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ON POWER SERIES AND MAHLER’S U-NUMBERS

M. H. ORYAN
1. Introduction.
Let
(1) ) = io exe

be a power series with non-zero rational coefficients ¢, = b,/a, (a,, b, integers and
a, > 1) and increasing integers e, satisfying the following conditions

Q) lim inf108%+1 _ oo g
n—w 1084,
. log|b,|
3 OBPn _ g <1,
) lim sup oa ~0<
@) lim 108% _ o

n—* o0 e’l

It follows from (2) and (3) that the radius of convergence of (1) is infinity and from
(2) that the number

u = lim sup log {lcm (ag, ay,...,a,)}
n- oo IOg a,
is finite with 1 £ u < /(0 — 1).
In this paper we prove at first by using a theorem of LeVeque [4; Theorem 4-15,
p. 148] which is a generalization of the Thue-Siegel-Roth Theorem the following

THEOREM 1. Let f(x) be a power series as in (1) such that (2), (3) and (4) hold.
Suppose that a in a non-zero algebraic number of degree m smaller than a(1 — 0)/2u.
Then the number f() is transcendental.
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For the case e, = n (4) follows from (2) and we obtain from the Theorem 1 the
following

COROLLARY. Let f(x) be a power series as in (1) such that (2),(3) and e, = n hold.
Suppose that o is a non-zero algebraic number of degree m < a(1 — 0)/(2u). Then
the number f(a) is transcendental.

Moreover we give some sufficient conditions for f(a) to be or not a U-number
according to Mahler’s classification for transcendental numbers. We prove the
following

THEOREM 2. Let f(x) be a power series as in (1) such that (2), (3) and (4) hold.
Suppose that o is a non-zero algebraic number of degree m < a(1 — 0)/(2u) with

algebraic conjugates o'V = a,a'?,. .., ™.
1°) If
1
(5) lim supM < + o0,
n— oo log a’l
. €n+1
6) lim sup—e—— < 4+
n- oo n

and if no a®/a (i % j)is a root of unity then f(a) is not a U-number, i.e. it is either
an S-number or a T-number.

29 1f

: loga,.
7 1 o T
0] im sup loga, + o0

then f(a) is a U-number of degree < m.

For the case ¢, = n we give a necessary and sufficient condition for f(x) to be
a U-number.

THEOREM 3. Let f(x) be a series as in (1) such that (2), (3) and e, = n hold.
Suppose that o is a non-zero algebraic number of degree m < o(1 — 6)/(2u). Then
the condition (7) is a necessary and sufficient condition for f(«) to be a U-number.

For the proof of the theorem 2 and the theorem 3 we use essentially the
following theorem of Baker [1; Theorem 1, p. 98].

THEOREM (Baker). Suppose that ¢ is a real or a complex number and k > 2. Let
oy, ,,... be a sequence of distinct numbers in an algebraic number field K with field
heights Hy(et,), Hg(et5), ... such that

® 1€ — ol < (Hy(o))™™



ON POWER SERIES AND MAHLER’S U-NUMBERS 145

and

. log Hk(ai+1)
1 oA’
) lr:‘l—*iup log Hy(a;) <t

hold. Then & is either an S-number or a T-number.

2. Lemmas.
The following lemmas are used in the proofs.

LEMMA 1. Let a be an algebraic number of degree m and height H. Suppose d is
a positive integer such that do is an algebraic integer. Then

H < (2d max (1,lal)™
Proor. See Cijsouw and Tijdeman [2; Lemma 1, p. 302].

LEMMA 2. Suppose that K is an algebraic number field of degree N and ( is an
algebraic number in K with field height Hy((). Let the field conjugates of { be
(W =@ . (™ and the coefficients of x" in the field equation of {, with
relatively prime integer coefficients, be t. Then

e[+ 19D < 6" H0).

Further, ifj,,...,j; are s integers with 1 £ j, < ... <j, < N then
TN
is an algebraic integer.

PROOF. See LeVeque [4; Theorem 4-2, pp. 124-125, and Theorem 2-21, pp.
63-65].

LeEMMA 3. Let {, and {, be different conjugates of an algebraic number of degree
m and of height H. Then

ICy = Lol 2 (4m)~ "= D02((m 4 1)H)~Cmo 102,

Proor. See Giiting [3; Theorem 8, p. 158].

In the remainder of this paper the inequalities hold for all sufficiently large
indices and the real numbers ¢,, ¢,, . . . are positive and sufficiently small such that
they are not depending on the varying indices.

LEMMA 4. Let f(x) be a series as in (1) such that (2), (3),(4), (6) and 1 < o(1 — 6)
hold. Suppose that a is a non-zero algebraic number of degree m with algebraic
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conjugates o't = a,a®, ..., a™ such that no a®/a? (i % j) is a root of unity. Let

= Y c,a®(n=0,1,2,...). Thenthe length of any sequence of consecutive terms
v=0
B, of degree < m is bounded.

ProoF. Let K = Q(«) then [K:Q] = m, f,€ K. It follows from (2) that the
sequence {a, } is monotonically increasing for all sufficiently large n and it follows
further from (3)

(10) |b,| < al** < a, O<e <1-0).

We assume that the assertion of the lemma is not true. Then there must exist
a sequence {X} such that

2= {ﬂn,+1a---,ﬂn,+q,} (ng,g; — 00 as s — o0)

with deg B, < mforn, + 1 < v < n, + q,, where deg f§ denotes the degree of the
algebraic number f.

Let BV =p,,p2,...,B™ be the field conjugates of B,. For a pair
(i,j))(1 £ i <j £ m) the equations

B = pv v=nn+1,n+2)

can not be satiesfied simultaneoulsy. For otherwise we would get from

0= B0, B PO,
N O T
that (a®@/al)+2~en+1 = 1 which is a contradiction. It follows from this, from
g, — oo and the finiteness of the number of the pairs (i, j) that there exists an index
pair (i, j) and a subsequence {Z} of {Z,} such that for every s it is possible to find
terms B,, B, , € Z, with n,, —n 22, B3} = B9, ), = B, and B + B

Ne+ o

(n, < v < ny4,). Because of ¥, + BY .+1 it follows that (a@)en+1 & (aW)ene+1,

Furthermore we have @, — g9 = p¥ — B9 and hence
(1 Y Cna@)rr — @) = 0.
v=1

It follows from (2) and (10)
(12) ICps1/Cal S a0 e1Moe2)+1 (1 <0 —g¢,)
From 1 < o(1 — 0) we get (1 — 0 —¢,)(6 —¢&;) — 1 > 0. By (11) and (12) we

obtain

cnl+2

(13) @)t — @@)mer] < 2nyy — n, — 1)max (LT

cn,+1
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We have H(o***!) < %™ + 1 and from Lemma 3 we obtain
(14) l(a(i))en,n _ (a(.i))en,+ 1= )’2)’5“"'* |

where the real contants y,,7y,,y are positive and independent of n,.

If n,, , — n,is bounded for t — oo then there exists a real constant B > 0 with
n.+, —n, — 1 < B. Hence it follows from (6), (12), (13) and (14) a contradiction
because of (4).

Hence n,, ; — n,is not bounded for t — oo. Therefore there exists an index pair
(p,9) # (i,j) and a subsequence {Z7} of {Z;} such that for every s it is possible to
find terms B, , B, , € withn, ., —n, 2 2,n, <n, <n,,y <n.,y, B2 =2,

P =p@ and PP + pP(n,<v<n,.,). We can show similarly that
n,.+, — n, is not bounded for u — co. If we go on, we get such terms in X for
sufficiently large s with all different field conjugates because the number of the
distinct pairs (i, j) is finite. This contradicts the definition of Z,. Hence the lemma
is proved.

LEMMA 5. Let f(x) be a series as in (1) such that (2),(3),e, = nand 1 < a(1 — 6)
hold. Suppose that o is a non-zero algebraic number of degree m. Let f, = Y c,a’
v=0

(n=0,1,2,...). Then the length of any sequene of consecutive terms B, of degree
< m is bounded.

ProOOF. From e, =n we obtain (4) and (6). In this case e,,; —€,4y =1
therefore for a pair (i,j) (1 £ i <j < m) the equations

go = o (v=nn+1n+2)

can not be satiesfied simultaneously because of a” $ aY). The remainder of the
proof is similar to the proof of the lemma 4.

LEMMA 6. Let f(x), « and B, be as in Lemma 4 (respectively as in Lemma 5). If
{By,} is the subsequence of the terms of degree m in {B,} then there is an integer ko
such that B, # B, holds for all integers k 2 k.

Proor. If the assertion of the lemma were not true then g, = 8, . would
hold for infinitely many k. Hence it would follow for inifinitely many k

R+ 1~ Mk C,. 4y _
(15) l + _-k_.aenk‘v en +1 — 0.
v=2 Cn.+1
By Lemma 4 (respectively by Lemma 5) the number of the terms in (15) is
bounded and by (4), (6) and (12)

. Cs
hm—cﬁ‘——"-=0 V=23, M —m).
k=0 “m+1

Therefore we would get a contradiction from (15) and this proves Lemma 6.
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3. Proofs.

PrROOF OF THEOREM 1. Let A4, = lcm(ag,a,,...,a,). It follows from (2) that
a, £ A, £ a***. We get from Lemma 1 and from (4) that

(16) H(B,) < agm*ee,

Let & = f(a). It follows from (2), (4), (10) and (16)

(17) 1€ = Bal S a, 707 O<es<1-0)
§ an—(l —0-es)(o—e¢2)
SH@B)™

where k = (1 — 0 — &5)(0 — &,)/(um + ¢,). Because of m < (1 — 6)/(2u) we ob-
tain ¥ > 2. From the theorem of LeVeque [4; Theorem 4-15, p. 148] we get that
¢ is transcendental.

ProoF oF THEOREM 2. It follows from m < (1 — 6)/(2u) and 1 < u that
1 < o(1 — ). We consider the sequence {B,,k} (k = ko) in Lemma 6. We have for
the terms of this sequence

(18) H(B,,) = Hy(B,,)-

Let ¢, be the coefficient of x™ in the field equation of B, with relatively prime
integer coefficients. We put

(19) A= tnkthk Norm(ﬂnk.,, - Bn,‘)
where
(20) Norm(B,, ., — Bn) = ﬂ B, — BY).

Since B, ., F B, itfollows from (19) that A is the sum of products of conjugates of
B.,., and B, , all multiplied by ¢, _ t,. It follows from Lemma 2 that A is
a rational integer and hence we obtain

@1 4] 2 1.
We now find an upper bound for |4]. From

BS., — Bl = (1 + 18, DL + 1B,

and from Lemma 2 and (18) we obtain

22) f, iﬁl (1 + 189) < 6" H(B,)
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It follows from (19) and (20) that
|A| = 'B"k+l - B"kl |t"k+l - t"k I—[ (ﬂi:zn - B:lll:)l
i=2

< B, — Bn | 6*"H(B,,, )H(B,,)
and
|41 £ 1Bn,,, — Bn,| 6™ (max {H(B,,, ), H(B,)})*
We obtain from (17) and ¢ — ¢, > 1 that
(23) Bary = Bu SIS = Buy, | +1E — B,
< 2g; (107

and hence from (21) and (23)
(24) a,”°7* < 2:6*" (max {H(p,,, ), H(B,)})%
and therefore

max {H(, , ),H(B,)} > as k- co.
Thus from (24) on taking logarithms it follows that
(25) (1 — 0 —¢4)loga,, <(2+ es)max{log H(B,,, ),log H(B,,)}.

We define now inductively a sequence {k;}. Let k, be the least positive integer
for which (16), (17), (18) and (25) hold. Let i be a positive integer and we suppose
that k; has been defined and we take k; .  ask; + 1 ork; + 2according as H(f
is or is not greater than H(/i,,k‘+ ,)- Then by definition

(26) max {log H(B,,_ , )logH(, )} =logH(s,,)

By (5) there is a constant ¢ > 1 such that

"k,+1)

@7 loga,., <cloga,.
Hence from the definition of k; it follows for all i
(28) c “log a,, <loga, .,

where A is an upper bound for n, , , — n, by Lemma 4. From (25),(26) and (28) we
obtain

(29) (1 =0 — g4)c”*loga,, <(2+ ¢&s)log H(B,,)
for all i. Hence we obtain from (16), (27) and (29)



150 M. H. ORYAN

log (ﬂnk )< (um +63)1080 < (um + g3)c4loga

(30) log H(B,, ) ’"l—()——e,,l = 1—0—e4loa )
A2 + o5) B A2+ eg) B
We obtain from (5) and (30)
log H(B,, )
(31) l“?_,i)upﬁ(ﬂ"k_ < ©

Finally we define a subsequence {B, } of {ﬁ,,k'} so that we take t; = 1 and for
eachintegerj 2 1 wetaket;, , astheleast integerin {n, } greater than t;for which
H(ﬁ,l) is less than H(ﬁ,} .,)- Itis possible to find such an index since the number of
the algebraic numbers in K with bounded field height is finite and if in the
sequence {f,} a term is repeated infinitely many times, then ¢ must be in
K because of the definition of §,. Then we have

H(B,) < HB,) <...

and
log H(B,,, ) < logH(B, , )
log H(B,) ~ logH(B,,, -1)
hence
log H|
(32) lim supM

Jj—* o lOg H(ﬁt,)

Moreover the terms of {ﬂ,}} are all distinct because their heights are all distinct.
We have further for the sequence {f, } from (17)

(33) 1€ — B, < (H(B,) ™

with k > 2. We obtain from (32) and (33) the conditions (8) and (9) of Baker’s
Theorem for the sequence {, } and hence the first part of the theorem 2 is proved.

For the proof of the second part we consider the sequence s,: = (loga,, +;)/(loga,).
It follows from (7) that the sequence {s,} contains a subsequence {s, } with

lims, = +co. We consider now the sequence {8, }. No term in {, } can be
jo o

repeated infinitely many times because of the transcendence of &. Hence there is
a subsequence {B, } of {B, } with pairwise different terms and monotonically

increasing heights. 'For this subsequence we get from (16) and (17)

1-0—e4

(34) | — Bn, | < H(B,,) 5 ™.
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Because of deg B,,j < mand lim S,, = + 00 we get from (34) that éis a U-number
g~

of degree < m. From the equivalence of the Mahler’s and Koksma’s classification

of transcendental numbers it follows that & is a U-number of degree < m.

PrOOF OF THEOREM 3. The proof of this theorem is similar to that of Theorem
2 (use Lemma 5 instead of Lemma 4).
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