ON POWER SERIES AND MAHLER'S U-NUMBERS

M. H. ORYAN

1. Introduction.

Let

$$f(x) = \sum_{n=0}^{\infty} c_n x^{e_n}$$

be a power series with non-zero rational coefficients $c_n = b_n/a_n(a_n, b_n)$ integers and $a_n > 1$ and increasing integers e_n satisfying the following conditions

(2)
$$\liminf_{n \to \infty} \frac{\log a_{n+1}}{\log a_n} = \sigma > 1,$$

$$\limsup_{n\to\infty} \frac{\log|b_n|}{\log a_n} = \theta < 1,$$

$$\lim_{n\to\infty}\frac{\log a_n}{e_n}=+\infty.$$

It follows from (2) and (3) that the radius of convergence of (1) is infinity and from (2) that the number

$$u = \limsup_{n \to \infty} \frac{\log \{\operatorname{lcm}(a_0, a_1, \dots, a_n)\}}{\log a_n}$$

is finite with $1 \le u \le \sigma/(\sigma - 1)$.

In this paper we prove at first by using a theorem of LeVeque [4; Theorem 4-15, p. 148] which is a generalization of the Thue-Siegel-Roth Theorem the following

THEOREM 1. Let f(x) be a power series as in (1) such that (2), (3) and (4) hold. Suppose that α in a non-zero algebraic number of degree m smaller than $\sigma(1-\theta)/2u$. Then the number $f(\alpha)$ is transcendental.

144 m. h. oryan

For the case $e_n = n$ (4) follows from (2) and we obtain from the Theorem 1 the following

COROLLARY. Let f(x) be a power series as in (1) such that (2), (3) and $e_n = n$ hold. Suppose that α is a non-zero algebraic number of degree $m < \sigma(1 - \theta)/(2u)$. Then the number $f(\alpha)$ is transcendental.

Moreover we give some sufficient conditions for $f(\alpha)$ to be or not a U-number according to Mahler's classification for transcendental numbers. We prove the following

THEOREM 2. Let f(x) be a power series as in (1) such that (2), (3) and (4) hold. Suppose that α is a non-zero algebraic number of degree $m < \sigma(1-\theta)/(2u)$ with algebraic conjugates $\alpha^{(1)} = \alpha, \alpha^{(2)}, \ldots, \alpha^{(m)}$.

$$\limsup_{n\to\infty}\frac{\log a_{n+1}}{\log a_n}<+\infty,$$

$$\lim \sup_{n \to \infty} \frac{e_{n+1}}{e_n} < +\infty$$

and if no $\alpha^{(i)}/\alpha^{(j)}$ $(i \neq j)$ is a root of unity then $f(\alpha)$ is not a U-number, i.e. it is either an S-number or a T-number.

$$\lim_{n\to\infty} \sup \frac{\log a_{n+1}}{\log a_n} = +\infty$$

then $f(\alpha)$ is a U-number of degree $\leq m$.

For the case $e_n = n$ we give a necessary and sufficient condition for $f(\alpha)$ to be a U-number.

THEOREM 3. Let f(x) be a series as in (1) such that (2), (3) and $e_n = n$ hold. Suppose that α is a non-zero algebraic number of degree $m < \sigma(1 - \theta)/(2u)$. Then the condition (7) is a necessary and sufficient condition for $f(\alpha)$ to be a U-number.

For the proof of the theorem 2 and the theorem 3 we use essentially the following theorem of Baker [1; Theorem 1, p. 98].

THEOREM (Baker). Suppose that ξ is a real or a complex number and $\kappa > 2$. Let $\alpha_1, \alpha_2, \ldots$ be a sequence of distinct numbers in an algebraic number field K with field heights $H_K(\alpha_1), H_K(\alpha_2), \ldots$ such that

$$|\xi - \alpha_i| < (H_{\kappa}(\alpha_i))^{-\kappa}$$

and

(9)
$$\limsup_{i \to \infty} \frac{\log H_{K}(\alpha_{i+1})}{\log H_{K}(\alpha_{i})} < +\infty$$

hold. Then ξ is either an S-number or a T-number.

2. Lemmas.

The following lemmas are used in the proofs.

LEMMA 1. Let α be an algebraic number of degree m and height H. Suppose d is a positive integer such that $d\alpha$ is an algebraic integer. Then

$$H \leq (2d \max(1, \overline{\alpha}))^m$$
.

PROOF. See Cijsouw and Tijdeman [2; Lemma 1, p. 302].

LEMMA 2. Suppose that K is an algebraic number field of degree N and ζ is an algebraic number in K with field height $H_K(\zeta)$. Let the field conjugates of ζ be $\zeta^{(1)} = \zeta, \zeta^{(2)}, \ldots, \zeta^{(N)}$ and the coefficients of x^N in the field equation of ζ , with relatively prime integer coefficients, be t. Then

$$t \prod_{i=1}^{N} (1 + |\zeta^{(i)}|) < 6^{N} H_{\kappa}(\zeta).$$

Further, if $j_1, ..., j_s$ are s integers with $1 \le j_1 < ... < j_s \le N$ then

$$t \zeta^{(j_1)} \dots \zeta^{(j_s)}$$

is an algebraic integer.

PROOF. See LeVeque [4; Theorem 4-2, pp. 124–125, and Theorem 2-21, pp. 63–65].

LEMMA 3. Let ζ_1 and ζ_2 be different conjugates of an algebraic number of degree m and of height H. Then

$$|\zeta_1 - \zeta_2| \ge (4m)^{-(m-2)/2} ((m+1)H)^{-(2m-1)/2}.$$

PROOF. See Güting [3; Theorem 8, p. 158].

In the remainder of this paper the inequalities hold for all sufficiently large indices and the real numbers $\varepsilon_1, \varepsilon_2, \ldots$ are positive and sufficiently small such that they are not depending on the varying indices.

LEMMA 4. Let f(x) be a series as in (1) such that (2), (3), (4), (6) and $1 < \sigma(1 - \theta)$ hold. Suppose that α is a non-zero algebraic number of degree m with algebraic

146 M. H. ORYAN

conjugates $\alpha^{(1)} = \alpha, \alpha^{(2)}, \ldots, \alpha^{(m)}$ such that no $\alpha^{(i)}/\alpha^{(j)}$ $(i \neq j)$ is a root of unity. Let $\beta_n = \sum_{v=0}^n c_v \alpha^{e_v} (n = 0, 1, 2, \ldots)$. Then the length of any sequence of consecutive terms β_n of degree < m is bounded.

PROOF. Let $K = Q(\alpha)$ then [K:Q] = m, $\beta_n \in K$. It follows from (2) that the sequence $\{a_n\}$ is monotonically increasing for all sufficiently large n and it follows further from (3)

$$|b_n| < a_n^{\theta + \varepsilon_1} < a_n \qquad (0 < \varepsilon_1 < 1 - \theta).$$

We assume that the assertion of the lemma is not true. Then there must exist a sequence $\{\Sigma_s\}$ such that

$$\Sigma_s = \{\beta_{n_s+1}, \dots, \beta_{n_s+q_s}\} \qquad (n_s, q_s \to \infty \text{ as } s \to \infty)$$

with deg $\beta_v < m$ for $n_s + 1 \le v \le n_s + q_s$, where deg β denotes the degree of the algebraic number β .

Let $\beta_n^{(1)} = \beta_n, \beta_n^{(2)}, \dots, \beta_n^{(m)}$ be the field conjugates of β_n . For a pair $(i,j) (1 \le i < j \le m)$ the equations

$$\beta_{\nu}^{(i)} = \beta_{\nu}^{(j)}$$
 $(\nu = n, n+1, n+2)$

can not be satisfied simultaneoulsy. For otherwise we would get from

$$\frac{\beta_{n+2}^{(i)} - \beta_{n+1}^{(i)}}{\beta_{n+1}^{(i)} - \beta_{n}^{(i)}} = \frac{\beta_{n+2}^{(j)} - \beta_{n+1}^{(j)}}{\beta_{n+1}^{(j)} - \beta_{n}^{(j)}}$$

that $(\alpha^{(i)}/\alpha^{(j)})^{e_{n+2}-e_{n+1}}=1$ which is a contradiction. It follows from this, from $q_n \to \infty$ and the finiteness of the number of the pairs (i,j) that there exists an index pair (i,j) and a subsequence $\{\Sigma'_s\}$ of $\{\Sigma_s\}$ such that for every s it is possible to find terms $\beta_{n_t}, \beta_{n_{t+1}} \in \Sigma'_s$ with $n_{t+1}-n_t \ge 2$, $\beta_{n_t}^{(i)}=\beta_{n_t}^{(j)}, \beta_{n_{t+1}}^{(i)}=\beta_{n_{t+1}}^{(j)}$ and $\beta_{\nu}^{(i)} \neq \beta_{\nu}^{(i)}$ $(n_t < \nu < n_{t+1})$. Because of $\beta_{n_t+1}^{(i)} + \beta_{n_t+1}^{(j)}$ it follows that $(\alpha^{(i)})^{e_{n_t+1}} \neq (\alpha^{(j)})^{e_{n_t+1}}$. Furthermore we have $\beta_{n_t+1}^{(i)}-\beta_{n_t}^{(i)}=\beta_{n_t+1}^{(j)}-\beta_{n_t}^{(j)}$ and hence

(11)
$$\sum_{\nu=1}^{n_{t+1}-n_t} c_{n_t+\nu}((\alpha^{(i)})^{e_{n_t+\nu}}-(\alpha^{(j)})^{e_{n_t+\nu}})=0.$$

It follows from (2) and (10)

$$(12) |c_{n+1}/c_n| \leq a_n^{-(1-\theta-\epsilon_1)(\sigma-\epsilon_2)+1} (1 < \sigma - \epsilon_2).$$

From $1 < \sigma(1 - \theta)$ we get $(1 - \theta - \varepsilon_1)(\sigma - \varepsilon_2) - 1 > 0$. By (11) and (12) we obtain

$$(13) |(\alpha^{(i)})^{e_{n_t+1}} - (\alpha^{(j)})^{e_{n_t+1}}| < 2(n_{t+1} - n_t - 1) \max(1, |\overline{\alpha}|)^{e_{n_t+1}} \left| \frac{c_{n_t+2}}{c_{n_t+1}} \right|.$$

We have $H(\alpha^{e_{n_t+1}}) < \gamma_1^{e_{n_t}} + 1$ and from Lemma 3 we obtain

(14)
$$|(\alpha^{(i)})^{e_{n_i+1}} - (\alpha^{(j)})^{e_{n_i+1}}| \ge \gamma_2 \gamma_3^{-e_{n_i+1}},$$

where the real contants $\gamma_1, \gamma_2, \gamma_3$ are positive and independent of n_t .

If $n_{t+1} - n_t$ is bounded for $t \to \infty$ then there exists a real constant B > 0 with $n_{t+1} - n_t - 1 \le B$. Hence it follows from (6), (12), (13) and (14) a contradiction because of (4).

Hence $n_{t+1} - n_t$ is not bounded for $t \to \infty$. Therefore there exists an index pair $(p,q) \neq (i,j)$ and a subsequence $\{\Sigma_s^w\}$ of $\{\Sigma_s^t\}$ such that for every s it is possible to find terms β_{n_u} , $\beta_{n_{u+1}} \in \Sigma_s^w$ with $n_{u+1} - n_u \geq 2$, $n_t < n_u < n_{u+1} < n_{t+1}$, $\beta_{n_u}^{(p)} = \beta_{n_u}^{(q)}$, $\beta_{n_{u+1}}^{(p)} = \beta_{n_{u+1}}^{(q)}$ and $\beta_s^{(p)} \neq \beta_s^{(q)}(n_u < v < n_{u+1})$. We can show similarly that $n_{u+1} - n_u$ is not bounded for $u \to \infty$. If we go on, we get such terms in Σ_s for sufficiently large s with all different field conjugates because the number of the distinct pairs (i,j) is finite. This contradicts the definition of Σ_s . Hence the lemma is proved.

LEMMA 5. Let f(x) be a series as in (1) such that (2), (3), $e_n = n$ and $1 < \sigma(1 - \theta)$ hold. Suppose that α is a non-zero algebraic number of degree m. Let $\beta_n = \sum_{\nu=0}^n c_\nu \alpha^\nu$ $(n = 0, 1, 2, \ldots)$. Then the length of any sequene of consecutive terms β_n of degree < m is bounded.

PROOF. From $e_n = n$ we obtain (4) and (6). In this case $e_{n+2} - e_{n+1} = 1$ therefore for a pair (i, j) $(1 \le i < j \le m)$ the equations

$$\beta_{v}^{(i)} = \beta_{v}^{(j)}$$
 $(v = n, n + 1, n + 2)$

can not be satisfied simultaneously because of $\alpha^{(i)} \neq \alpha^{(j)}$. The remainder of the proof is similar to the proof of the lemma 4.

LEMMA 6. Let f(x), α and β_n be as in Lemma 4 (respectively as in Lemma 5). If $\{\beta_{n_k}\}$ is the subsequence of the terms of degree m in $\{\beta_n\}$ then there is an integer k_0 such that $\beta_{n_k} \neq \beta_{n_{k+1}}$ holds for all integers $k \geq k_0$.

PROOF. If the assertion of the lemma were not true then $\beta_{n_k} = \beta_{n_{k+1}}$ would hold for infinitely many k. Hence it would follow for infinitely many k

(15)
$$1 + \sum_{\nu=2}^{n_{k+1}-n_k} \frac{c_{n_k+\nu}}{c_{n_k+1}} \alpha^{e_{n_k+\nu}-e_{n_k+1}} = 0.$$

By Lemma 4 (respectively by Lemma 5) the number of the terms in (15) is bounded and by (4), (6) and (12)

$$\lim_{k \to \infty} \frac{c_{n_k + \nu}}{c_{n_k + 1}} = 0 \qquad (\nu = 2, 3, \dots, n_{k+1} - n_k).$$

Therefore we would get a contradiction from (15) and this proves Lemma 6.

3. Proofs.

PROOF OF THEOREM 1. Let $A_n = \text{lcm}(a_0, a_1, ..., a_n)$. It follows from (2) that $a_n \le A_n \le a_n^{u+\epsilon_3}$. We get from Lemma 1 and from (4) that

$$(16) H(\beta_n) \le a_n^{um + \varepsilon_4}.$$

Let $\xi = f(\alpha)$. It follows from (2), (4), (10) and (16)

(17)
$$|\xi - \beta_n| \leq a_{n+1}^{-(1-\theta-\epsilon_5)} \qquad (0 < \epsilon_5 < 1-\theta)$$

$$\leq a_n^{-(1-\theta-\epsilon_5)(\sigma-\epsilon_2)}$$

$$\leq H(\beta_*)^{-\kappa}$$

where $\kappa = (1 - \theta - \varepsilon_5)(\sigma - \varepsilon_2)/(um + \varepsilon_4)$. Because of $m < \sigma(1 - \theta)/(2u)$ we obtain $\kappa > 2$. From the theorem of LeVeque [4; Theorem 4-15, p. 148] we get that ξ is transcendental.

PROOF OF THEOREM 2. It follows from $m < \sigma(1-\theta)/(2u)$ and $1 \le u$ that $1 < \sigma(1-\theta)$. We consider the sequence $\{\beta_{n_k}\}$ $(k \ge k_0)$ in Lemma 6. We have for the terms of this sequence

$$(18) H(\beta_{n_k}) = H_K(\beta_{n_k}).$$

Let t_{n_k} be the coefficient of x^m in the field equation of β_{n_k} with relatively prime integer coefficients. We put

(19)
$$\Lambda = t_{n_{k+1}} t_{n_k} \operatorname{Norm} (\beta_{n_{k+1}} - \beta_{n_k})$$

where

(20)
$$\operatorname{Norm}(\beta_{n_{k+1}} - \beta_{n_k}) = \prod_{i=1}^{m} (\beta_{n_{k+1}}^{(i)} - \beta_{n_k}^{(i)}).$$

Since $\beta_{n_{k+1}} \neq \beta_{n_k}$ it follows from (19) that Λ is the sum of products of conjugates of $\beta_{n_{k+1}}$ and β_{n_k} , all multiplied by $t_{n_{k+1}}t_{n_k}$. It follows from Lemma 2 that Λ is a rational integer and hence we obtain

$$|A| \ge 1.$$

We now find an upper bound for |A|. From

$$|\beta_{n_{k+1}}^{(i)} - \beta_{n_k}^{(i)}| \le (1 + |\beta_{n_{k+1}}^{(i)}|)(1 + |\beta_{n_k}^{(i)}|),$$

and from Lemma 2 and (18) we obtain

(22)
$$t_{n_k} \prod_{i=1}^m (1 + |\beta_{n_k}^{(i)}|) \le 6^m H(\beta_{n_k}).$$

It follows from (19) and (20) that

$$\begin{aligned} |A| &= |\beta_{n_{k+1}} - \beta_{n_k}| \, |t_{n_{k+1}} - t_{n_k} \prod_{i=2}^m (\beta_{n_{k+1}}^{(i)} - \beta_{n_k}^{(i)})| \\ &\leq |\beta_{n_{k+1}} - \beta_{n_k}| \, 6^{2m} \, H(\beta_{n_{k+1}}) \, H(\beta_{n_k}) \end{aligned}$$

and

$$|A| \le |\beta_{n_{k+1}} - \beta_{n_k}| 6^{2m} (\max\{H(\beta_{n_{k+1}}), H(\beta_{n_k})\})^2.$$

We obtain from (17) and $\sigma - \varepsilon_2 > 1$ that

(23)
$$|\beta_{n_{k+1}} - \beta_{n_k}| \le |\xi - \beta_{n_{k+1}}| + |\xi - \beta_{n_k}|$$

$$\le 2a_{n_k}^{-(1 - \Theta - \varepsilon_4)}$$

and hence from (21) and (23)

(24)
$$a_{n\nu}^{1-\theta-\epsilon_4} \leq 2 \cdot 6^{2m} (\max\{H(\beta_{n_{\nu+1}}), H(\beta_{n_{\nu}})\})^2,$$

and therefore

$$\max\{H(\beta_{n,\ldots}),H(\beta_{n,\cdot})\}\to\infty$$
 as $k\to\infty$.

Thus from (24) on taking logarithms it follows that

$$(25) \qquad (1 - \theta - \varepsilon_4) \log a_{n_k} \leq (2 + \varepsilon_5) \max \{ \log H(\beta_{n_{k+1}}), \log H(\beta_{n_k}) \}.$$

We define now inductively a sequence $\{k_i\}$. Let k_1 be the least positive integer for which (16), (17), (18) and (25) hold. Let i be a positive integer and we suppose that k_i has been defined and we take k_{i+1} as $k_i + 1$ or $k_i + 2$ according as $H(\beta_{n_{k_i+1}})$ is or is not greater than $H(\beta_{n_{k_i+1}})$. Then by definition

(26)
$$\max \left\{ \log H(\beta_{n_k}), \log H(\beta_{n_k}) \right\} = \log H(\beta_{n_k}).$$

By (5) there is a constant c > 1 such that

$$\log a_{n+1} < c \log a_n.$$

Hence from the definition of k_i it follows for all i

(28)
$$c^{-A}\log a_{n_k} < \log a_{n_{k-1}+1},$$

where A is an upper bound for $n_{k+1} - n_k$ by Lemma 4. From (25), (26) and (28) we obtain

$$(1 - \theta - \varepsilon_4)c^{-A}\log a_{n_k} < (2 + \varepsilon_5)\log H(\beta_{n_k})$$

for all i. Hence we obtain from (16), (27) and (29)

150 m. h. oryan

(30)
$$\frac{\log H(\beta_{n_{k_{i+1}}})}{\log H(\beta_{n_{k_{i}}})} \leq \frac{(um + \varepsilon_{3}) \log a_{n_{k_{i+1}}}}{\frac{1 - \theta - \varepsilon_{4}}{c^{A}(2 + \varepsilon_{5})} \log a_{n_{k_{i}}}} \leq \frac{(um + \varepsilon_{3})c^{A} \log a_{n_{k_{i+1}}}}{\frac{1 - \theta - \varepsilon_{4}}{c^{A}(2 + \varepsilon_{5})} \log a_{n_{k_{i}}}}.$$

We obtain from (5) and (30)

(31)
$$\limsup_{i\to\infty} \frac{\log H(\beta_{n_{k_{i+1}}})}{\log H(\beta_{n_k})} < \infty.$$

Finally we define a subsequence $\{\beta_{t_j}\}$ of $\{\beta_{n_{k_i}}\}$ so that we take $t_1=1$ and for each integer $j \ge 1$ we take t_{j+1} as the least integer in $\{n_{k_i}\}$ greater than t_j for which $H(\beta_{t_j})$ is less than $H(\beta_{t_{j+1}})$. It is possible to find such an index since the number of the algebraic numbers in K with bounded field height is finite and if in the sequence $\{\beta_n\}$ a term is repeated infinitely many times, then ξ must be in K because of the definition of β_n . Then we have

$$H(\beta_{t_1}) < H(\beta_{t_2}) < \dots$$

and

$$\frac{\log H(\beta_{t_{j+1}})}{\log H(\beta_{t_i})} \leq \frac{\log H(\beta_{t_{j+1}})}{\log H(\beta_{t_{j+1}-1})}$$

hence

(32)
$$\limsup_{t\to\infty} \frac{\log H(\beta_{t_{j+1}})}{\log H(\beta_{t_t})} < +\infty.$$

Moreover the terms of $\{\beta_{t_j}\}$ are all distinct because their heights are all distinct. We have further for the sequence $\{\beta_{t_j}\}$ from (17)

$$|\xi - \beta_{t_i}| < (H(\beta_{t_i}))^{-\kappa}$$

with $\kappa > 2$. We obtain from (32) and (33) the conditions (8) and (9) of Baker's Theorem for the sequence $\{\beta_{t_i}\}$ and hence the first part of the theorem 2 is proved.

For the proof of the second part we consider the sequence $s_n := (\log a_{n+1})/(\log a_n)$. It follows from (7) that the sequence $\{s_n\}$ contains a subsequence $\{s_{n_j}\}$ with

 $\lim_{j\to\infty} s_{n_j} = +\infty$. We consider now the sequence $\{\beta_{n_j}\}$. No term in $\{\beta_{n_j}\}$ can be

repeated infinitely many times because of the transcendence of ξ . Hence there is a subsequence $\{\beta_{n_{j_i}}\}$ of $\{\beta_{n_j}\}$ with pairwise different terms and monotonically increasing heights. For this subsequence we get from (16) and (17)

(34)
$$|\xi - \beta_{n_{j_q}}| \le H(\beta_{n_{j_q}})^{-\frac{1 - \theta - \epsilon_4}{um + \epsilon_3} s_{n_{j_q}}}.$$

Because of deg $\beta_{n_{j_q}} \le m$ and $\lim_{q \to \infty} s_{n_{j_q}} = +\infty$ we get from (34) that ξ is a *U*-number of degree $\le m$. From the equivalence of the Mahler's and Koksma's classification of transcendental numbers it follows that ξ is a *U*-number of degree $\le m$.

PROOF OF THEOREM 3. The proof of this theorem is similar to that of Theorem 2 (use Lemma 5 instead of Lemma 4).

REFERENCES

- 1. A. Baker, On Mahler's classification of transcendental numbers, Acta Math. 111 (1964), 97-120.
- P. L. Cijsouw, R. Tijdeman, On the transcendence of certain power series of algebraic numbers, Acta Arith. 23 (1973), 301-305.
- R. Güting, Approximation of algebraic numbers by algebraic numbers, Michigan Math. J. 8 (1961), 149-159.
- 4. W. J. Leveque, Topics in Number Theory, vol. 2, Addision-Wesley, Massachusetts, 1961.

UNIVERSITY OF ISTANBUL FACULTY OF SCIENCE MATHEMATICS DEPARTMENT VEZNECILER-ISTANBUL TURKEY