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A CONSTRUCTION OF ANALOGS
OF THE BLOCH-WIGNER FUNCTION

ZDZISLAW WOJTKOWIAK!'

0. Introduction.

D. Wigner has constructed a function

D(z) = (log|z])arg(l — z) — Im jzlog(l — t)%
0

t

(see [1]). D(2) is a single valued function from C to R. Notice that (; log(1 — t)dT
" dt . .

as well as Im j olog(l — t)—t_ are multivalued functions. Let us define L,(2) =

log(1 — z)and L,(z) = [ L,—,(t) E;—for n > 1. D.Ramakrishnan has constructed

some analogs of the Bloch-Wigner function for functions L,(z) (see [3]). In this
note we construct also some analogs of the Bloch-Wigner function. We mention
that L,(z) = — Li,(z) in the notation used in [2] Chapter 7, which is the standard
reference on the subject.

1. Analogs of the Bloch-Wigner function.

Let Re (z) (resp. Im (2)) be the real (resp. imaginary) part of a complex number z.
Our main result is the following:

THEOREM 1.

i

L@ =5 Y Re Ly, - @)logl2lf — ——— (log|1 — z)(og |2
2k+1 Z 2k+1-s 4 2k + 1) g g
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Jor k > 0 defines a single valued, real analytic function on C\{0,1} to R. This
function extends to a continuous functions from C to R if we set L., ., (0) = 0 and
Lyk+1(1) = ReL 54 ,(1).
ii)
2k—1 (_ 1)
Ly(z) = Z (=

s=0 S!

(Im L, (z))(log |z])*

Jor k > 0 defines a single valued, real analytic function from C\{0, 1} to R. This
function extends to a continuous function from C U oo to R if we set 1.,,(0) =
L (1) = Lyi(00) = 0.

2. Proof.

Let us set [x] = nif x is a real number, n < x < n + 1 and n is an integer. Let
()® (resp. ()T) denote the function () after the monodromy transformation around
0 (resp. 1). The monodromy transformation of L,(z) is given by L, (z))’ = L,(z)

2
and (L,(z))T = L,(z) + n _7_”1)' (logz)"~!. This implies the following lemma.

LEMMA 1. The monodromy of the functions Re (L,(z)) and Im (L,(z)) is given by
the following formulas:

(Re L,(2) = Re L, (2),(Im L, (2)° = Im L, (z),

ReL,(z))" = ReL 2 [Ez] (=1 (log ]y~ 2~2

ReL,@)" =ReL,@) +(=2m) 2 oriinm— =2y ek
(argz)21+l

and

ImL,(z))T = ImL, +2[!§] all)
It follows from Lemma 1 that after the monodromy transformation of L,, , ,(z)
(resp. Ly (2)) around 1 the coefficient at (log|z[)**~%~!(argz)**! (resp.
(log|z))**~ 2~ (arg 2)*) is equal to

(_zn)Zk—f_l (_1):(_1); 2k—-2i-1 (_l).v(__l)l )

(log|z)"~*'~* (arg 2)*!

& SRt )I2k—2i—s—1) (“"Sp'z" ,20 S22k —2i—s— 1)!

These sums are binomial expansions of (—1 + 1)**72'~! up to a multiplicative
(=2m)(—1) 2n(—1)
- - resp. -
(2k — 2i — 1)!2i + 1) (2k — 2i — 1)!(2i)
to zero. The functions clearly have trivial monodromy around 0. It remains to show

constant

). Hence they are equal

that lim L,,(z) = 0. The arguments given below are due to the referee. For ze C\R

zZ—
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. . o dt . _—
write z = re®® and note that L,(z) = _[:, L,_,(te®) e Now differentiating the above

expression for L,,(re®®) most of the terms cancel out and we are left with

0L, (re®) 1 oIm L, (re®) I
o @k—1 or (logr)
_ sin 0 2k—1
= Bk DI0? + 1= 2Zroosd) 08
Hence
0Ly (r~'e”) _ —sinf -1
o G-I T 1-2 Tos)? OB
sin 0 (logr)*~1.

= @k — D¢ + 1 = 2rcosb)
Thus L,,(r ! ¢®) and L,, (re”) have the same derivative and hence are equal since

they agree for r = 1. It follows that lim L, (re®) = lim L,, (r"*€") = 0.

We have got the functions 1,(z) investigating behaviour of L,(z)’s at co. Using

more advanced methods we can show that lim L, ,(2) is finite.

zZ— 00
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