
have

d(A,) < d(A,) + d(A,/pA),).

PRroOOF. Since H(A, A/p, A/p)is A/p-finite for each i [1, proposition 4.55], there
exist f;&p such that H(A,, A, /p,, A;/p;) ~ H(A, A/p, A/p)y, is Ay /p-free [4,
22.A, lemma 1].

Now we can shrink to the open neighbourhood of p, A, ;, which from now on
is denoted by A, and then we have H{(A, A/p, A/p) is A/p-free for i=1, 2;
furthermore, by localization in every q 2 p of such an open set, we can assume
A to be a local noetherian ring and we have to prove

d(A) < d(A,) + d(A/p).
This follows from corollary 3.

PROOF OF THE THEOREM. We only shall prove part a) since part b) is analogous.

The assertion being local on X, one can assume that X is a closed subscheme
Spec(B/I) of the scheme Spec(B), where B is a locally complete intersection ring.
Let A = B/I. Bis catenary and therefore, so is A. Let n be an integer. We have to
show that the set U,(4) = {peSpec(4)|d(4,) < n} is open in Spec(A4). By [2,
Proposition 3.8] U,(A) is stable under generalization. Hence [4, 22.B, lemma 2]
we only have to show that forany pe U,(4), U,(4) » V(p) contains a non-empty
open subset of Hp).

Take p e Spec(A); by proposition 4 we can find a neighbourhood of p, U,
such that for ¢'e U’ n V(p), we have

d(A,) < d(A,) + d(A,/pA,).

A/p is a quotient ring of locally complete intersection ring and therefore
Ucl(A/p) = Uy(A/p) is open [3, corollary 3.4]. Then there exist another neigh-
bourhood of p, U, such that for g"€ U" n W(p), d(4,-/pA,) = 0.

Now for any ge U’ n U"” n V(p) we have

d(A,) < d(4,) < n.
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