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ON THE ANALYTIC VECTOR VARIANT OF THE
HILLE-YOSIDA THEOREM

ZOLTAN MAGYAR

Abstract.

We show that if the operators (A — A)* have the same lower bounds as in the classical Hille-
Yosida-Feller Theorem and A has a dense set of analytic vectors (i.e., vectors x for which e'x as
a power series are summable at least for small ¢’s) then A is closable and A is the infinitesimal
generator of a continuous semigroup. We also prove a variant of this result in locally convex spaces.
We show the denseness of “super-analytic” vectors for a kind of one-parameter groups including the

continuous groups on Banach spaces. Finally, we give an application about representations of Lie
groups.

The classical Hille-Yosida-Feller theorem states that an operator A4 in a Ba-
nach space & is the generator of a so-called C,-semigroup if and only if for large
positive 4 the resolvents R, = (4 — A) ! exist and satisfy the following estimate
fork =1,2,3,...:|R%| - |4 — C|* £ M with suitable constants M, C. The second

1
condition can be reformulated as follows: there are M, C = 0 and 6 < rel such

that
(1) M||(I — ad)x|| = (1 —aC)*-||x|| for ae(0,8), k = 1,2,3,... and xe D(4").
It is not too hard to see that, having (1) satisfied, it is enough to know the

1 . d
existence of R; for one 4 > 3 <one should use the expansion R, = Y (4 — p)*
k=0

R4 ‘). If we want a version of the theorem which does not use resolvents at all,

we must stipulate some other thing about 4. A possibility is to require the
denseness of the set of analytic vectors for A4 (see detailed definitions below). It is
stated in [1] that if A is a closed operator satisfying (1) and having a dense set of
analytic vectors then A is a generator. The proof is included there only for the
case C=0, M = 1. It seems to be a good idea to get rid of the closedness
condition, but (1) by itself presumably does not extend to the closure of A (even if
it does, this is not easy to see). But if we know, in addition, the analytic vectors
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form a dense set then A turns out to be a pre-generator (see Theorem 1 below).
Essentially the same theorem was proved (unknown to the author when prepar-
ing the manuscript) by J. Rusinek in 1983 (see [5]). This proof is very similar to
ours. Nevertheless, for the sake of exposition, we shall prove it along with the
LCS-version (Theorem 2).

Unfortunately, this analytic-vector-variant of the Hille-Yosida Theorem is not
“if and only if” because a C,-semigroup may not have any nonzero analytic
vectors, as the example of the translation semigroup on I2(0, + c0) shows (cf. [3],
p. 600). But in the case of groups (i.e., strongly continuous representations of R)
we have a dense set of analytic vectors, as it was shown by I. Gelfand in 1939.
Moreover, using his method, we are able to prove the denseness of a kind of
“super-analytic” vectors in a more general setting (see Theorem 3 below).

The author has not been able to prove the analogue of Theorem 1 if & is
a general locally convex space rather than a Banach space but only a slightly
weaker variant (see Theorem 2) which, in the light of Theorem 3, is enough to
formulate an “if and only if” statement at least for groups “with uniform exponen-
tial growth.”

The above-mentioned analogue seems to be true; we shall include some
comment about it after the proofs.

For the convenience of the reader, this paper is relatively self-contained: we
shall sketch the known proofs of some lemmas we need.

DEFINITIONS. A mapping V: [0, + c0)— B(&), where & is a Banach space and
B(Z) is the set of the continuous linear operators, is called a Cy-semigroup if
V(t + s) = V(t)V(s), V(0) = I and the functions ¢t — V(t)x are continuous for all
xeX.

If we assume 2 to be only a LCS (meaning locally convex Hausdorff space in
this paper) then we require in addition that V be locally equicontinuous (i.e., the
set of operators V([0,t]) be equicontinuous for all t) and call this a “cle”
(continuous locally equicontinuous) semigroup.

We can see from the Banach-Steunhaus Theorem that a C,-semigroup on
a Banach space is a cle semigroup as well.

The generator of a cle semigroup is simply the strong derivative at O

V(H)x —
Ax = lim 20X =X,
t—0
For any linear operator 4 in a LCS & we define the s-analytic vectors of A as

follows:

A (A):= {x € &'; the sequence {—;—' A"x} is bounded V positive t < s}.

It is easy to see that .<7,(A4) is an A-invariant subspace. We shall call the union



ON THE ANALYTIC VECTOR VARIANT OF THE HILLE-YOSIDA THEOREM 95

A(A) = U & (A) the set of analytic vectors, and the intersection &(A4) =

s>0

() «,(A) the set of entire vectors.

s>0

We shall say that V is a cle group if it is defined on R rather than R, and
satisfies the corresponding conditions.

A cle group is said to be of exponential growth if there is a dense subset &, of
“exponential vectors” such that for any continuous seminorm p on £ and for any
x€ %, we can find a constant K (depending on p and x) such that

@ p(V()x) £ XU+ for all ¢.

It is well known that a C,-group on a Banach space is of exponential growth,
namely with Z, = Z.

If V is a cle semigroup over the LCS & then we can define, in an obvious
manner, a semigroup Vover the completion 4 of Z. Denoting by A the generator

of V we define the C®-space of V to be ﬁ 2(A")in  endowed with the topology
defined by the following seminorms: "

{x— p(A"x); p is continuous seminorm in &, n = 0,1,2,3,...}.
This is called the C®-topology.

THEOREM 1. Assume A is an operator in a Banach space ¥ such that, with
a suitable positive constant M, real number C and 6 > 0 we have

(1) M| — ad)x| = (1 — aC)¥|x|| for ae(0,d), k =1,2,3,... and x € D(4*).

Assume further that s/ (A) is dense in &. Then A is closable and A is the generator
of a Cy-semigroup V(t) such that e ' - V(t) is a bounded semigroup. Further, o/ (A) is
dense in C®(V) with respect to the C®-topology.

THEOREM 2. Let A be an operator in a LCS & such that, with suitable constants
C and b, we have

Y neighborhood of zero W 3 a neighborhood of zero U such that
1) (1 — aC) (I — aAd)*xe U imply xe W for any ke 1,2,3,..., xe 9(A*)
and a €(0, 9).

Assume further that &(A) is dense in . Then A is closable in & and A is the
generator of a cle semigroup V in & such that e *V(t) is an equicontinuous
semigroup. Moreover, §(A) is dense in C*(V).

THEOREM 3. Let V be a cle group of exponential growth on a sequentially

complete LCS &, and A be the generator of V. Then the set {:= {xeﬂl’ ; the
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k
sequence {(ﬁ) ~A"x} is bounded for some s > 0} is dense in ¥.

COROLLARY. Then 8(A) is dense, for £(A) > ¢.

PROOF OF THEOREMS 1 AND 2. First we note if # is an index set, {x;je #} is
a bounded set in & and (4;); is an absolutely summable family of complex
numbers, then the finite sub-sums of lexj form a Cauchy-net, and therefore
}: Ajx;€ 4 exists; moreover, taking any partition of the index set, the correspond-

ing double summation Z( Y A jxj> yields the same result. Furthermore, the
iel \jeF;

mapping p: I'(F)— I, p((4);):= y A;x; is continuous. These observations are

J
the base of the proof of Lemmas 1 and 2 below.

A3) LetB=A4—C-I.
Then it is easy to see that o/,(B) = «,(A) for all 5. For x € &/,(A4) and t € [0, s) let

© tk k
ePx:=Y Fka (here the bounded set is {%— B"x} for some ¢t < g < s and

kzo . .

((é) ) is the summable sequence).
k

LeEMMA 1. Let x € Z,(A). Then forte [0, —;—) we can find a sequence x,(t) € &Z,(A)

such that x,(t) — e'®x and (1 - %B) x,(t) = x.

. . J+ Kkt .
ProoF. Fix a q such that 2t < q < s and let g(j,k):= j — (=1

q
fU,k) ifj<m

n—i j
and finally f, ,.(j, k) = { 0 ifj>m

where j, k are

160 = 6.0 T

non-negative integers. Then clearly gel'(N?) and |f,| < |g|, and lim f, ,(j, k)

n-=o0

j+k
= g(j, k), therefore f, , - gin I'(N?). Let x;, = G B**x. Then the function
n o 4j
pi=1(N?)is F, p(f) = ¥.£ (s K)x,, is continuous. Let x,(t) = 3 ;‘,,—fo (this is
j=o

in «/,(A) because o,(4) = </,(B)is a B-invariant subspace); then (I - %B) Xq(t)
= p(f,.») and therefore tends to p(g) = x.

COROLLARY. The operators U(t):= €' |, (4), 2t < s, are equicontinuous.
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ProofF. Clearly (1) is the special case of (1) from which we get (I — fB)*ye U
implies ye W if B is small enough. Writing y = x,(t) we have e®xe W (in &)

whenever xeint U N «/,(A) and te [0,—82— .

LEMMA 2. Fort,,t,€ 0,—8— ,xeA,(A) we have U(t,)e'*Bx = et **2Bx where
2 s\ 1

U,(¢) is the closure of the continuous operator U(t) (in ¥ x &).
ProoF. Straightforward.

Because of Lemma 2 and the B-invariance of </,(A4) we have a cle semigroup
V,(t) on &, = o4,(A) (closure in &) by setting

4) Vi(t) = (U,(—t—» for any n such that L <2
n n 2

It is easy to check that V,(t) = V,(t)if s > r.

Now if £(A) is dense (or even if all of the s/, are dense), then &, = & for all s and
V,(t) is an equicontinuous semigroup.

If we just know 2/(A) is dense, then we must work hard for a similar conclu-
sion.

LEMMA 3. Let % be a sequentially complete LCS, u: [0,a]+— % a C'-function,
T an operator in % such that

(5 (u(s),u'(s)) egraph T for se[0,a]

and assume there is a d > 0 such that for he(0,d) I — hT is injective and
(I —hT)"' is extendible to an everywhere defined K, such that
{K};he(0,d),k = 1,2,3,...} is an equicontinuous set of operators.

Then lim (K,,,)" u(0) = u(r) uniformly for re [0, a].

REMARK. If T is the generator of a C,-semigroup in a Banach space then this
lemma is the classical result of E. Hille, i.e., for the sake of Theorem 1 only it is
superfluous to prove it; nevertheless, we include the proof, thinking about
a possible improvement of Theorem 2 in which the author has so far been
unsuccessful.

PrOOF. If 0 £t <t + h £ athen

t+h

u(t + h)— hu'(t + h) = u(t) + J. (w'(s) — w'(t + h)ds.

t

Applying K, to this equation and using (5) we get
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t+

u(t + h) — K,u(t) = K,,j h(u’(s) — u'(t + h))ds

t

and hence we can infer (using uis C! and % is a LCS) V U neighborhood of zero in
% 3¢ > 0 such that u(t + h) — K,u(t)e h- K,(U) whenever h < ¢. It is easy to
deduce from this,

u(t + nh) — Kl u(t)eh 2 Ki(U).

i=

Substitutet =0,y = %and use the assumption on K¥ and the fact % is a LCS.
The lemma is thus proved.

LEMMA 4. o/ (A) is dense in C*(V,) (with respect to the C*-topology).

Proor. Let s denote the closure of «(A4) in C*(V,). Let xe «(A4) and
te[O, —;—) Denote the generator of V; by B,. Clearly B, > B|,, 4. We want to

n

. . t* .
show first ¥(t) x e #. To thisend, consider y, = Y, o B*x. Then Bl y, = o
. k=0 . k=0 .
Bi**x and B’x e #/,(A), hence By, In%, ¢BBix = V.(t) BS x = B} V,(t) x since
B, is the generator of V,. This amounts to y, AN Vi(t)x, but y, € ,(A),
hence V(t)xe #. Since V,(t) is clearly continuous on C*(V), we get H# is

ntk

2
subspace which is invariant under the semigroup and is contained in the C*-
space then that subspace must be C*-dense (this result was stated in [4] for
Banach spaces and groups; but the easy proof works in general: one should
consider a sequence ¢, € CX((0, c)) such that ¢, 2 0, [ ¢, = 1 and the supports

then y, , = f @) V,(t) x,dt € # and
0

. . S .. .
V(t)-invariant for te[O, —). But this is enough, because if we have a dense

By, s f o0 (0= 1Y V,(0xdt = Bly,
0

o}

if n — oo, where y, = J @i (t) Vy(t)xdt, thus y, e # and y, <, X).

0

COROLLARY. With a suitable d >0, the set {(I —BB,)"% PBe(0,d),
k=1,2,3,..., s >0, B, is the restriction of the generator of V, to C*(V,)} is
equicontinuous (with respect to the original topology of & ).
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Proor. If x,€ o/,(A), and x, %, X then Bix, &, Bix for all j, hence
(1 — BB)x, = (I — BB,)x for all k. Therefore (I — BB, x eint U implies x € Wif
U, W are taken from (1'), and f is small enough.

LEMMA 5. If % is a Banach space then the V,(t) are equicontinuous, ||V (t)|| £ M.

ProoF. Denote the generator of V, by D. Now &% is a Banach space, and
hence by the classical theory I — BD is surjective if f is small

((/1 -D)!= re—“ V;(t)dt).

We also have (I — fD)"'D < D(I — fD)"!' and hence (I — fD)"'D*c
DX(I — BD)! for all k, which implies (I — fD)™ ! leaves C*(V,) invariant. The
same is true for I — gD, thus I — D is a bijection of C*(V,) onto itself. By the
former corollary, II —BB) % <M but we now know
(1 =BB)™ = — pD) ¥|c=y, and C*(V,) is dense in %, so we have
I(I — BD)~*|| < M which implies || V(z)] < M by Lemma 3.

Define the operators T(t) on U Z, by setting T(t)x = V,(t)x if xe Z,. Now we
s>0

can see this family of operators is equicontinuous. Let V(t) = ' - T(t). Denote the
generator of V by G. It remains to prove that G = 4 and ./(A) (or &(A) in the
second case) is dense in C*(V). Denote A| ;4 by 4,, then G > 4,. We know that
for x € &Z(A) V,(t)x belongs to the closure of «/,(A4) in C*(V,). Hence V(t)(</(A)) =
2 (A)in C*(V). A repetition of the argument of Lemma 4 shows that V,(t) leaves
the C®-closure of £(A) invariant, hence V(t) does the same. Thus we can see o/ (A)
(or &(A) if the conditions of Theorem 2 hold) is dense in C*(V) (cf. the proof of
Lemma 4).

Since G is a continuous operator on C*(V), thus 4, is C*-dense in Glcxy,
which, in turn, is dense in G; therefore A4, is dense in G which is closed, being the
generator of a cle semigroup in a complete LCS. We can see now G = A4,. Hence
(I —aA,)"!is dense in (I — «G)~! which is an everywhere defined continuous
operator for small « (in the second case, too, for e ~* V(t) is equicontinuous). On
the other hand, (I — a4,)”! = (I — «aA4)~!, which is a continuous operator for
small a (by (1'). Thus (I — a¢d) ‘(I —aG) ',A,c AcG,G=A.

PRrOOF OF THEOREM 3. Let x € &, the set of exponential vectors of V (see our
Definitions). We assert that

(6) X = I e’ V(t)xdte( for any c > 0.

-

On the other hand,

W) \/Exc—»x if ¢ — 0.
T
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Clearly (6) and (7) yield Theorem 3. Note first that for any s > 0, e ™" V(t)x is
a bounded function in 2 because xe %, and e~*" decays more rapidly than
e X+ Hence x, exists as the Riemann-type integral of the bounded conti-
nuous function e~ V(t)x with respect to the finite measure ¢ ~9** - dt with some

s<ec. Then\/%xc —x = \/:::—J e (V(t)x — x)dt, hencep(ﬁxc - x) =<

/%J. e p(V(t)x — x)dt for any continuous seminorm p, and h(t) =

p(V(t)x —x)is a continuous function of at most exponential growth and h(0) = 0.

_c___e(l —op2
T

/ - ¢ N and the vast majority of this is concentrated in a small neighborhood of

zero if ¢ is large. Thus (7) is proved.

-2

Hence e ™" h(t) is bounded, continuous and vanishes at 0, while

1

a0

If ¢ is any C'-function such that the improper integrals u = J o) V(t)x dt
andv = J. @' (t) V(t)x dt exist and if o(t) V(t)x — Ofor |t| = oo thenitis not hard
to see that Au = —v. Using this and the fact the derivatives of e~ are poly-

nomial multiples of it, we infer (— 4)"x, = I (e~ )™ V(t)x dt, and p(A"x,) <

- o0

a0
f [(e=<*)™|- X1+ D gt Since e~ *eX(1*D js bounded for s > 0, we shall

achieve (6) if we prove the following lemma.
”(e—ctz)(n) . estzn i/n
N

REMARK. It would be enough to know this result for one s, and in the case

LEMMA 6. The sequence is bounded for any 0 < s < c.

c 2 .
$<7» ™)™ e[, < =D, - (e~*)™ e ||, and the latter factor is exact-

ly known from the theory of Hermite-functions. But it is possible to give an
elementary proof as follows.

PrOOF. Denote the polynomial (e“%)"" e% by p,(t). Then clearly
® (e™)Me™ = (202 p(y/2¢ - 1)e* ",

On the other hand,
(9) Po = 1’ pn+l(t) = p:l(t) - tpn(t)‘
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Therefore p,(t) is the sum of 2" terms, each of which is a result of k derivations
and n — k multiplications by (—t) applied on p,, k =0, 1,...,n. The terms for
which 2k > nare zero, the other terms can be estimated by n*|¢|"~ 2. Now if r > 0

p/2
is arbitrary and p = 0 then it is easy to check that max|t|Pe " = (%)
teR T

(this maximum is achieved at |t| = /—%) Therefore, with u > 0, we have

20, 2~k
max |p,,(ut)e—"’| < 2"max {nk-<M>2 R k=0,1,... ,[l]}
2re 2

and hence |p,(ut) < C(u,r)" n?-e" where C(u,r) does not depend on n. Writing

u = ./2c and choosing re (0, c — s) we get the result.
The proof of Theorem 3 is thus complete.

REMARK ON LEMMA 6. This result is sharp in the sense that this sequence has
a positive lower bound. Clearly [|(e~*)™ e**||, = |l(e~")™||, =

. n :[n (2en\"?
(™) ™e~itx gy =max|xl"-\/:-e_%= —l—] .
R c c \ e

COMMENTS ON THE IMPROVING OF THEOREM 2. The conjecture is the following:
replacing £(A) by (A), Theorem 2 remains valid. This is true in the case when all
cle semigroups on closed subspaces of & have resolvents. In any case, by
Lemma 4, we have (1') for the generator of V, instead of A (with C = 0). Does this
imply the equicontinuity of V,?

2 max
xeR

t " . .
In general, Hille’s Formula ((1 - —n—A> — V() if A is the generator of V)

does not hold, even I — a4 need not be injective. On the other hand, we can have
continuous (I — aA) ™! such that I — aA is not surjective (e.g., if Z is the space of
entire functions endowed with the compact-open topology and V(t) f(z) = €"*f(2)).
The author’s attempts to construct a counterexample for which (1’) holds for the
generator but the semigroup is not of exponential growth, have failed.

SOME CONSEQUENCES OF OUR RESULTS. If we assume (1') for — A and A4 then we
get another semigroup ¥; commuting with ¥ and having generator — A. There-
fore the generator of V-V, is 0, ie, V'V, =1 Thus we can see if
M||(I — ad)x| = (1 — |¢|C)* ||x|| for |a| < & and A has a dense set of analytic
vectors then A is the generator of a group. Similarly, from Theorems 2 and 3 we
get this result: the generators of groups V on sequentially complete LCS-es
satisfying e ¢! V(¢) are equicontinuous are exactly those closed operators A4 for
which (1 — |« C)* (I — aA4) ¥ are equicontinuous for |a| < § and &(A) is dense.
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We have now an improvement of Rusinek’s theorem (cf. [2], [6]): Let 2 be
a dense subspace of a Banach space, End (2) be the endomorphisms of 2 as
a linear space and . be a finite dimensional Lie-subalgebra of End (2). If
A,,...Ae % is a Lie-generating subset such that

a) M- ||A—A)"x| 2 (14 — C)'||x]| for large |4],

b) 2 = H(A;) for all j,
then there is a (unique) representation V of the corresponding simply connected
Lie group such that 0V(T) = T for all Te #.
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