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INTERSECTION PROPERTIES OF BALLS IN TENSOR
PRODUCTS OF SOME BANACH SPACES

T.S.S.R. K. RAQ, A. K. ROY and K. SUNDARESAN

1. Introduction.

There have been several papers in the literature dealing with tensor products of
partially ordered linear spaces ([ 12]) and tensor products of compact convex sets
([23]), and in particular of Choquet simplexes ([3], [17]). In the last two
references, it is proved for instance that Choquet simplexes are closed under
certain tensor products. Since a Choquet simplex is characterized by the fact that
A(K)* is an L!-space, (see [1]), where A(K) denotes the Banach space of continu-
ous affine functions on K with the supremum norm, it seems natural to ask
whether the general class of I} -preduals have such permanence properties under
(injective) tensor products. The answer to this question comes out as a special
case of a more general result (Theorem 3.1) which characterizes L!-preduals 4,
among Banach spaces, by intersection properties of balls in the injective tensor
products of 4 with other Banach spaces. The proof, which is given in Section 3 of
this paper, is non-trivial inasmuch as several preliminary resuls of independent
interest have to be established en route to the theorem. We use this theorem in
Section 4 to provide a characterization of ['-spaces X by looking at a certain
decomposition property (known to be dual to intersection property of balls — see
Section 2 for more details) of projective tensor products of X with other Banach
spaces.

Our results have been formulated and proved in the context of complex Banach
spaces.
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2. Notations and resume of known results.

Throughout our discussion in this section and the next, 4 will denote a com-
plex Banach space and A* its dual space. For a Banach space X, its closed unit
ball is written as X, and B(a,r) denotes the closed ball in X with centre a and
radius r. The set of extreme points of a convex set K will be denoted by K.

Let n, k be integers with n > k = 3. We say that A has the almost n.k.1.P. (to be
read as the almost n.k. intersection property) if, for every family {B(a;,r;)}}-, of

nballs in A such that any k of them intersect, we have () B(a;,r; + ¢) + &Ve > 0.
j=1

(If we can take ¢ = 0, we say that 4 has the n.k.I.P.). It was proved in [20] that A is

an L'-predual, i.e. A* is isometric to an L!-space, if and only if 4 has the 4.3.1.P.

Introducing the space H(4*) = {(x, ...,x,)€(A*\": ), x, = 0} with the norm
k=1

gy s x )l = Z [Ixcll, the following are known to be equivalent (see [19]

& [20]):

(1) A has the almost n.k.I.P.

(2) Each extreme point in H"(4*), has at most k non-zero components

(3) A* has the R, , property, i.e. if (x,,...,x,) € H"(A*), there exist (z;y,...,2;,)€

H"(A*), (1 <is (:)), such that

(l) (x19"',xn)=Z(Zil9‘-"zln)

(i) Il = X Nzl (V)
i

and (z;4,...,2;,) has at most k non-zero components for all i.

In view of the equivalence of (1) and (3), we see that the R, , property is “dual”
to the almost n.k.I.P., as remarked in the introduction.

We shall make repeated use of the following result:

Let (xq,...,x,) € H"(A*), with x; £ 0 and x;/|x;||€ 04} Vi. Then (x,,...x,)€e
OH"(A*), if and only if {||x, |, X, }§=; S R x A* are linearly independent over R.
(The proof is the same as that given for Proposition 2.1 in [22]. It may be noted
that the condition x,/||x;|| € 94% Vi eliminates the need for assuming that 4 has
the (n + 1).n.I.P. as in that proposition).

For unexplained notations and results concerning tensor products of Banach
spaces, see [4].
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3. Lemmata and Main Result.

Let Q be a compact Hausdorff space and E a Banach space. We denote by
C(Q, E) the space of continuous E-valued functions on Q with the supremum
norm || x(*)|| , = sup {||x(q)|| : g€ Q}. It is a standard fact (see [4]) that C(Q, E) can
be identified isometrically with the injective tensor product C(Q) ® E. We first
prove a result which generalises Proposition 3.3 in [22] where E was assumed to
be a finite-dimensional space with any norm.

LEMMA 1. C(Q, E) has the almost n.k.1.P. if E has the almost n.k.1.P.

PrOOF. We know, from [26] & [27], that thereis a 1-1 correspondence ¢ « f,
between elements of C(Q, E)* and the space of all set functions f,, defined on all
Borel sets e = Q, with values in E*, countably additive, regular and of bounded
variation, endowed with the usual vector space operations and given the toal
variation norm, with

PLx()] = j(xm), df>,

x(+)€ C(Q, E). (This is the so-called Gowurin integral — see [27] for unexplained
notations and resuls used here).
We will prove that if 4 = C(Q, E), then

OH"(4%), < {(a.,.,‘ 1-1:4€Q,(fure o SIEHTE®, Y Ifill = 1}
i=1
where

fif gee
Oasle) = {o if qde,

(e denoting a Borel subset of Q). From this, it is easily seen that

OH™(A*); = {04, 1 )i=1:9€Q,(f1, ..., o) € OH"(E™), }

and the lemma follows.
Suppose, to get a contradiction, that

(®y,...,P,) € HY(4*),\ conv {(5“. i=1:4€Q,(fi)i=, € HY(EY), .; £l = 1}-

By the separation theorem, 3x,(-)e C(Q, E),1 £ i £ n, such that

sup {

4c0. 5 =05 111 =1}

3 fits(a)

<

b

3 [eanar>

5 @(x,(-», -
i=1
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where f!is the vector measure associated with &;, (1 < i £ n). On uniformly

approximating each x;(-) by simple functions y;(*) = Z X; ,C , where C, denotes
ji=1
the characteristic function of the set e, we see that the strict inequality above is

still preserved with x,(-) replaced by a suitable y;(-),(1 £i < n).

Noting that ) f*= 0, the right hand side of the inequality is thus

i=1

e,,(xu)

i=1j=1

The Borel sets associated with the simple functions y;, (1 < i < n), are displayed
in their respective order as follows:

ell,elz,...,elml

€21,€22,-- €2,

€,15€425:++5€

nm,,*

There are thus m m, ... m, disjoint Borel sets of the forme,; ne,j;, NN ...e, ,
(where 1 £j < m,,...1 £j, £ m,), which partition Q. It is not hard to see that
the left hand side of the above inequality is

sup {

Denoting this sypremum by «, our inequality takes the form

@< Z Z eij lj)'

i=1j=1

i ];'(xiji)

i=1

A<jSm,. 1Sj,Sm i~ ,iuf,-u=1}.
i= i=1

Now, we write

my
Z felu(xij) = Z fel“nez(,(\...r\em"(xll) +...
j=1

15i2Sm2

15insSmy,

1
+ Z felmlneuzn,..ne,.,"(xlm,)

15i2Sm;y

1SinSmy
my
‘Zl fe':l!(x"l) = ls_zs fe':.lne”,r\...ne(,.-1,in_,(xn1) +...
= s sm

1Sin-1Smp-1

+ Zfel,.m"ne“,n...r\e(,.- |)gn_l(xnm,,)'
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Consider for example the term f,} ... ... (xy;) which occurs in the first row
of the above array and comes from the set e,, ne,; N...Ne,;. This set occurs
once, and only once, in each subsequent row. We group these terms:

elnnez,r\...ne,.l(xll) + feznr\e“n...ne,,l(xll) +...+ .fe':,.lr\e“n...ne(,,_”l(xnl)

and note that by assumption

el“nezln...nenl(xll) + feilne”n...nem(XZI) +...+ e':.lr\e“n...ne(,._1)1(xnl)l

§ a[ufelune“n...ne,‘,“ + " ezzxneur\...nem‘“ +...
+ " e':.lr\enn...me‘,,_l),”l

It follows therefore by grouping terms in this manner that

n m
-1 i 1
a Z Z el.-j(xij) _S-.. Z ” e11nezi,Nn...Aeni, ”
i=1j=1 15i2Sm;
1SinSm,

1
+...+ Z n elmlnez.»zr\...ﬁe,.;"”

1si2sm;
15i,sm,
IREITERRR
+ 2 e nem |

1Siysm,

1Sin-1Smp-1

+ + " e':.m"r\e“ln...r\e(,._“in_‘“

S+ L s

and we therefore have the contradiction a < «. This completes the proof of
Lemma 1.

REMARK. It is possible to get a shorter proof of this lemma by using the
approach employed in [22] to prove a special case, and this in turn was based on
some ideas in Lindenstrauss’ 1964 memoir “Extensions of Compact Operators”.
But we have preferred to retain the present proof as it is based, like the rest of the
paper, on vector-measures.

We next state a result which may be considered a vector-valued analogue of
a complex version of Choquet’s theorem proved in [14]. (See also [9] and [25]).
In the discussion that follows, use will be made of results from Choquet theory, as
expounded in [1] and [24], for instance. We will also make free use of some of the
notations and results from [6], [9] and [25]. Henceforth T denotes the unit circle
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in the complex plane and A denotes a closed subspace of C(Q), the latter having
the supnorm. We assume that 4 separates the points of Q but that it may not
necessarily contain the constants. ¢ — &(q) € A} is the usual evaluation map with
respect to A. We regard A ® E as a closed subspace of C(Q, E) in the usual way.
(See Proposition 7 in [4]). Here E is any Banach space.

LEMMA 2. Let (A @ E)*. Then & can be represented by a vector measure
[:B(Q) — E*, countably additive, regular and of bounded variation, || f| = | |,

?[x(")] = J(X(q), dfy, (x()eA®E),

with the property that all x-sections (x € E) of f are boundary measures with respect
to A £ C(Q) in the sense defined in [25].

(Here #(Q) is the Borel g-algebra on Q. If & denotes the functional in C(Q, E)*
defined by f, the x-section u, of f is the complex measure representing é|C,
where C, = {xa():ae C(Q)}; note that |u || = ||x|| || C,|-see page 193 of
[27].)

The proof of this result may be found in the paper “Integral representation by
boundary vector measure”, Canadian Math. Bulletin Vol. 25 [2], 1982, by P.
Saab.

For complex measures 4, u on Q, recall from [25] that 4 ~ uif A(g) = u(g)forall
geC(Q) such that sg(q,) = tg(q,) whenever s,teT and gq,,9,€Q and
sh(q,) = th(g,)for all he A. We will need two more results in the proof of our main
Theorem 3.1. ‘

LEMMA 4. Let X and Y be Banach spces. Suppose that {®,,...,®,} (resp.
(Wps - - -, W) are m(resp. n) complex linearly independent functionals in X* (resp. Y*)

with ¢/l|¢, €0Xt, 1 <i<m (resp. Y/l €0V, 1Sj<n). If ¢o= )
i=1

zip;€ X* and Yo = ), w;;€ Y*, with none of the z;’s or w]’s zero, then
i=1

(=90 ® Vo, Ziwj¢i ® 'l’j)x <ism

1sjsn

. €OH™ Y (X ® Y)*

where y = [ @oll Woll + Z}IZ:I ol iall ;1.

PROOF. It is easy to see that {¢; ® ¥}, ¢, <,, are linearly independent func-
tionals in (X ® Y)*. Suppose that 15j5n

0 = co(— o @ VYo, lldoll I¥oll) + ‘chij(ziwj¢i ® ‘/’1, |zl lel ll:ll W’j")

for real scalars coand ¢;(1 S i< m, 1 Sj < n).
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First suppose that ¢, = 0. By the linear independence of the {¢; ® ¥}, ;, it
follows that c;; = 0Vi,}j.
If ¢ # 0 then

G0 ® Yo = Z(Cijcal)ziwj¢i ® '//j

and again by the linear independence of {¢; ® ¥;}, ;, it follows that c; ;= CoVi,j.
Since

o lldoll 1ol + Zcijlzil le| ll#:ll "\1’," =0
iJj

we get ¢o = 0, a contradiction. Thus, ¢, = ¢;; = 0Vi,j and we conclude the proof
by first observing that

2 ®@o; (2 ¢ \ol 0 ¥ ) axeyp
|zil 1l leol Il Wl _<|Z,| ||¢u||>®<|w,| "%">E(3(X®Y)l

(according to [21]) and then appealing to the result quoted at the end of section 2.

LEMMA 5. Let X be a Banach space with the 2k.2k — 1.1. P and let (x,,...,x;)€
OHI(X™), with x;||x;|| '€dX*(1 <i<j)andj <2k — 1. Then

dimespe {x;,...,x;} Sk — 1.

Proor. This was proved in [22, Theorem 2.6] for j = 2k — 1. Assume
J=Qk—=1)—1=2k—1).So0,(xy,...,Xs-2)€0H* 2(X*),. Consider

(1 = xy, (1 + )%y, 25, ..., 2X34 - 5)
o

e H*1(X%),

(whereo = Zﬁ x| + 2 1%z 1l + ...201%2x-2|)). If this isextreme in H**~(X*),,
we have the desired conclusion by the opening remark of the present proof. If this
is not extreme, 3¢,,c,...,C -1 €R, not all of which are zero, such that

el = Dy, /213, 1) + €241+ Dxg, /2 131> + 34255, 21X, ) + ...
+ Cak- 12X 2,2 | X3k-2 11> = 0.
First not that it is not possible to have ¢, = ¢, = 0and some of ¢5, ¢4, ..., Cox -
not zero as that would contradict dimgspg {x;,...,X5-2} = 2k — 3, a conse-
quence of the extremality of (x,, ..., X, ,) in H*~2(X*),. (See Proposition 2.2 in

[22]). Hence either ¢; + 0 or ¢, # 0 or both. If ¢, + 0 and ¢, = 0, we have
a relation of the form

(1) 11Xy + 812X + ..o+ Ayak-2X5k-2 =0,
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where a,; e C\ R and a,;€R,(j 2 2). Similarly, if ¢, = 0 and ¢, # 0. If both ¢,
and ¢, are non-zero, we have the relations [(c¢; + ¢;) + i(c; — ¢;)]x; +
2C3x2 + ...+ 2C2k_1x2k-2 = O,

V2e 1%+ /265 1% + 265 %2 + . + 2650y %202l = 0.

If ¢, = c,, the first relation gives, by the extremality of (x,,...,x,,_,) in
H?**~%(X*),, that

2C1 - 202,‘*1 = 203 - 2C2k_1 =...= 0
whence ¢, = ¢, = ¢y =... = ¢5,_, and we conclude from the second relation
that ¢, = ¢, =c¢3=... =cy-; =0, a contradiction. Thus ¢, # ¢, and in this

case we obtain a relation of the form (1).
Arguing now with (x,,x,, X3,..., X5, _ ;) €tc., we get relations similar to (1):

2k-2

2 a;x;=0,(1 =122 —2,a;€eC\R,q;€eR,i +)),

J

and we conclude, as in the proof of Theorem 2.6 in [22] that

2% —3 3
—k——<k-1.
2 7 sk

dimcspe {xy, ..., X2 -2} <

If (xq,..., X5 3)€0H?*3(X*),, apply the above argument to p = (1 + i)x,,
(1 = i)xy,2X5,...,2X5_3) € H*72(X*).If p |p| ~ ' € JH?*~2(X*),, we are back to
the situation discussed at the beginning of this proof and the desired conclusion
follows. If p || p|| ~* ¢ 0H?*~2(X*),, we argue as earlier in the present proof by first
appealing to the result quoted at the end of Section 2, and so on. Thix completes
the proof. /

We can now state and prove the main result of this paper. We denote by
M(Q, X*) the Banach space, under the total variation norm, of countably addi-
tive vector measures of bounded variation defined on the Borel g-algebra #(Q) of
a compact Hausdorff space Q and assuming values in a conjugate Banach space
X* If feM(Q,X*) and xe X, then f is the x-section of f defined earlier.

THEOREM 3.1 Let A be a closed subspace of C(Q) separating the points of Q. The
following statements are equivalent:

(i) A is an L}-predual
(i) If n > k = 3 and E is any Banach space with the almost n.k.I.P. then A® E
also has the almost n.k.1.P.
(iti) Ifkis a fixed integer,(k = 2), and E is a finite-dimensional Banach space with
2k.2k-1.L.P. then A ® E has the almost 2k.2k-1.L.P.
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PROOF: (i) = (ii) Let (!, e H(A @ E)*. By Lemma 2, we can find f'e

M(Q,E*), f{lA®E = &, || f|| = | ;] and (f*), = p.,a boundary measure with

respect to A, (1Si<n). As ) &,=0, Y &[xa(*)] =0VaecA and hence
. =

notation of [25] ) ui~O0 and therefore by [25, Proposition 3.5],
i=1

]

=0. As A is an ['-predual, by [6: Theorem 4.1] we have in the

A

Y. hom(uio®~') = 0. (Recall that ®:Q — A% is the usual evaluation map

i=1

q - 9(q)). Now, fio® e M(P(Q), E*) and if a € C(PQ), x € E, we have

jad(fi0¢_l)x =(flo®™ ) (xa"))
= Jaodhiui

= jad(uio oY)
and it follows that
(ffod™ ), =(f)0P ' =plod 'VxeE.
Let F; = hom(f o @~ ')e M(A%, E*) be defined, for 1 <i < n, by

F[x(")] = j(hom x(@),d(f o @)y

where x(-)e C(A},E) and hom x(p) = jfx(tp)dt for pe AY is defined in the

T
usual way, (see e.g. [25]). (The integral defining hom x exists for functions of

the form Y x;o,("), x;€ E, a;€ C(A}), (1 £ i < n), and exists in general for any
i=1

x(+) € C(A%*, E) as such a function can be uniformly approximated by functions of

the former kind). Now, if a € C(4%),

(F). (%) = Fi(xa(*)) = [hom(f*o &~ ")](xa("))
= (fio® !)[hom(xa)]
=(flo® ') (xhoma)
=(flod™ ), (homa)
= hom[(f o ®7"),](@),
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whence [hom(fio®~!)], = hom[(ffo® '),] = hom[(f),0® '] = hom
[u.o® '] and we have

2 [hom(fio®~1)], = 0VxeE.

It follows therefore that Y F; = 0.If F e M(A¥, E*) and support (F) £ T®(Q),
i=1
(here support of F is the smallest closed set outside of which each F, vanishes,

x e E), define SF e C(Q, E)* = M(Q, E*) by

(SF)[x()] = j tpx(q,),dF,), x(1) € C(Q, E),
T®(Q)

where p = t,P(q,) € TP(Q). (See the proof of Lemma 2 and [25]). Note first that
the map from T&Q) into E defined by p — t,x(q,) is a bounded measurable
function with values in E. This follows easily by looking at functions

x =Y x;0,), (x;€E, a;€ C(Q)) and then using the density of such functions in

i=1
C(Q, E). Thus, the above integral is well-defined.
We check that SF'| gz = ®,,(1 i < n).If xeE, a(-)e A,

SFi(xa(-)) = f <t,xalq,),d[hom(f' o ®~1)],,(pe A)
A}

= [ {xa(t,d(q,)),d[hom(f o &~ 1)],)
A}

= [hom(f o @~ 1)1,(3)

= hom[(f"), 0 @ '](d), by what we observed before,
=(fi)od ' (homa)

= fi(@o®) = f;(a) = f'(xa) = P(xa).

Once again, by the density of functions of the form Y x;a,(*)in 4 ® E and the
i=1

continuity of each ®;, we see that SF*| , g = ®;,(1 < i < n). Thus, |SF'|| Z || ¥
but, on the other hand, it is easily seen that

ISFll < IFY|l = lhom(f'o @~ )| < I £l = &l
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and we therefore have ||SF'|| = ||&,]|,(1 < i < n). Since Y. SF' = 0, by Lemma 1
i=1

we can write
()
2 (SFL....,SF"Y =3 (girs-»Gin)r
i=1
where (g;y,...,9:,) € H" C(Q, E)* for each i, at most k components of (g;;,...,di,)
are non-zero for each i. Restricting these functionals to 4 ® E, we get

(@y...,D,) = Z(gu |A®E7""gin 1A®E)
and one sees easily that conditions (i) and (ii) in the statement (3) of the R, ,
property stated in Section 2 are fulfilled (as these are filfilled in (2) above). This
completes the proof.

(ii) = (iii) is obvious.

(iii) = (1). Since C has the 2k.2k-1.I.P., A = A ® C has the almost 2k.2k-1.L.P.
Suppose if possible that (x;,...,xy_,)€dH* 1(4*), with all x; 0,
x; |x;|l "*€dA%, (1 £i < 2k —1). (This means that A does not have the al-
most 2k — 1. 2k — 2.1.P.) From [22, Theorem 2.6], we may assume that
X1,X3,..., X,y are linearly independent (over C) and x,, Xy, ,,...,Xp—; are
expressible uniquely as linear combinations of x,,..., x,_ . This means that for
at least one of x;, X+ 1,..., X2k _ 1, SAY X;, We can write

Xp=2yX, + 23X+ oo + Zp X2 EMm Sk — 1)

and all zjs not zero. We choose a positive integer n such that k < mn < 2(k — 1).
For such an n, necessarily < k — 1 asm = 2, look at the following vectors in C*

w ? ? e o"t!

(1)2 (602)2 (w3)2 i (wn+ 1)2

| | @], @], ..., | (@@ € H"" (1 ,(n),
o/ \@r/ \wr/ .. \@y

where I (n) refers to C" with the [_-norm and w is a primitive (n + 1)'® root of
unity, "*! = 1. (The fact that each row in the above array adds to zero is easily
verified by taking the sum of a geometric prograssion, and that the vectors are
extreme is checked by considering the so-called Vandermonde (n + 1) x (n + 1)
determinant

1 1 1
) w? o"t!
(1)2 (w3)2 (wn + 1)2
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which is non-zero as !, w?,...,"*! are all distinct (see [18]) and applying the
result quoted in Section 2.) If we denote the columns of the preceding matrix by
Vos¥1,...,¥, (note that y,. .., y, are linearly independent over C again by the
Vandermonde determinant) we have

VYo=Y, +...4+ VY,
and hence
—( @ ¥o) = (2;%) @ ¥i.

1sjsm

15isn
By Lemma 4,

(X ® Y0, 2;x; ® Y1), sjsm
LEIER ORI L (A R 1y ()

14

where y = || x|l |¥oll + lejl [lx;1l ;]I and I;(n) denotes C" with the /,-norm.
ij

Since n £ k — 1, l;(n) has the 2k. 2k — 1. L.P. by Helly’s Theorem and there-
fore by hypothesis, 4 ® I,(n) has the almost 2k. 2k — 1. L.P. Noting that
mn + 1 < 2k — 1 and that by proof of Lemma 4, the number of (complex) linearly
independent functionals in

1
7(x,¢ ® Yo,z X;®Vi)i<jcm

15isn
is mn and that by our choice of n,mn = k, we get a contradiction to the assertion
of Lemma 5. This contradiction shows that 4 must have the almost 2k — 1.
2k — 2. I.P. Arguing in a similar manner, we proceed ‘downwards” till we get
that the extreme points of H*(4*) are of the form (z,g,2,9,239,0), (g€ dA,

(24,25, 23)€ 0H3(C),,) which means that 4 has the 4.3.1.P.,i.e. A is an [!-predual.
This completes the proof of Theorem 3.1.

We have immediately the following

COROLLARY 3.2. L'-preduals are closed under injective tensor products.

4. A characterization of L'-spaces by the R, , property.

We will prove in this section a result “dual” to Theorem 3.1 and which will
characterize L'-spaces by means of the R, , property. (See in this connection
Theorem 5.1 in [20].

THEOREM 4.1. The following statemens are equivalent for a Banach space X.
(i) The Banach space X is isometric to some L -space.
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(i) If n > k = 3 and E* is a conjugate space with the Radon-Nikodym property
(R.N.P) and the R, , proporty, then X ® E* has the R, . property.

(iii) Ifk(2 2)is afixed integer and E is a finite dimessional Banach space with the
Ry 2k 1 property, then X ® E has the Ry 2k -1 property.

PrOOF. (i) = (ii) If X =~ L'(u) for some measure space (2, 2,pu), then
X ® E* = L!(u, E*). (See [4: page 228]). To show that I!(y, E*) has the R, ,
property, notice that one only need to decompose finitely many functions in
L'(u, E*) at a time. Since L'-functions have o-finite support, it is easy to see that
there is no loss of generality in assuming that u it self is a o-finite measure. Again

1 wAnA,)
2" wA,)
0 < u(A,) < oo, 4,€2, A,’s are disjoint and Q = U A4,, it is easy to verify that
L'(u, E*) is isometric to L'(v, E*). Since the R, , property is invariant under
isometries, for the remainder of the proof we are going to assume that (€, 2, ) is
a finite measure space.

by considering the measure v defined on 2 by v(4) = where

Step I: Suppose Q is a compact Hausdorff space, 2 the Borel o-field on Q and
u a finite regular Borel measure on 2.

Since E* has the R, , property it follows from the result of Lima, quoted in the
introduction that E has the almost n.k.I.P. Therefore by Lemma 1 of the previous
section, the space C(Q, E) has the almost n.k.I.P. Applying Lima’s result a second
time gives us that C(Q, E)* has the R, , property.

We shall complete the proof in this case by showing that I!(u, E*) is isometric
to a constrained subspace (i.e. a subspace, complemented by a projection of norm
one) of C(Q, E)* and appealing to the easily verifiable fact that the R, , property is
hereditary for constrained subspaces.

As before we identify C(Q, E)* as the space of E*-valued, countably additive,
regular, vector measures of bounded variation with the total variation norm.
Clearly the map which associates for each feL'(u,E), the corresponding

E*-valued measure J fdu is an isometric embedding of L (4, E*) into C(Q, E)*. It
A

is well-known that for any F € C(Q, E)* we have the decomposition F = F, + F;
where F,, F,e C(Q, E)* and F, < u and F, is “singular” w.r.t. u (see [4] page 31).

. . dF, L
Since X* has the R.N.P, the derivative d#“ exists in L'(u, X*) and the map

F— idli'— is a projection of norm one (as in the classical, scalar-valued case) from
m

C(Q, E)* onto L!(u, E®).

Step 2: To deduce the theorem for a general finite measure space (22, 2, ) from
Step 1, we make an appeal to the proof of Lemma 1 in [29]. As in that proof, if
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Q denotes the Maximal ideal space of L°(u) (the usual scaler-valued function
space) and /i a regular Borel measure whose value on a clopen set 4(4e2,"
denotes the usual Gelfand-transform) is determined by ji(4) = u(A), it is clear
that L' (u, E*)is isometric to I (ji, E*) and the conclusion now follows from Step 1.

(ii) = (iii) is trivial.

(iii) = (i) We first remark that if F is a Banach space with the R, , property,
then F* has the almost n.k.I.P. To see this observe that H"(F)** =~ H"(F**) and
hence H"(F) is isometric to a w*-dense subspace of H"(F**) in the natural
embedding. Now the R, , property for F** follows from the w*-lower-semi
continuity of the dual norm and the fact that F has the R, , property. Apply the
theorem of Lima, quoted in Section 2, to conclude that F* has the almost n.k.1.P.

Next observe that sine C has the R, ,,_, property, X ® C = X also has the
Ry k- property. Now, if E =1_(k — 1) = [I,(k — 1)]*, then by assumption
X ® E has the Ry 2k 1 property and so (X ® E)* has the 2k. 2k — 1.1.P. by the
remark in the preceding paragraph. From [4], we know that

(X ® E* = {4:E - X*; 4 a bounded operator, with oprator norm}

= (X*)k—l,
:xeXl}.

itk —1)® X* = {G; G vector measure from {1,2,...,k — 1} to X* with
semivariation norm}
= (X*)*~!, by an easy application of Goldstine’s theorem.

We have thus shown that (X ® I (k — 1))* = X*® I,(k — 1) has the 2k.
2k — 1.I.P. The proof of (iii) = (i) in Theorem 3.1 now shows that X* is an
L*-predual and so by [20: Theorem 4.1], X* is an E(n)-space Yn = 3. By the w*-
compactness of balls in X* and a result of Hustad [15], X* is a P,-space and by
[10] (see [11] and [28] for the complex version of this result) it follows that X is
an I! - space.

the latter space having the norm

k-1

2, x¥x)

i=1

||(xf, .. -axl?— 1)” = Sup{

But by [4: example 4, page 223],

ReMARK 1. If E is a Banach space such that E* has the Radon-Nikodym
property then the proof of (i) = (ii) in Theorem 3.1 follows comparatively
painlessly by combining Theorem 5.3 [16] and the (somewhat easier) result (i)
= (ii) of the above theorem.

REMARK 2. It is possible to prove that the space of Bochner integrable
functions has the R, , property, under a more general hypothesis on E than the
one considered in (ii) of Theorem 4.1 (the Corollary below is one such instance).
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However since that result is in a spirit different from that of this paper it shall be
presented elsewhere.

COROLLARY 4.2. If E* has the R, and the R.N.P. properties and F < E* is
a closed hereditary subspace, (i.e. feF, f=g+h with g heE* and

IfI = ligll + |kl =geF, see [19]) then L'(u, F) has the R, property for any
measure space (2, 2, ).

PRrROOF. As was remarked during the proof of Theorem 4.1, there is no loss of
generality in assuming that the measure y is finite. It is easy to check that in the
natural embedding L'(u, F) is a hereditary subspace of L!(u, E*). Now since
L'(u, E*) has the R, , property by Theorem 4.1, it follows from the definition of
the R, , property that the hereditary subspace L!(u, F), inherits the same.

REFERENCES

1. E. M. Alfsen, Compact Convex Sets and Boundary Integrals, Springer-Verlag, Berlin, 1971.
2. E. M. Alfsen and E. G. Effros, Structure in real Banach spaces I, I1, Ann. of Math. 96 (1972),
98-173.
3. E. B. Davies and G. F. Vincent-Smith, Tensor Products, infinite products and projective limits of
Choquet simplexes, Math. Scand. 22 (1965), 145-164.
4. J. Diestel and J. J. Uhl Jr., Vector Measures, Amer. Math. Soc., Mathematical Surveys, No. 15,
1977.
5. N. Dunford and J. T. Schwartz, Linear Operators, Vol. I, Interscience Publishers, Inc., New York,
Second Printing, 1964.
6. A. J. Ellis, T. S. S. R. K. Rao, A. K. Roy, U. Uttersurd, Facial characterizations of complex
Lindenstrauss spaces, Trans. Amer. Math. Soc. 268 (1981), 173-186.
7. E. G. Effros, On a class of complex Banach spaces, Ill. J. Math. 18 (1974), 48-59.
8. J. Diestel, Geometry of Banach Spaces — selected topics, Lecture Notes in Mathematics, No. 485,
Springer-Verlag, 1975.
9. R. Fuhr and R. R. Phelps, Uniqueness of complex representing measures, Funct. Anal. 14 (1971),
1-27.
10. A. Grothendieck, Une characterisation vectorielle metrique des espaces L,, Canad. J. Math.
7 (1955), 552-561.
11. M. Hasumi, The extension property of complex Banach spaces, Tohoku Math. J. (2) 10 (1958)
135-142.
12. A. Hulanicki and R. R. Phelps, Some applications of tensor products of partially ordered linear
spaces, J. Funct. Anal. 2 (1968), 177-201.
13. O. Hustad, Intersection properties of balls in finite-dimensional |, spaces, Preprint Series, Inst. of
Math., University of Oslo, 1974.
14. O. Hustad, A norm preserving complex Choquet theorem, Math. Scand. 29 (1971), 272-278.
15. O. Hustad, A4 note on complex P,-spaces, Israel J. Math. 16 (1973), 117-119.
16. J. Gill de Lamadrid, Measures and Tensors I, Trans. Amer. Math. Soc. 114 (1965), 98-121.
Measures and Tensors 11, Canad. Jour. Math. 18 (1966), 762-793.
17. A. Lazar, Affine products of simplexes, Math. Scand. 22 (1968), 165-175.
18. S. Lang, Linear Algebra, Addison-Wesley Publishing Co. Inc., 1970.
19. A. Lima, Intersection properties of balls and subspaces in Banach spaces, Trans. Amer. Math. Soc.
227 (1977), 1-62.
20. A. Lima, Complex Banach spaces whose duals are L-spaces, Israel J. Math. 24 (1976), 59-72.
21. A. Lima and G. Olsen, Extreme points in duals of complex operator spaces, Proc. Amer. Math.
Soc. 24 (1985), 437-440.



118 T. S. S. R. K. RAO, A. K. ROY AND K. SUNDARESAN

22. A.Lima and A. K. Roy, Some results on intersection properties of balls in complex Banach spaces,
Studia Math. 83 (1986), 37-45.
23. 1. Namioka and R. R. Phelps, Tensor products of compact convex sets. Pacific J. Math. 31 (1969),

469-480.

24. R. R. Phelps, Lectures on Choquet’s Theorem, Van Nostrand Math. Studies no. 7, 1966,
Princeton.

25. R. R. Phelps, The Choquet representation in the complex case, Bull. Amer. Math. Soc. (1977),
299-312.

26. 1. Singer, Linear functionals on spaces of continuous mappings of a compact Hausdor(f space into
a Banach space, Rev. Roumaine Math. Pures Appl. 2 (1957), 301-315.

27. 1. Singer, Best Approximation in Normed Linear Spaces, Springer-Verlag, Berlin, 1970.

28. S. Sakai, C*-Algebras & W*-Algebras, Ergebnisse der Mathematik 60, Springer-Verlag, 1971.

29. M. Cambern, Near isometries of Bochner L} and [ spaces, Pacific J. Math. 122 (1986), 1-10.

INDIAN STATISTICAL INSTITUTE INDIAN STATISTICAL INSTITUTE

DIVISION OF STATISTICS AND MATHEMATICS DIVISION OF STATISTICS AND MATHEMATICS
BANGALORE CENTRE, 203, B.T.ROAD

BANGALORE 560059 CALCUTTA 700035

INDIA INDIA

DEPARTMENT OF MATHEMATICS
CLEVELAND STATE UNIVERSITY
CLEVELAND, OHIO

USA.



