ON THE ANALYTIC VECTOR VARIANT OF THE HILLE-YOSIDA THEOREM

ZOLTÁN MAGYAR

Abstract.

We show that if the operators $(\lambda - A)^k$ have the same lower bounds as in the classical Hille-Yosida-Feller Theorem and A has a dense set of analytic vectors (i.e., vectors x for which $e^{tA}x$ as a power series are summable at least for small t's) then A is closable and \bar{A} is the infinitesimal generator of a continuous semigroup. We also prove a variant of this result in locally convex spaces. We show the denseness of "super-analytic" vectors for a kind of one-parameter groups including the continuous groups on Banach spaces. Finally, we give an application about representations of Lie groups.

The classical Hille-Yosida-Feller theorem states that an operator A in a Banach space $\mathscr X$ is the generator of a so-called C_0 -semigroup if and only if for large positive λ the resolvents $R_{\lambda} = (\lambda - A)^{-1}$ exist and satisfy the following estimate for $k = 1, 2, 3, \ldots : \|R_{\lambda}^k\| \cdot |\lambda - C|^k \le M$ with suitable constants M, C. The second condition can be reformulated as follows: there are $M, C \ge 0$ and $\delta < \frac{1}{C}$ such that

(1) $M \| (I - \alpha A)^k x \| \ge (1 - \alpha C)^k \cdot \| x \|$ for $\alpha \in (0, \delta), k = 1, 2, 3, ...$ and $x \in \mathcal{D}(A^k)$.

It is not too hard to see that, having (1) satisfied, it is enough to know the existence of R_{λ} for one $\lambda > \frac{1}{\delta}$ (one should use the expansion $R_{\mu} = \sum_{k=0}^{\infty} (\lambda - \mu)^k$

 R_{λ}^{k+1}). If we want a version of the theorem which does not use resolvents at all,

we must stipulate some other thing about A. A possibility is to require the denseness of the set of analytic vectors for A (see detailed definitions below). It is stated in [1] that if A is a closed operator satisfying (1) and having a dense set of analytic vectors then A is a generator. The proof is included there only for the case C = 0, M = 1. It seems to be a good idea to get rid of the closedness condition, but (1) by itself presumably does not extend to the closure of A (even if it does, this is not easy to see). But if we know, in addition, the analytic vectors

Received December 10, 1987; in revised form March 17, 1988.

form a dense set then A turns out to be a pre-generator (see Theorem 1 below). Essentially the same theorem was proved (unknown to the author when preparing the manuscript) by J. Rusinek in 1983 (see [5]). This proof is very similar to ours. Nevertheless, for the sake of exposition, we shall prove it along with the LCS-version (Theorem 2).

Unfortunately, this analytic-vector-variant of the Hille-Yosida Theorem is not "if and only if" because a C_0 -semigroup may not have any nonzero analytic vectors, as the example of the translation semigroup on $L^2(0, +\infty)$ shows (cf. [3], p. 600). But in the case of groups (i.e., strongly continuous representations of R) we have a dense set of analytic vectors, as it was shown by I. Gelfand in 1939. Moreover, using his method, we are able to prove the denseness of a kind of "super-analytic" vectors in a more general setting (see Theorem 3 below).

The author has not been able to prove the analogue of Theorem 1 if \mathscr{X} is a general locally convex space rather than a Banach space but only a slightly weaker variant (see Theorem 2) which, in the light of Theorem 3, is enough to formulate an "if and only if" statement at least for *groups* "with uniform exponential growth."

The above-mentioned analogue seems to be true; we shall include some comment about it after the proofs.

For the convenience of the reader, this paper is relatively self-contained: we shall sketch the known proofs of some lemmas we need.

DEFINITIONS. A mapping $V: [0, +\infty) \mapsto B(\mathcal{X})$, where \mathcal{X} is a Banach space and $B(\mathcal{X})$ is the set of the continuous linear operators, is called a C_0 -semigroup if V(t+s) = V(t)V(s), V(0) = I and the functions $t \to V(t)x$ are continuous for all $x \in \mathcal{X}$.

If we assume \mathscr{X} to be only a LCS (meaning locally convex Hausdorff space in this paper) then we require in addition that V be locally equicontinuous (i.e., the set of operators V([0,t]) be equicontinuous for all t) and call this a "cle" (continuous locally equicontinuous) semigroup.

We can see from the Banach-Steunhaus Theorem that a C_0 -semigroup on a Banach space is a cle semigroup as well.

The generator of a cle semigroup is simply the strong derivative at 0:

$$Ax = \lim_{t \to 0} \frac{V(t)x - x}{t}.$$

For any linear operator A in a LCS \mathcal{X} we define the s-analytic vectors of A as follows:

$$\mathscr{A}_s(A) := \left\{ x \in \mathscr{X}; \text{ the sequence } \left\{ \frac{t^n}{n!} A^n x \right\} \text{ is bounded } \forall \text{ positive } t < s \right\}.$$

It is easy to see that $\mathcal{A}_s(A)$ is an A-invariant subspace. We shall call the union

 $\mathscr{A}(A) = \bigcup_{s>0} \mathscr{A}_s(A)$ the set of analytic vectors, and the intersection $\mathscr{E}(A) =$

$$\bigcap_{s>0} \mathscr{A}_s(A)$$
 the set of *entire* vectors.

We shall say that V is a cle group if it is defined on R rather than R_+ and satisfies the corresponding conditions.

A cle group is said to be of exponential growth if there is a dense subset \mathcal{X}_0 of "exponential vectors" such that for any continuous seminorm p on \mathcal{X} and for any $x \in \mathcal{X}_0$ we can find a constant K (depending on p and x) such that

(2)
$$p(V(t)x) \le e^{K(|t|+1)} \quad \text{for all } t.$$

It is well known that a C_0 -group on a Banach space is of exponential growth, namely with $\mathcal{X}_0 = \mathcal{X}$.

If V is a cle semigroup over the LCS \mathscr{X} then we can define, in an obvious manner, a semigroup \widetilde{V} over the completion $\overline{\mathscr{X}}$ of \mathscr{X} . Denoting by \widetilde{A} the generator of \widetilde{V} we define the C^{∞} -space of V to be $\bigcap_{n=1}^{\infty} \mathscr{D}(\widetilde{A}^n)$ in $\overline{\mathscr{X}}$ endowed with the topology defined by the following seminorms:

$$\{x \to p(\tilde{A}^n x); p \text{ is continuous seminorm in } \bar{\mathcal{X}}, n = 0, 1, 2, 3, \ldots\}.$$

This is called the C^{∞} -topology.

THEOREM 1. Assume A is an operator in a Banach space $\mathscr X$ such that, with a suitable positive constant M, real number C and $\delta > 0$ we have

(1)
$$M \| (I - \alpha A)^k x \| \ge (1 - \alpha C)^k \| x \|$$
 for $\alpha \in (0, \delta)$, $k = 1, 2, 3, \dots$ and $x \in \mathcal{D}(A^k)$.

Assume further that $\mathcal{A}(A)$ is dense in \mathcal{X} . Then A is closable and \bar{A} is the generator of a C_0 -semigroup V(t) such that $e^{-iC} \cdot V(t)$ is a bounded semigroup. Further, $\mathcal{A}(A)$ is dense in $C^{\infty}(V)$ with respect to the C^{∞} -topology.

THEOREM 2. Let A be an operator in a LCS \mathscr{X} such that, with suitable constants C and δ , we have

 \forall neighborhood of zero $W \exists a$ neighborhood of zero U such that $(1') \qquad (1 - \alpha C)^{-k} (I - \alpha A)^k \ x \in U \text{ imply } x \in W \text{ for any } k \in 1, 2, 3, \dots, x \in \mathcal{D}(A^k)$ and $\alpha \in (0, \delta)$.

Assume further that $\mathscr{E}(A)$ is dense in \mathscr{X} . Then A is closable in \mathscr{X} and \overline{A} is the generator of a cle semigroup V in \mathscr{X} such that $e^{-tC}V(t)$ is an equicontinuous semigroup. Moreover, $\mathscr{E}(A)$ is dense in $C^{\infty}(V)$.

Theorem 3. Let V be a cle group of exponential growth on a sequentially complete LCS \mathcal{X} , and A be the generator of V. Then the set $\zeta := \left\{ x \in \mathcal{X}; \text{ the } \right\}$

sequence $\left\{ \left(\frac{s}{\sqrt{k}} \right)^k \cdot A^k x \right\}$ is bounded for some s > 0 is dense in \mathcal{X} .

COROLLARY. Then $\mathscr{E}(A)$ is dense, for $\mathscr{E}(A) \supset \zeta$.

PROOF OF THEOREMS 1 AND 2. First we note if \mathscr{F} is an index set, $\{x_j; j \in \mathscr{F}\}$ is a bounded set in \mathscr{X} and $(\lambda_j)_j$ is an absolutely summable family of complex numbers, then the finite sub-sums of $\sum \lambda_j x_j$ form a Cauchy-net, and therefore $\sum \lambda_j x_j \in \mathscr{X}$ exists; moreover, taking any partition of the index set, the corresponding double summation $\sum_{i \in I} \left(\sum_{j \in \mathscr{F}_i} \lambda_j x_j\right)$ yields the same result. Furthermore, the mapping $\rho: l^1(\mathscr{F}) \mapsto \mathscr{X}$, $\rho((\lambda_j)_j):=\sum_j \lambda_j x_j$ is continuous. These observations are the base of the proof of Lemmas 1 and 2 below.

(3) Let
$$B = A - C \cdot I$$
.

Then it is easy to see that $\mathscr{A}_s(B) = \mathscr{A}_s(A)$ for all s. For $x \in \mathscr{A}_s(A)$ and $t \in [0, s)$ let $e^{tB}x := \sum_{k=0}^{\infty} \frac{t^k}{k!} B^k x$ (here the bounded set is $\left\{\frac{q^k}{k!} B^k x\right\}$ for some t < q < s and $\left(\left(\frac{t}{q}\right)^k\right)_k$ is the summable sequence).

LEMMA 1. Let $x \in \mathcal{A}_s(A)$. Then for $t \in \left[0, \frac{s}{2}\right)$ we can find a sequence $x_n(t) \in \mathcal{A}_s(A)$ such that $x_n(t) \to e^{tB}x$ and $\left(I - \frac{t}{n}B\right)^n x_n(t) \to x$.

PROOF. Fix a q such that 2t < q < s and let $g(j,k) := \binom{j+k}{j} \binom{t}{q}^{j+k} (-1)^k$, $f_n(j,k) = g(j,k) \cdot \prod_{i=0}^{k-1} \frac{n-i}{n}$ and finally $f_{n,m}(j,k) = \begin{cases} f_n(j,k) & \text{if } j \leq m \\ 0 & \text{if } j > m \end{cases}$ where j,k are non-negative integers. Then clearly $g \in l^1(\mathbb{N}^2)$ and $|f_n| \leq |g|$, and $\lim_{n \to \infty} f_{n,n}(j,k) = g(j,k)$, therefore $f_{n,n} \to g$ in $l^1(\mathbb{N}^2)$. Let $x_{j,k} = \frac{q^{j+k}}{(j+k)!} B^{j+k} x$. Then the function $\rho := l^1(\mathbb{N}^2) \mapsto \bar{\mathcal{X}}, \, \rho(f) = \sum f(j,k) x_{j,k}$ is continuous. Let $x_n(t) = \sum_{j=0}^n \frac{t^j}{j!} B^j x$ (this is in $\mathscr{A}_s(A)$ because $\mathscr{A}_s(A) = \mathscr{A}_s(B)$ is a B-invariant subspace); then $\left(I - \frac{t}{n}B\right)^n x_n(t) = \rho(f_{n,n})$ and therefore tends to $\rho(g) = x$.

COROLLARY. The operators $U_s(t) := e^{tB}|_{\mathscr{A}_s(A)}$, 2t < s, are equicontinuous.

PROOF. Clearly (1) is the special case of (1') from which we get $(I - \beta B)^k y \in U$ implies $y \in W$ if β is small enough. Writing $y = x_n(t)$ we have $e^{tB} x \in \overline{W}$ (in $\overline{\mathcal{X}}$) whenever $x \in \text{int } U \cap \mathscr{A}_s(A)$ and $t \in \left[0, \frac{s}{2}\right]$.

LEMMA 2. For $t_1, t_2 \in \left[0, \frac{s}{2}\right)$, $x \in \mathscr{A}_s(A)$ we have $\overline{U_s(t_1)}e^{t_2B}x = e^{(t_1+t_2)B}x$, where $\overline{U_s(t)}$ is the closure of the continuous operator $U_s(t)$ (in $\overline{\mathscr{X}} \times \overline{\mathscr{X}}$).

PROOF. Straightforward.

Because of Lemma 2 and the *B*-invariance of $\mathcal{A}_s(A)$ we have a cle semigroup $V_s(t)$ on $\mathcal{X}_s = \overline{\mathcal{A}_s(A)}$ (closure in $\overline{\mathcal{X}}$) by setting

(4)
$$V_s(t) = \left(U_s\left(\frac{t}{n}\right)\right)^n \text{ for any } n \text{ such that } \frac{t}{n} < \frac{s}{2}.$$

It is easy to check that $V_s(t) \subset V_r(t)$ if s > r.

Now if $\mathscr{E}(A)$ is dense (or even if all of the \mathscr{A}_s are dense), then $\mathscr{X}_s = \bar{\mathscr{X}}$ for all s and $V_s(t)$ is an equicontinuous semigroup.

If we just know $\mathcal{A}(A)$ is dense, then we must work hard for a similar conclusion.

LEMMA 3. Let $\mathscr Y$ be a sequentially complete LCS, $u: [0, a] \mapsto \mathscr Y$ a C^1 -function, T an operator in $\mathscr Y$ such that

(5)
$$(u(s), u'(s)) \in \overline{\operatorname{graph} T} \text{ for } s \in [0, a]$$

and assume there is a d > 0 such that for $h \in (0,d)$ I - hT is injective and $(I - hT)^{-1}$ is extendible to an everywhere defined K_h such that $\{K_h^k, h \in (0,d), k = 1,2,3,\ldots\}$ is an equicontinuous set of operators.

Then
$$\lim_{n\to\infty} (K_{r/n})^n u(0) = u(r)$$
 uniformly for $r \in [0, a]$.

REMARK. If T is the generator of a C_0 -semigroup in a Banach space then this lemma is the classical result of E. Hille, i.e., for the sake of Theorem 1 only it is superfluous to prove it; nevertheless, we include the proof, thinking about a possible improvement of Theorem 2 in which the author has so far been unsuccessful.

PROOF. If $0 \le t < t + h \le a$ then

$$u(t+h) - hu'(t+h) = u(t) + \int_{t}^{t+h} (u'(s) - u'(t+h))ds.$$

Applying K_h to this equation and using (5) we get

$$u(t + h) - K_h u(t) = K_h \int_t^{t+h} (u'(s) - u'(t+h)) ds$$

and hence we can infer (using u is C^1 and \mathscr{Y} is a LCS) $\forall U$ neighborhood of zero in $\mathscr{Y} \exists \varepsilon > 0$ such that $u(t+h) - K_h u(t) \in h \cdot K_h(U)$ whenever $h \le \varepsilon$. It is easy to deduce from this,

$$u(t + nh) - K_h^n u(t) \in h \sum_{j=1}^n K_h^j(U).$$

Substitute t = 0, $y = \frac{r}{n}$ and use the assumption on K_h^k and the fact \mathcal{Y} is a LCS. The lemma is thus proved.

LEMMA 4. $\mathscr{A}_s(A)$ is dense in $C^{\infty}(V_s)$ (with respect to the C^{∞} -topology).

PROOF. Let \mathscr{H} denote the closure of $\mathscr{A}_s(A)$ in $C^\infty(V_s)$. Let $x \in \mathscr{A}_s(A)$ and $t \in \left[0, \frac{s}{2}\right]$. Denote the generator of V_s by B_1 . Clearly $B_1 \supset B|_{\mathscr{A}_s(A)}$. We want to show first $V_s(t) x \in \mathscr{H}$. To this end, consider $y_n = \sum_{k=0}^n \frac{t^k}{k!} B^k x$. Then $B_1^j y_n = \sum_{k=0}^n \frac{t^k}{k!} B^{j+k} x$ and $B^j x \in \mathscr{A}_s(A)$, hence $B_1^j y_n = \sum_{k=0}^n \frac{t^k}{k!} B^j x = V_s(t) B_1^j x = B_1^j V_s(t) x$ since B_1 is the generator of V_s . This amounts to $y_n = \sum_{k=0}^n \frac{t^k}{k!} B^j x = V_s(t) B_1^j x = B_1^j V_s(t) x$ since $V_s(t) x \in \mathscr{H}$. Since $V_s(t)$ is clearly continuous on $C^\infty(V)$, we get \mathscr{H} is $V_s(t)$ -invariant for $t \in \left[0, \frac{s}{2}\right]$. But this is enough, because if we have a dense subspace which is invariant under the semigroup and is contained in the C^∞ -space then that subspace must be C^∞ -dense (this result was stated in [4] for Banach spaces and groups; but the easy proof works in general: one should consider a sequence $\varphi_n \in C_c^\infty((0,\infty))$ such that $\varphi_n \geq 0$, $\int \varphi_n = 1$ and the supports then $y_{k,n} = \int_0^\infty \varphi_k(t) V_s(t) x_n dt \in \mathscr{H}$ and

$$B_1^j y_{k,n} \xrightarrow{\mathcal{X}_s} \int_0^\infty \varphi_k^{(j)}(t) (-1)^j V_s(t) x \, dt = B_1^j y_k$$

if $n \to \infty$, where $y_k = \int_0^\infty \varphi_k(t) V_s(t) x dt$, thus $y_k \in \mathcal{H}$ and $y_k \xrightarrow{C^\infty} x$).

COROLLARY. With a suitable d>0, the set $\{(I-\beta B_s)^{-k}; \beta \in (0,d), k=1,2,3,\ldots, s>0, B_s \text{ is the restriction of the generator of } V_s \text{ to } C^{\infty}(V_s)\}$ is equicontinuous (with respect to the original topology of $\bar{\mathcal{X}}$).

PROOF. If $x_n \in \mathcal{A}_s(A)$, and $x_n \xrightarrow{C^{\infty}} x$ then $B_s^j x_n \xrightarrow{\mathcal{X}_s} B_s^j x$ for all j, hence $(1 - \beta B_s)^k x_n \to (I - \beta B_s)^k x$ for all k. Therefore $(I - \beta B_s)^k x \in \text{int } U$ implies $x \in \overline{W}$ if U, W are taken from (1'), and β is small enough.

LEMMA 5. If \mathscr{X} is a Banach space then the $V_s(t)$ are equicontinuous, $||V_s(t)|| \leq M$.

PROOF. Denote the generator of V_s by D. Now \mathscr{X}_s is a Banach space, and hence by the classical theory $I - \beta D$ is surjective if β is small $\left((\lambda - D)^{-1} = \int_0^\infty e^{-\lambda t} V_s(t) dt\right)$.

We also have $(I - \beta D)^{-1}D \subset D(I - \beta D)^{-1}$ and hence $(I - \beta D)^{-1}D^k \subset D^k(I - \beta D)^{-1}$ for all k, which implies $(I - \beta D)^{-1}$ leaves $C^{\infty}(V_s)$ invariant. The same is true for $I - \beta D$, thus $I - \beta D$ is a bijection of $C^{\infty}(V_s)$ onto itself. By the former corollary, $\|(I - \beta B_s)^{-k}\| \leq M$ but we now know $(1 - \beta B_s)^{-k} = (I - \beta D)^{-k}|_{C^{\infty}(V_s)}$ and $C^{\infty}(V_s)$ is dense in \mathscr{X}_s , so we have $\|(I - \beta D)^{-k}\| \leq M$ which implies $\|V_s(t)\| \leq M$ by Lemma 3.

Define the operators T(t) on $\bigcup_{s>0} \mathcal{X}_s$ by setting $T(t)x = V_s(t)x$ if $x \in \mathcal{X}_s$. Now we can see this family of operators is equicontinuous. Let $V(t) = e^{tC} \cdot \overline{T(t)}$. Denote the generator of V by G. It remains to prove that $G = \overline{A}$ and $\mathcal{A}(A)$ (or $\mathcal{E}(A)$ in the second case) is dense in $C^{\infty}(V)$. Denote $A|_{\mathcal{A}(A)}$ by A_1 , then $G \supset A_1$. We know that for $x \in \mathcal{A}_s(A)$ $V_s(t)x$ belongs to the closure of $\mathcal{A}_s(A)$ in $C^{\infty}(V_s)$. Hence $V(t)(\mathcal{A}(A)) \subset \overline{\mathcal{A}(A)}$ in $C^{\infty}(V)$. A repetition of the argument of Lemma 4 shows that $V_s(t)$ leaves the C^{∞} -closure of $\mathcal{E}(A)$ invariant, hence V(t) does the same. Thus we can see $\mathcal{A}(A)$ (or $\mathcal{E}(A)$ if the conditions of Theorem 2 hold) is dense in $C^{\infty}(V)$ (cf. the proof of Lemma 4).

Since G is a continuous operator on $C^{\infty}(V)$, thus A_1 is C^{∞} -dense in $G|_{C^{\infty}(V)}$ which, in turn, is dense in G; therefore A_1 is dense in G which is closed, being the generator of a cle semigroup in a complete LCS. We can see now $G = \bar{A}_1$. Hence $(I - \alpha A_1)^{-1}$ is dense in $(I - \alpha G)^{-1}$ which is an everywhere defined continuous operator for small α (in the second case, too, for $e^{-Ct}V(t)$ is equicontinuous). On the other hand, $(I - \alpha A_1)^{-1} \subset (I - \alpha A)^{-1}$, which is a continuous operator for small α (by (1')). Thus $(I - \alpha A)^{-1} \subset (I - \alpha G)^{-1}$, $A_1 \subset A \subset G$, $G = \bar{A}$.

PROOF OF THEOREM 3. Let $x \in \mathcal{X}_0$, the set of exponential vectors of V (see our Definitions). We assert that

(6)
$$x_c := \int_{-\infty}^{\infty} e^{-ct^2} V(t) x \, dt \in \zeta \text{ for any } c > 0.$$

On the other hand,

(7)
$$\sqrt{\frac{c}{\pi}} x_c \to x \text{ if } c \to \infty.$$

Clearly (6) and (7) yield Theorem 3. Note first that for any s > 0, $e^{-st^2} V(t)x$ is a bounded function in \mathscr{X} because $x \in \mathscr{X}_0$ and e^{-st^2} decays more rapidly than $e^{-K(1+|t|)}$. Hence x_c exists as the Riemann-type integral of the bounded continuous function $e^{-st^2} V(t)x$ with respect to the finite measure $e^{(s-c)t^2} \cdot dt$ with some s < c. Then $\sqrt{\frac{c}{\pi}} x_c - x = \sqrt{\frac{c}{\pi}} \int_{-\infty}^{\infty} e^{-ct^2} (V(t)x - x) dt$, hence $p\left(\sqrt{\frac{c}{\pi}} x_c - x\right) \le \sqrt{\frac{c}{\pi}} \int_{-\infty}^{\infty} e^{-ct^2} p(V(t)x - x) dt$ for any continuous seminorm p, and h(t) = p(V(t)x - x) is a continuous function of at most exponential growth and h(0) = 0. Hence $e^{-t^2} h(t)$ is bounded, continuous and vanishes at 0, while $\left\|\sqrt{\frac{c}{\pi}} e^{(1-c)t^2}\right\|_1 = \sqrt{\frac{c}{c-1}}$ and the vast majority of this is concentrated in a small neighborhood of zero if c is large. Thus (7) is proved.

If φ is any C^1 -function such that the improper integrals $u = \int_{-\infty}^{\infty} \varphi(t) V(t) x \, dt$ and $v = \int_{-\infty}^{\infty} \varphi'(t) V(t) x \, dt$ exist and if $\varphi(t) V(t) x \to 0$ for $|t| \to \infty$ then it is not hard to see that Au = -v. Using this and the fact the derivatives of e^{-ct^2} are polynomial multiples of it, we infer $(-A)^n x_c = \int_{-\infty}^{\infty} (e^{-ct^2})^{(n)} V(t) x \, dt$, and $p(A^n x_c) \le \int_{-\infty}^{\infty} |(e^{-ct^2})^{(n)}| \cdot e^{K(|t|+1)} \, dt$. Since $e^{-st^2} e^{K(|t|+1)}$ is bounded for s > 0, we shall achieve (6) if we prove the following lemma.

LEMMA 6. The sequence
$$\frac{\|(e^{-ct^2})^{(n)} \cdot e^{st^2}\|_1^{1/n}}{\sqrt{n}}$$
 is bounded for any $0 \le s < c$.

REMARK. It would be enough to know this result for one s, and in the case $s < \frac{c}{2}$, $\|(e^{-ct^2})^{(n)}e^{st^2}\|_1 \le \|e^{(s-\frac{c}{2})t^2}\|_2 \cdot \|(e^{-ct^2})^{(n)}e^{\frac{ct^2}{2}}\|_2$ and the latter factor is exactly known from the theory of Hermite-functions. But it is possible to give an elementary proof as follows.

PROOF. Denote the polynomial $(e^{-\frac{t^2}{2}})^{(n)} e^{\frac{t^2}{2}}$ by $p_n(t)$. Then clearly

(8)
$$(e^{-ct^2})^{(n)}e^{st^2} = (2c)^{\frac{n}{2}}p_n(\sqrt{2c}\cdot t)e^{(s-c)t^2}.$$

On the other hand,

(9)
$$p_0 \equiv 1, \quad p_{n+1}(t) = p'_n(t) - tp_n(t).$$

Therefore $p_n(t)$ is the sum of 2^n terms, each of which is a result of k derivations and n-k multiplications by (-t) applied on $p_0, k=0,1,\ldots,n$. The terms for which 2k>n are zero, the other terms can be estimated by $n^k|t|^{n-2k}$. Now if r>0 is arbitrary and $p\geq 0$ then it is easy to check that $\max_{t\in\mathbb{R}}|t|^p e^{-rt^2}=\left(\frac{p}{2re}\right)^{p/2}$ (this maximum is achieved at $|t|=\sqrt{\frac{p}{2r}}$). Therefore, with u>0, we have

$$\max |p_n(ut)e^{-rt^2}| \leq 2^n \max \left\{ n^k \cdot \left(\frac{u^2(n-2k)}{2re}\right)^{\frac{n}{2}-k}; \qquad k=0,1,\ldots, \left\lceil \frac{n}{2} \right\rceil \right\}$$

and hence $|p_n(ut)| \le C(u,r)^n n^{\frac{n}{2}} e^{rt^2}$ where C(u,r) does not depend on n. Writing $u = \sqrt{2c}$ and choosing $r \in (0, c - s)$ we get the result.

The proof of Theorem 3 is thus complete.

REMARK ON LEMMA 6. This result is sharp in the sense that this sequence has a positive lower bound. Clearly $\|(e^{-ct^2})^{(n)}e^{st^2}\|_1 \ge \|(e^{-ct^2})^{(n)}\|_1 \ge$

$$\geq \max_{x \in \mathbb{R}} \left| \int (e^{-ct^2})^{(n)} e^{-itx} dt \right| = \max_{x \in \mathbb{R}} |x|^n \cdot \sqrt{\frac{\pi}{c}} \cdot e^{-\frac{x^2}{4c}} = \sqrt{\frac{\pi}{c}} \cdot \left(\frac{2cn}{e}\right)^{n/2}.$$

COMMENTS ON THE IMPROVING OF THEOREM 2. The conjecture is the following: replacing $\mathscr{E}(A)$ by $\mathscr{A}(A)$, Theorem 2 remains valid. This is true in the case when all cle semigroups on closed subspaces of \mathscr{X} have resolvents. In any case, by Lemma 4, we have (1') for the generator of V_s instead of A (with C=0). Does this imply the equicontinuity of V_s ?

In general, Hille's Formula $\left(\left(I-\frac{t}{n}A\right)^{-n}\to V(t)\right)$ if A is the generator of V does not hold, even $I-\alpha A$ need not be injective. On the other hand, we can have continuous $(I-\alpha A)^{-1}$ such that $I-\alpha A$ is not surjective (e.g., if $\mathscr X$ is the space of entire functions endowed with the compact-open topology and $V(t)f(z)=e^{tz}f(z)$). The author's attempts to construct a counterexample for which (1') holds for the generator but the semigroup is not of exponential growth, have failed.

Some consequences of our results. If we assume (1') for -A and A then we get another semigroup V_1 commuting with V and having generator $\overline{-A}$. Therefore the generator of $V \cdot V_1$ is 0, i.e., $V \cdot V_1 \equiv I$. Thus we can see if $M \| (I - \alpha A)^k x \| \ge (1 - |\alpha| C)^k \| x \|$ for $|\alpha| < \delta$ and A has a dense set of analytic vectors then \overline{A} is the generator of a group. Similarly, from Theorems 2 and 3 we get this result: the generators of groups V on sequentially complete LCS-es satisfying $e^{-C|t|}V(t)$ are equicontinuous are exactly those closed operators A for which $(1 - |\alpha| C)^k (I - \alpha A)^{-k}$ are equicontinuous for $|\alpha| < \delta$ and $\mathscr{E}(A)$ is dense.

We have now an improvement of Rusinek's theorem (cf. [2], [6]): Let \mathscr{D} be a dense subspace of a Banach space, End (\mathscr{D}) be the endomorphisms of \mathscr{D} as a linear space and \mathscr{L} be a finite dimensional Lie-subalgebra of End (\mathscr{D}) . If $A_1, \ldots A_k \in \mathscr{L}$ is a Lie-generating subset such that

- a) $M \cdot ||\lambda A_i|^n x|| \ge (|\lambda| C)^n ||x||$ for large $|\lambda|$,
- b) $\mathscr{D} = \mathscr{A}(A_i)$ for all j,

then there is a (unique) representation V of the corresponding simply connected Lie group such that $\partial V(T) = \overline{T}$ for all $T \in \mathcal{L}$.

REFERENCES

- O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Springer-Verlag, New York, Heidelberg, Berlin, 1979.
- F. M. Goodman and P. E. T. Jørgensen, Lie algebras of unbounded derivations, J. Funct. Anal. 52(1983), 369-384.
- 3. E. Nelson, Analytic vectors, Ann of Math. 70(1959), 572-615.
- N. S. Poulsen, On C[∞]-vectors and intertwining bilinear forms for representations of Lie groups, J. Funct. Anal. 9(1972), 87-120.
- 5. J. Rusinek, Analytic vectors and generation of one-parameter groups, Studia Math. 79(1984), 77-82.
- J. Rusinek, Analytic vectors and integrability of Lie algebra representations, J. Funct. Anal. 74(1987), 10-23.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF IOWA IOWA CITY, IA 52242 U.S.A. PERMANENT ADDRESS:
MATHEMATICAL INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES
REALTANODA U. 13–15
BUDAPEST V
HUNGARY 1053