QUASIHYPERBOLIC GEODESICS IN JOHN DOMAINS

F. W. GEHRING*, K. HAG and O. MARTIO

1. Introduction.

Suppose that D is a proper subdomain of euclidean n-space R^n . The quasi-hyperbolic length of an arc γ in D is defined as

(1.1)
$$k_{\mathbf{D}}(\gamma) = \int_{\gamma} d(x, \partial D)^{-1} ds,$$

where $d(x, \partial D)$ denotes the euclidean distance from x to ∂D . Next the quasi-hyperbolic distance between two points x_1, x_2 in D is given by

(1.2)
$$k_{D}(x_{1}, x_{2}) = \inf_{\gamma} k_{D}(\gamma),$$

where the infimum is taken over all rectifiable arcs γ joining x_1 to x_2 in D. A quasihyperbolic geodesic is an arc γ for which the infimum in (1.2) is attained; see $\lceil GO \rceil$, $\lceil GP \rceil$ and $\lceil M \rceil$.

Suppose that $x_0, x_1 \in D$ and that $b \ge 1$. A rectifiable arc γ is said to be a *b-cone* arc from x_1 to x_0 if γ joins x_1 to x_0 in D and if

(1.3)
$$l(\gamma(x_1, x)) \le b d(x, \partial D)$$

for all $x \in \gamma$; here $\gamma(x_1, x)$ denotes the subarc of γ between x_1 and x and $l(\alpha)$ the euclidean length of an arc α . The domain D is then said to be a b-John domain with center x_0 if for each $x_1 \in D$ there is a b-cone arc from x_1 to x_0 . Inequality (1.3) implies that D contains the (curvilinear) b-cone

(1.4)
$$\operatorname{Cone}(\gamma, b; x_0) = \bigcup_{x \in \gamma} B\left(x, \frac{1}{b} l(\gamma(x_1, x))\right),$$

^{*} This research was supported in part by the National Science Foundation, Grant DMS-87-02356. Received October 7, 1988

with axis γ , vertex x_1 and center x_0 ; here B(x,r) denotes the open n-ball with center x and radius r. If γ is the closed segment $[x_1, x_0]$, then Cone $(\gamma, b; x_0)$ is the union of a finite euclidean cone with vertex angle $\theta = \arcsin\left(\frac{1}{b}\right)$ at x_1 and a ball about x_0 .

A rectifiable arc γ is said to be a double b-cone arc from x_1 to x_2 if γ joins x_1 to x_2 in D and if

(1.5)
$$\begin{cases} l(\gamma) \leq b|x_1 - x_2|, \\ \min(l(\gamma(x_1, x)), l(\gamma(x, x_2))) \leq b d(x, \partial D) \end{cases}$$

for all $x \in \gamma$. The domain D is said to be b-uniform if for each $x_1, x_2 \in D$ there exists a double b-cone arc from x_1 to x_2 . Inequality (1.5) implies that D contains the double cone

$$\operatorname{Cone}(\gamma_1, b; x_0) \cup \operatorname{Cone}(\gamma_2, b; x_0)$$

where x_0 denotes the midpoint of γ and $\gamma_j = \gamma(x_j, x_0)$ for j = 1, 2.

The classes of John and uniform domains described above are closely related. For example, D is a b-John domain if and only if all of its points are the vertices of b-cones in D with a common center; D is b-uniform if an only if each pair of its points are the vertices of two b-cones in D with a common center for which the axis length sum does not exceed b times the distance between the vertices. In particular, if D is b-uniform, then each pair of its points lie in the closure of a b-John subdomain of D. Moreover, every bounded uniform domain is a John domain [GM].

If D is c-uniform and if γ is a quasihyperbolic geodesic which joins x_1 and x_2 in D, then γ is a double cone arc with b = b(c) [GO]. It is natural to ask if this result has a counterpart for John domains. In particular, suppose that D is a c-John domain with center x_0 and that γ is a quasihyperbolic geodesic which joins x_1 to x_0 . Is γ a b-cone arc for some b = b(c)? The purpose of this paper is to show that the answer is yes when n = 2 and D is simply connected, and in general no when n > 2 or D is multiply connected. We establish these assertions in Sections 4 and 5. Section 4 also contains a new characterization for simply connected John domains in \mathbb{R}^2 . In Section 3 we exhibit two criteria which are necessary and sufficient for a quasihyperbolic geodesic γ to satisfy the cone condition (1.3). Section 2 contains estimates for the quasihyperbolic distance and a key lemma on the location of a quasihyperbolic geodesic in a simply connected plane domain.

2. Estimates for the quasihyperbolic distance.

We derive here three estimates for the quasihyperbolic distance in a proper subdomain D of R^n which will be needed in the remainder of this paper.

2.1 LEMMA. Suppose that x_1, x_2 are points in D and that $d_1 = d(x_1, \partial D)$, $d_2 = d(x_2, \partial D)$, $t = |x_1 - x_2|$. If $t < d_1 + d_2$, then

(2.2)
$$k_D(x_1, x_2) \le \log \frac{d_1 + d_2 + t}{d_1 + d_2 - t}.$$

This bound is sharp. If $t \leq d_2$, then

(2.3)
$$k_D(x_1, x_2) \le \log\left(1 + \frac{2t}{d_1}\right).$$

PROOF. Let $\alpha = [x_1, x_2]$ and $B_j = B(x_j, d_j)$ for j = 1, 2. The triangle inequality implies that $d_1 \le d_2 + t$ and $d_2 \le d_1 + t$. Then by making a preliminary change of variables, we may assume that $0, x_1, x_2$ lie in a line λ and that

(2.4)
$$d_1^2 - |x_1|^2 = d_2^2 - |x_2|^2 = d^2.$$

Since $B_1 \cup B_2 \subset D$,

(2.5)
$$d(x, \partial D)^2 \ge d(x, \partial (B_1 \cup B_2))^2 = d^2 + |x|^2$$

for $x \in \alpha$.

Suppose that λ is parametrized with respect to arclength s with $\lambda(0) = 0$, $\lambda(s_j) = x_j$ for j = 1, 2 and $s_2 > 0$; by relabeling we may assume that $s_1 < s_2$. Then $t = s_2 - s_1$ and we obtain

$$k_D(x_1, x_2) \le \int_{\alpha} (d^2 + |x|^2)^{-1/2} ds$$

$$= \log \frac{d_2 + s_2}{d_1 + s_1}$$

$$= \log \frac{d_1 + d_2 + t}{d_1 + d_2 - t}$$

from integration and (2.4).

Next if $D = B_1 \cup B_2$ and if γ is any arc joining x_1 and x_2 in D, then

$$d(x, \partial D)^2 \le d^2 + |x|^2$$

for $x \in \gamma$ and we obtain equality in (2.2). Finally (2.2) implies (2.3) whenever $t \le d_2$.

2.6. LEMMA. Suppose that γ is an arc which joins points x_1, x_2 in D and that $d_1 = d(x_1, \partial D), d_2 = d(x_2, \partial D), l = l(\gamma)$. Then

(2.7)
$$k_{D}(\gamma) \ge \log \frac{(d_1 + d_2 + l)^2}{4d_1 d_2}.$$

This bound is sharp. In particular,

$$(2.8) k_D(\gamma) \ge \log\left(1 + \frac{l}{d_1}\right).$$

PROOF. If γ is parametrized by arclength s with $\gamma(0) = x_1$, then

$$d(x, \partial D) \le d_1 + s, \quad d(x, \partial D) \le d_2 + l - s$$

for $x \in \gamma$. Hence $r = \frac{1}{2}(l + d_2 - d_1) \in [0, \Gamma]$ and we obtain (2.7) from

$$k_{D}(\gamma) = \int_{\gamma} d(x, \partial D)^{-1} ds$$

$$\geq \int_{0}^{r} (d_{1} + s)^{-1} ds + \int_{r}^{l} (d_{2} + l - s)^{-1} ds$$

$$= \log \frac{(d_{1} + d_{2} + l)^{2}}{4d_{1}d_{2}}.$$

Equality holds if x_1 and x_2 are points in an open subinterval β of a line λ , $\gamma = [x_1, x_2]$ and $D = (\mathbb{R}^n \setminus \lambda) \cup \beta$. Finally (2.8) follows from (2.7) and the fact that $d_2 \leq d_1 + l$.

Our third estimate concerns the location of an arc which is a geodesic for either the quasihyperbolic or hyperbolic metric in a simply connected proper subdomain D of \mathbb{R}^2 . For each $x \in \mathbb{R}^2$ we let C(x, r) denote the circle with center x and radius r.

2.9. LEMMA. Suppose that D is a simply connected proper subdomain of \mathbb{R}^2 , that γ is a quasihyperbolic or hyperbolic geodesic in D and that x_1, x_0, x_2 is an ordered triple of points in γ with $|x_1 - x_0| = |x_2 - x_0| = r$. If D contains a component of $C(x_0, r) \setminus \{x_1, x_2\}$, then

$$(2.10) r \le a d(x_0, \partial D)$$

where a is an absolute constant.

PROOF OF LEMMA 2.9 FOR THE QUASIHYPERBOLIC CASE. Suppose that γ is a quasihyperbolic geodesic in D. By performing a preliminary similarity mapping we may assume that $x_0 = 0$ and that $d(0, \partial D) = 1$. Next by hypothesis, $C(0, r) \setminus \{x_1, x_2\}$ has a component C which joins x_1 and x_2 in D; by replacing γ and C by subarcs if necessary, we may assume that γ and C meet just at the points x_1 and x_2 and hence bound a Jordan domain C which lies in C.

Let
$$\gamma_j = \gamma(x_j, 0)$$
 for $j = 1, 2$. Then $C\left(0, \frac{3r}{4}\right) \cap G$ has a component \tilde{C} which

joins $y_1 \in \gamma_1$ to $y_2 \in \gamma_2$ in G. Let

(2.11)
$$E_1 = \left\{ x \in \widetilde{C} \colon d(x, \gamma_1) \le \min\left(\frac{r}{4}, d(x, \gamma_2)\right) \right\},$$

$$E_2 = \left\{ x \in \widetilde{C} \colon d(x, \gamma_2) \le \min\left(\frac{r}{4}, d(x, \gamma_1)\right) \right\}.$$

Then E_1 and E_2 are relatively closed subsets of the open arc \tilde{C} with $y_1 \in \bar{E}_1 \setminus \bar{E}_2$ and $y_2 \in \bar{E}_2 \setminus \bar{E}_1$. Suppose that $x \in E_1 \cap E_2$. Then (2.11) implies that

$$d = d(x, \gamma_1) = d(x, \gamma_2) \le \frac{r}{4}$$

and since $|x| = \frac{3r}{4}$, the disk $\bar{B}(x,d)$ lies in D, meets both γ_1 and γ_2 but does not contain 0. Hence $\bar{B}(x,d) \cap \gamma$ is not connected and we have a contradiction to Theorem 2.2 in [M]. Thus $E_1 \cap E_2 = \emptyset$ and it follows that $\tilde{C} \setminus (E_1 \cup E_2)$ contains an open subarc α with endpoints $z_1 \in E_1$ and $z_2 \in E_2$. Moreover, we see from (2.11) that

(2.12)
$$d(x, \gamma_1 \cup \gamma_2) \ge \frac{r}{4}, \quad d(x, \partial D) \ge d(x, \partial G) \ge \frac{r}{4}$$

for $x \in \bar{\alpha}$ and that $d(z_1, \gamma_1) = d(z_2, \gamma_2) = \frac{r}{4}$. Thus we can choose points $w_1 \in \gamma_1$ and $w_2 \in \gamma_2$ such that

$$|z_1 - w_1| = |z_2 - w_2| = \frac{r}{4}.$$

We now apply Lemmas 2.1 and 2.6 to obtain upper and lower bounds for $k_D(w_1, w_2)$ involving r. Let $d_i = d(w_i, \partial D)$ for j = 1, 2. Since

$$d(z_j,\partial D) \geq \frac{r}{4},$$

(2.13) and Lemma 2.1 imply that

$$k_D(w_j, z_j) \le \log\left(1 + \frac{r}{2d_i}\right)$$

and hence with (2.12) that

$$(2.14) k_D(w_1, w_2) \le k_D(w_1, z_1) + k_D(w_2, z_2) + k_D(z_1, z_2)$$

$$\le \log\left(1 + \frac{r}{2d_1}\right) + \log\left(1 + \frac{r}{2d_2}\right) + 6\pi.$$

Next $d(0, \partial D) = 1$ and

$$l_j = l(\gamma(w_j, 0)) \ge |w_j| \ge |z_j| - |w_j - z_j| = \frac{r}{2}$$

for j = 1, 2. Since γ is a quasihyperbolic geodesic,

$$k_D(w_j, 0) \ge \log \frac{(d_j + 1 + l_j)^2}{4d_j} \ge \log \left(1 + \frac{r}{2d_j}\right) + \log \frac{r}{8}$$

by Lemma 2.6 and we obtain

$$k_D(w_1, w_2) = k_D(w_1, 0) + k_D(w_2, 0)$$

(2.15)
$$\ge \log\left(1 + \frac{r}{2d_1}\right) + \log\left(1 + \frac{r}{2d_2}\right) + 2\log\frac{r}{8}.$$

Inequalities (2.14) and (2.15) then imply (2.10) with $a = 8e^{3\pi}$ completing the proof for the quasihyperbolic case.

The proof for the hyperbolic case follows directly from the following result.

2.16. Lemma. Suppose that D is a simply connected proper subdomain of R^2 and that γ is a hyperbolic geodesic joining x_1 and x_2 in D. For each $x_0 \in \gamma \setminus \{x_1, x_2\}$ there exists a crosscut α of D containing x_0 which separates the components of $\gamma \setminus \{x_0\}$ in D and satisfies

$$(2.17) l(\alpha) \le c d(x_0, \partial D)$$

where c is an absolute constant.

PROOF OF LEMMA 2.16. Let f be a conformal mapping of the unit disk B onto D normalized so that $y_j = f^{-1}(x_j)$ are points of the real axis L and $y_0 = 0$. Next let C_1 and C_2 denote the components of $\partial B \setminus L$. By Corollary 10.3 in [P1] we can choose for j = 1, 2 an open segment β_j joining 0 to C_j such that

$$l(f(\beta_j)) \leq \frac{c}{2} d(f(0), \partial D) = \frac{c}{2} d(x_0, \partial D),$$

where c is an absolute constant. Then $\alpha = f(\beta_1 \cup \{0\} \cup \beta_2)$ is a crosscut of D with the desired properties.

PROOF OF LEMMA 2.9 FOR THE HYPERBOLIC CASE. Suppose now that γ is a hyperbolic geodesic in D, let C denote the component of $C(x_0, r) \setminus \{x_1, x_2\}$ which joins x_1 and x_2 in D and let α be the crosscut described in Lemma 2.16. Since α separates x_1 and x_2 , α must join x_0 and C in D. Hence

$$(2.18) r \le l(\alpha)$$

and we obtain (2.10) with a = c from (2.17) and (2.18).

3. Quasihyperbolic geodesics as cone arcs.

Suppose that D is a proper subdomain of \mathbb{R}^n . We derive in this section two criteria for a quasihyperbolic geodesic γ in D to be a cone arc. We begin with the following preliminary result.

3.1. LEMMA. Suppose that γ is a rectifiable arc which joins x_1 to x_0 in D and that $c \ge 1$. If

(3.2)
$$k_{D}(\gamma(y_{1}, y_{2})) \leq c \log \left(1 + \frac{|y_{1} - y_{2}|}{d(y_{1}, \partial D)}\right)$$

for all y_1, y_2 in γ with y_1 between x_1 and y_2 , then γ is a b-cone arc where b depends only on c and a,

(3.3)
$$a = \sup_{y \in y} \frac{d(y, \partial D)}{d(x_0, \partial D)} < \infty.$$

PROOF. We define inductively a sequence of points y_1, \ldots, y_{m+1} in γ as follows. Set $y_1 = x_1$, suppose that y_j has been defined for some $j \ge 1$ and set $d_j = d(y_j, \partial D)$. If

$$d(x_0, \partial D) \ge 2d_i$$

let y_{i+1} denote the first point of $\gamma(y_i, x_0)$ for which

(3.4)
$$d_{i+1} = d(y_{i+1}, \partial D) = 2d_i$$

as we traverse γ from y_j towards x_0 ; otherwise set $y_{j+1} = x_0$ and m = j. Next let $\gamma_j = \gamma(y_j, y_{j+1})$ and $l_j = l(\gamma_j)$. If $x \in \gamma_j$, then

$$d(x, \partial D) \leq 2d_j$$

if $i = 1, \dots, m-1$ and

$$d(x, \partial D) \le a d(x_0, \partial D) \le 2ad_m$$

if j = m; hence

(3.5)
$$\frac{l_j}{d_j} \leq 2a \int_{\gamma_j} d(x, \partial D)^{-1} ds = 2a k_D(\gamma_j)$$

for j = 1, ..., m. Next (3.2) implies that

(3.6)
$$k_{D}(\gamma_{j}) \leq c \log \left(1 + \frac{l_{j}}{d_{j}}\right) \leq c \left(\frac{l_{j}}{d_{j}}\right)^{1/2}$$

and we conclude that

$$(3.7) l_j \le (2ac)^2 d_j$$

for all j.

Now fix $x \in \gamma$. Then $x \in \gamma_j$ for some $j \leq m$ and

(3.8)
$$\log \frac{d_j}{d(x,\partial D)} \le k_D(y_j, x) \le k_D(y_j) \le 2ac^2$$

by Lemma 2.6 or Lemma 2.1 of [GP], (3.6) and (3.7). Hence by (3.7), (3.4) and (3.8),

$$\begin{split} l(\gamma(x_1, x)) & \leq \sum_{1}^{j} l_i \leq (2ac)^2 \sum_{1}^{j} d_i \leq (2ac)^2 \sum_{1}^{j} 2^{i-j} d_j \\ & \leq 8(ac)^2 d_i \leq b \, d(x, \partial D) \end{split}$$

where $b = 8(ac)^2 e^{2ac^2}$. This is the desired inequality (1.3).

Condition (3.2) allows us to characterize the quasihyperbolic geodesics which are cone arcs.

3.9 THEOREM. Suppose that γ is a quasihyperbolic geodesic joining x_1 to x_0 in D. If γ satisfies (3.2), then γ is a b-cone arc where b depends only on c in (3.2) and a in (3.3). Conversely, if γ is a b-cone arc, then γ satisfies (3.2) where c depends only on b.

PROOF. The sufficiency is an immediate consequence of Lemma 3.1. For the necessity, since γ is a quasihyperbolic geodesic, it suffices to show there exists a constant c such that

(3.10)
$$k_D(y_1, y_2) \le c \log \left(1 + \frac{|y_1 - y_2|}{d(y_1, \partial D)} \right)$$

for all $y_1, y_2 \in \gamma$ with $y_1 \in \gamma(x_1, y_2)$.

Fix $y_1, y_2 \in \gamma$ and let $d = d(y_1, \partial D)$, $t = |y_1 - y_2|$, $l = l(\gamma(y_1, y_2))$. If $t \le \frac{d}{2}$, then $d(y_2, \partial D) \ge t$ and

(3.11)
$$k_D(y_1, y_2) \le \log\left(1 + \frac{2t}{d}\right) \le 2\log\left(1 + \frac{t}{d}\right)$$

by Lemma 2.1; this is the required inequality (3.10) with c = 2. If $t > \frac{d}{2}$, choose $y \in \gamma$ so that $l(\gamma(y_1, y)) = \frac{d}{2}$. Then $|y_1 - y| \le \frac{d}{2}$ and

$$(3.12) k_{\mathcal{D}}(y_1, y) \le \log 2$$

by (3.11). Next if γ is parametrized by arclength s with $\gamma(0) = y_1$, then for each $x \in \gamma(y_1, y_2)$

$$s \leq l(\gamma(x_1, x)) \leq b d(x, \partial D)$$

whence

(3.13)
$$k_D(y, y_2) = \int_{\gamma(y, y_2)} d(x, \partial D)^{-1} ds \le b \int_{d/2}^{l} s^{-1} ds = b \log \frac{2l}{d}$$

by (1.3). Finally

$$l \le l(\gamma(x_1, y_2)) \le b d(y_2, \partial D) \le b(d(y_1, \partial D) + |y_1 - y_2|) = b(t + d)$$

by (1.3), and since b > 1,

$$\begin{split} k_D(y_1, y_2) & \leq \log 2 + b \log (2b) + b \log \left(1 + \frac{t}{d}\right) \\ & \leq 2b \log (2b) + b \log \left(1 + \frac{t}{d}\right) \\ & \leq \left(\frac{2b \log (2b)}{\log (3/2)} + b\right) \log \left(1 + \frac{t}{d}\right) \end{split}$$

by (3.12) and (3.13). Thus again we obtain inequality (3.10) with c = c(b) and the proof for Theorem 3.9 is complete.

We derive next a second criterion for a quasihyperbolic geodesic γ joining x_1 to x_0 in D to be a cone arc. In this case, inequality (3.2) is replaced by an engulfing condition, namely that for some constant $c \ge 1$,

(3.14)
$$\gamma(x_1, x) \subset \bar{B}(x, c d(x, \partial D))$$

for all $x \in \gamma$.

- 3.15. REMARK. It follows from [MS, pp. 385–386] that D is a John domain with center x_0 if and only if for each $x_1 \in D$ there exists an arc γ from x_1 to x_0 which satisfies (3.14) for some constant c = c(D). Thus condition (3.14) characterizes John domains. However, an arbitrary arc γ which satisfies (3.14) need not be a b-cone arc with b = b(c).
- 3.16 THEOREM. Suppose that γ is a quasihyperbolic geodesic joining x_1 to x_0 in D. If γ satisfies (3.14), then γ is a b-cone arc where b depends only on c and n. Conversely, if γ is a b-cone arc, then γ satisfies (3.14) where c = b.

PROOF. The necessity is an immediate consequence of inequality (1.3). For the sufficiency we again define inductively a sequence of points y_1, \ldots, y_{m+1} in γ . Set

 $y_1 = x_1$, suppose that y_i has been defined for some $j \ge 1$ and set $d_i = d(y_i, \partial D)$. If

$$|x_0 - y_i| \ge \frac{1}{2}d_i,$$

let y_{i+1} denote the last point of $\gamma(y_i, x_0)$ for which

$$|y_{i+1} - y_i| = \frac{1}{2}d_i$$

as we traverse γ from y_i towards x_0 ; otherwise let $y_{i+1} = x_0$ and m = j.

Now set $\gamma_j = \gamma(y_j, y_{j+1})$ and $l_j = l(\gamma_j)$. If B is any ball with $\bar{B} \subset D$, then $\bar{B} \cap \gamma$ is connected by Theorem 2.2 in [M] because γ is a quasihyperbolic. Hence it follows that

$$(3.17) \gamma_j \subset \bar{B}(y_j, \frac{1}{2}d_j)$$

for j = 1, ..., m and that

$$(3.18) |y_k - y_i| \ge \frac{1}{2} d_i$$

for $1 \le j < k \le m$.

Since $|y_i - y_{i+1}| \leq \frac{1}{2}d_i$,

$$(3.19) t_D(y_i, y_{i+1}) \le \log 2$$

by Lemma 2.1 while

(3.20)
$$\log\left(1 + \frac{l_j}{d_i}\right) \le k_D(\gamma_j)$$

by Lemma 2.6. Because γ_j is a quasihyperbolic geodesic, these inequalities imply that $l_j \leq d_j$, and with (3.14) we conclude that

$$(3.21) l_j \le d_j \le (c+1)d_k$$

for $1 \le j \le k \le m$.

Choose an integer p = p(c, n) so that $8^{-n}p > (c + 1)^n$. Observe that if m > p, then for each $j \in (p, m]$ there exists an integer \tilde{j} such that

$$(3.22) 1 \leq j - \tilde{j} \leq p, \quad d_{\tilde{j}} \leq \frac{1}{2}d_{j}.$$

For if this were not the case we would have

$$(3.23) d_k > \frac{1}{2}d_i$$

for $j - p \le k < j$. Then the balls $B_k = B(y_k, \frac{1}{8}d_j)$ would be disjoint by (3.18) and (3.23), they would lie in $B = B(y_j, (c+1)d_j)$ by (3.14), and we would obtain

$$p\Omega_n(\frac{1}{8}d_i)^n = \sum m(B_k) \leq m(B) = \Omega_n((c+1)d_i)^n$$

contradicting our choice of the integer p.

Now fix $x \in \gamma$. Then $x \in \gamma_j$ for some integer $j \le m$. Next we can use inequality

(3.22) to define inductively a decreasing sequence of integers j_1, \ldots, j_{q+1} with $j_1 = j$ and $j_{q+1} = 0$ such that

$$(3.24) 1 \leq j_k - j_{k+1} \leq p, \quad d_{j_k} \leq 2^{1-k} d_{j_k}$$

for k = 1, ..., q. Then

$$l(\gamma(x_1, x)) \leq \sum_{1}^{q} (l_{j_k} + \dots + l_{j_{k+1}+1})$$

$$\leq \sum_{1}^{q} (j_k - j_{k+1})(c+1)d_{j_k}$$

$$\leq 2p(c+1)d_j$$

by (3.21) and (3.24). Finally $x \in \bar{B}(y_i, \frac{1}{2}d_i)$ by (3.17). Hence

$$(3.26) d(x, \partial D) \ge \frac{1}{2} d_j$$

and we obtain (1.3) with b = 4p(c + 1) from (3.25) and (3.26). This completes the proof of Theorem 3.16.

We require the following hyperbolic analogue of Theorem 3.16 in what follows.

3.27. THEOREM. Suppose that D is a simply connected domain in R^2 and that γ is a hyperbolic geodesic joining x_1 to x_0 in D. If γ satisfies (3.14), then γ is a b-cone arc where b depends only on c. Conversely, if γ is a b-cone arc, then γ satisfies (3.14) where c = b.

PROOF. The necessity is clear. For the sufficiency we define the points y_1, \ldots, y_{m+1} in γ as in the proof for Theorem 3.16. If B is any disk with $\overline{B} \subset D$, then $\overline{B} \cap \gamma$ is connected by Theorem 2 in [J]; hence (3.17) and (3.18) hold as above. Next since D is simply connected, the Schwarz lemma and Koebe distortion theorem imply that

(3.28)
$$\frac{1}{4}d(x,\partial D)^{-1} \le \rho_D(x) \le d(x,\partial D)^{-1}$$

where ρ_D is the hyperbolic density in D. Thus for $1 \le j \le m$,

$$h_D(y_i, y_{i+1}) \le k_D(y_i, y_{i+1}) \le \log 2$$

and

$$\frac{1}{4}\log\left(1+\frac{l_j}{d_j}\right) \le \frac{1}{4}k_D(\gamma_j) \le h_D(\gamma_j)$$

by (3.19), (3.20) and (3.28). Hence $l_j \le 15d_j$,

$$(3.29) l_j \le 15d_j \le 15(c+1)d_k$$

for $1 \le j \le k \le m$ and the proof concludes as above with (3.29) in place of (3.21).

4. Simply connected John domains in R².

We show next that quasihyperbolic and hyperbolic geodesics in a simply connected John domain D in \mathbb{R}^2 satisfy the cone condition (1.3).

4.1. THEOREM. Suppose that D is a simply connected c-John domain in \mathbb{R}^2 with center x_0 and that x_1 is a point in D. If γ is either a quasihyperbolic or hyperbolic geodesic from x_1 to x_0 in D, then γ is a b-cone arc where b depends only on c.

PROOF. Let a denote the absolute constant in Lemma 2.9. By Theorems 3.16 and 3.27, it is sufficient to show that γ satisfies the engulfing condition

$$(4.2) \gamma(x_1, x) \subset \bar{B}(x, (a+2)(2c+1)d(x, \partial D))$$

for all $x \in \gamma$.

Suppose that (4.2) does not hold for some $x \in \gamma$ and let $d = d(x, \partial D)$ and r = (a + 1)d. Then there exists a point $z_1 \in \gamma(x_1, x)$ such that

$$(4.3) (a+2)(2c+1)d < |z_1-x| \le \operatorname{dia}(D),$$

and since D is a c-John domain with center x_0 , we see that

$$|x_0 - x| \ge d(x_0, \partial D) - d(x, \partial D) \ge \frac{\operatorname{dia}(D)}{2c} - d > (a+1)d = r.$$

Thus x_0 and x are separated by C(x, r). Then since d < r and since D is simply connected, $C(x, r) \setminus D \neq \emptyset$ and there exists an open subarc C of $C(x, r) \cap D$ which separates x_0 and x in D. (See, for example, Theorem VI.7.1 in [N]). In particular, there exists a point $y_0 \in \gamma(x_0, x) \cap C$.

Suppose next that $\gamma(x_1, x) \cap C = \emptyset$ and let z_1 be as in (4.3). By hypothesis there exists a c-cone arc β joining z_1 to x_0 in D which must intersect C at some point z. With (4.3) we obtain

$$\operatorname{dia}(C) \ge d(z, \partial D) \ge \frac{1}{c} l(\beta(z_1, z)) \ge \frac{1}{c} |z_1 - z| \ge \frac{1}{c} (|z_1 - x| - |z - x|) > 2r,$$

contradicting the fact that C is a subarc of C(x, r). We conclude that there exists a point $y_1 \in \gamma(x_1, x) \cap C$.

Now y_0, x, y_1 is an ordered triple of points on γ , $|y_0 - x| = |y_1 - x| = r$ and C(x, r) contains a subarc which joins y_0 and y_1 in D. Hence Lemma 2.9 implies that

$$(a+1)d = r \le a d(x, \partial D) = ad$$

and we have a contradiction. Thus (4.2) holds for each $x \in \gamma$ and the proof for Theorem 4.1 is complete.

There are many ways to describe the class of simply connected John domains in \mathbb{R}^2 . The following characterization, reminiscent of Ahlfors' beautiful criterion for quasicircles, follows from results in Sections 2 and 3. It arose in the course of a coversation with C. Pommerenke; see [P2].

4.4. THEOREM. Suppose that D is a simply connected bounded domain in R^2 . Then D is a John domain if and only if there exists a constant a such that for each crosscut α of D,

(4.5)
$$\min (\operatorname{dia}(D_1), \operatorname{dia}(D_2)) \le a \operatorname{dia}(\alpha)$$

where D_1 and D_2 are the components of $D \setminus \alpha$.

PROOF. Suppose that D is a John domain with center x_0 , let α be a crosscut of D and let D_1 be a component of $D \setminus \alpha$ which does not contain x_0 . If $x_1, x_2 \in D_1$, then for j = 1, 2 there exists a b-cone arc γ_j which joins x_j to x_0 and meets α in a point y_j ; obviously

$$|y_1 - y_2| \le \operatorname{dia}(\alpha)$$
.

Then (1.3) and the fact that α joins y_i to ∂D imply that

$$|x_i - y_i| \le l(\gamma_i(x_i, y_i)) \le b d(y_i, \partial D) \le b \operatorname{dia}(\alpha)$$

for j = 1, 2. Thus

$$|x_1 - x_2| \le |x_1 - y_1| + |y_1 - y_2| + |x_2 - y_2| \le (2b + 1) \operatorname{dia}(\alpha)$$

and we obtain (4.5) with a = 2b + 1.

Suppose next that D satisfies condition (4.5) for some constant a. We show first there exists a point $x_0 \in D$ such that

(4.6)
$$\operatorname{dia}(D) \le 4ac \, d(x_0, \partial D),$$

where c is the absolute constant in Lemma 2.16. For this choose $y_1, y_2 \in D$ so that

$$\operatorname{dia}(D) \leq 2|y_1 - y_2|,$$

let γ be the hyperbolic geodesic joining y_1 and y_2 in D and choose $x_0 \in \gamma$ so that $|y_1 - x_0| = |y_2 - x_0|$. Then by Lemma 2.16 there exists a crosscut α of D containing x_0 which separates y_1 and y_2 and satisfies

$$(4.7) l(\alpha) \le c d(x_0, \partial D).$$

If D_1 , D_2 denote the components of $D \setminus \alpha$, then (4.5) implies that

(4.8)
$$\begin{cases} \operatorname{dia}(D) \leq 2|y_1 - y_2| \leq 4|y_j - x_0| \\ \leq 4 \min(\operatorname{dia}(D_1), \operatorname{dia}(D_2)) \leq 4a \, l(\alpha) \end{cases}$$

and we obtain (4.6) from (4.7) and (4.8).

Now fix $x_1 \in D$, let γ be the hyperbolic geodesic which joins x_1 to x_0 in D and choose $x \in \gamma \setminus \{x_0, x_1\}$. Again by Lemma 2.16 there exists a crosscut α of D containing x which separates the components of $\gamma \setminus \{x\}$ and satisfies

$$(4.9) l(\alpha) \le c d(x, \partial D).$$

Let D_0 and D_1 denote the components of $D \setminus \alpha$ which contain x_0 and x_1 , respectively, and set $r = ac \ d(x, \partial D)$. If $d(x_0, \partial D) \le 3r$, then

$$(4.10) dia(D_1) \le dia(D) \le 12acr$$

by (4.6). Otherwise since $a \ge 1$ and $c \ge 1$,

$$(4.11) |x - x_0| \ge d(x_0, \partial D) - d(x, \partial D) > 2n$$

and with (4.9) and (4.11) we obtain

$$B(x_0, r) \subset D \setminus \alpha$$
, dia $(D_0) > 2r$.

Then (4.5) and (4.9) imply that

$$\min(\operatorname{dia}(D_0),\operatorname{dia}(D_1)) \leq r$$

and hence that

$$(4.12) dia(D_1) \le r.$$

Since $\gamma(x_1, x) \subset D_1 \cup \{x\}$, we conclude from (4.10) and (4.12) that

$$\gamma(x_1, x) \subset \bar{B}(x, 12(ac)^2 d(x, \partial D))$$

and thus by Theorem 3.27 that γ is a b-cone arc where b = b(a). This completes the proof of Theorem 4.4.

5. Examples.

We conclude this paper with examples which show that a quasihyperbolic geodesic in a c-John domain need not be a b-cone arc with b = b(c) unless n = 2 and D is simply connected. Thus these hypotheses on D in Theorem 4.1 are necessary.

- 5.1. EXAMPLE. For each $b \ge 1$ there exists a doubly connected 10-John domain D_1 in \mathbb{R}^2 with center x_0 and a point x_1 in D_1 such that any b-cone arc from x_1 to x_0 is not a quasihyperbolic geodesic.
- 5.2. Example. There exists an infinitely connected 10-John domain D_2 in R^2 with center x_0 and, for each $b \ge 1$, a point x_1 in D_2 such that any b-cone arc from x_1 to x_0 is not a quasihyperbolic geodesic.

5.3. Basic construction. For each $\sigma \in (0, \frac{1}{4}]$ and $\tau \in [0, \frac{1}{4}]$ set

(5.4)
$$\begin{cases} S_1 = \{z = u + iv: \ \sigma^4 \le u \le \sigma, v = \tau + u \tan \theta\}, \\ S_2 = \{z = u + iv: \ \sigma^4 \le u \le \sigma, v = \tau - u \tan \theta\} \end{cases}$$

where $\theta = \arcsin(1/10)$, and let

(5.5)
$$D_0 = B(0,2) \setminus (S_1 \cup S_2), \quad x_0 = -1, \quad x_1 = \sigma^3 + i\tau.$$

5.6. LEMMA. D_0 is a 10-John domain with center x_0 .

PROOF. Fix $x = u + iv \in D_0$ and let

(5.7)
$$y = \begin{cases} \frac{x}{|x|} & \text{if } |x| \ge 1, \\ (1 - v^2)^{1/2} + iv & \text{if } |x| < 1 \text{ and } |v - \tau| \le u \tan \theta, \\ -(1 - v^2)^{1/2} + iv & \text{if } |x| < 1 \text{ and } |v - \tau| > u \tan \theta. \end{cases}$$

Then it is easy to check that $\alpha = [x, y]$ is a 10-cone arc joining x to y in D_0 . Next the unit circle contains an arc β joining y to x_0 with $l(\beta) \le \pi$ and $d(z, \partial D) \ge \frac{5}{8}$ for $z \in \beta$. Hence $\gamma = \alpha \cup \beta$ is a 10-cone arc from x to x_0 in D_0 .

5.8. LEMMA. If $b < \frac{6}{\sigma}$ and if γ is a b-cone arc from x_1 to x_0 in D_0 , then γ is not a quasihyperbolic geodesic.

PROOF. Fix $b < \frac{6}{\sigma}$, suppose that γ is a *b*-cone arc joining x_1 to x_0 in D_0 and set

$$T_1 = \{z = \sigma^4 + i(\tau + t): |t| \le \sigma^4 \tan \theta\}, \quad T_2 = \{z = \sigma + i(\tau + t): |t| \le \sigma \tan \theta\}.$$

Then $\gamma \cap T_2 \neq \emptyset$ since otherwise we could find a point $w \in \gamma \cap T_1$ such that

$$\frac{3}{4}\sigma^3 \le \sigma^3 - \sigma^4 \le l(\gamma(x_1, w)) \le bd(w, \partial D_0) \le b\sigma^4 \tan \theta < \frac{b\sigma^4}{9}$$

contradicting our coice of b.

Next set $y_1 = \sigma^4 + i\tau$, $z_1 = -\frac{1}{2} + i\tau$ and let w_1 be the first point in $\gamma \cap T_2$ as we traverse γ from x_1 towards x_0 . If $x \in \gamma(x_1, w_1)$, then

$$d(x, \partial D_0) \le \operatorname{Re}(x) \tan \theta < \frac{\operatorname{Re}(x)}{9}$$

and we obtain

(5.9)
$$k_{D_0}(\gamma) = \int_{\gamma} d(x, \partial D_0)^{-1} ds > 9 \log \left(\frac{\text{Re}(w_1)}{\text{Re}(x_1)} \right) = 18 \log \frac{1}{\sigma}.$$

Similarly if $x \in \alpha = [x_1, y_1]$, then

$$d(x, \partial D_0) \ge \text{Re}(x) \sin \theta = \frac{\text{Re}(x)}{10}$$

and hence

$$(5.10) k_{D_0}(x_1, y_1) \le \int_{\alpha} d(w, \partial D_0)^{-1} ds \le 10 \log \left(\frac{\operatorname{Re}(x_1)}{\operatorname{Re}(y_1)} \right) = 10 \log \frac{1}{\sigma}.$$

Next

$$d(y_1, \partial D_0) = \sigma^4 \tan \theta, \quad d(z_1, \partial D_0) \ge \frac{1}{2} + \sigma^4, \quad |y_1 - z_1| = \frac{1}{2} + \sigma^4$$

and thus

(5.11)
$$k_{D_0}(y_1, z_1) \le \log(1 + (2 + \sigma^{-4})\cot\theta) < 6\log\frac{1}{\sigma}$$

by Lemma 2.1. Finally $d(x, \partial D_0) \ge \frac{1}{2}$ for $x \in \beta = [z_1, x_0]$ and hence

(5.12)
$$k_{D_0}(z_1, x_0) \le 2l(\beta) < 2\log \frac{1}{\sigma}.$$

Then (5.9), (5.10), (5.11) and (5.12) imply that

(5.13)
$$k_{D_0}(x_1, x_0) < 18 \log \frac{1}{\sigma} < k_{D_0}(\gamma)$$

and hence that γ is not a quasihyperbolic geodesic in D_0 .

5.14 PROOF FOR EXAMPLE 5.1. Fix $b \ge 1$, let $\theta = \arcsin(1/10)$ and choose $\sigma \in (0, \frac{1}{4})$ so that $b < \frac{6}{\sigma}$. Next set

$$S_1 = \{ z = u + iv: \ \sigma^4 \le u \le \sigma, \ v = \tau + u \tan \theta \},$$

$$\tilde{S}_2 = \{ z = u + iv: \ \sigma^4 \le u \le 2, \ v = \tau - u \tan \theta \}$$

and let

$$D_1 = B(0,2) \setminus (S_1 \cup \tilde{S}_2).$$

Suppose that $x = u + iv \in D_1$. If |x| < 1, let y and α be as in the proof of Lemma 5.6. Then again there exists a subarc β of the unit circle such that $\gamma = \alpha \cup \beta$ is a 10-cone arc from x to y in D_1 . If $|x| \ge 1$, choose $\phi \in [-\pi, \pi]$ so that $x = |x| e^{i\phi}$ and let γ denote the arc defined by

$$x(t) = \begin{cases} |x|^{1-t} e^{i((1-t)\phi + t\pi)} & \text{if } \phi > -\theta, \\ |x|^{1-t} e^{i((1-t)\phi - t\pi)} & \text{if } \phi < -\theta, \end{cases} t \in [0, 1].$$

Then an elementary calculation shows that γ is again a 10-cone arc from x to x_0 in D_1 . Thus D_1 is a 10-John domain.

Next suppose that γ is a *b*-cone arc from $x_1 = \sigma^3$ to $x_0 = -1$ in D_1 . Then the proof of Lemma 5.8 with $\tau = 0$ implies that (5.9), (5.10), (5.11), (5.12) and (5.13) hold with D_1 in place of D_0 . Hence γ is not a quasihyperbolic geodesic in D_1 .

5.15. Proof for Example 5.2. Let $\theta = \arcsin(1/10)$, let

$$\begin{split} S_{1,j} &= \{z = u + iv: \ \sigma_j^4 \leq u \leq \sigma_j, \ v = \tau_j + u \tan \theta\}, \\ S_{2,j} &= \{z = u + iv: \ \sigma_j^4 \leq u \leq \sigma_j, \ v = \tau_j - u \tan \theta\} \end{split}$$

for j = 1, 2, ..., where $\sigma_i = \tau_i = 4^{-j}$, and set

$$D_2 = B(0,2) \setminus \bigcup_{1}^{\infty} (S_{1,j} \cup S_{2,j}).$$

Next fix $x = u + iv \in D_2$, let

(5.16)
$$y = \begin{cases} \frac{x}{|x|} & \text{if } |x| \ge 1, \\ (1 - v^2)^{1/2} + iv & \text{if } |x| < 1 \text{ and } |v - \tau_j| \le u \tan \theta \text{ for some } j, \\ -(1 - v^2)^{1/2} + iv & \text{if } |x| < 1 \text{ and } |v - \tau_j| > u \tan \theta \text{ for all } j, \end{cases}$$

and set

$$C_k = \{z = u + iv: \ 0 \le u < \infty, \ |v - \tau_k| \le u \tan \theta\}$$

for $k = 1, 2, \dots$ Then

$$(S_{1,k} \cup S_{2,k}) \subset \partial C_k, \quad (S_{1,j} \cup S_{2,j}) \cap C_k = \emptyset \quad \text{for } j \neq k,$$

and again it is easy to show that $\alpha = [x, y]$ is a 10-cone arc from x to y. Hence D_2 is a 10-John domain as in the proof of Lemma 5.6.

Finally fix $b \ge 1$, choose j so that $b\sigma_j < 6$ and let γ be a b-cone curve which joins $x_1 = \sigma_j^3 + i\tau_j$ to $x_0 = -1$ in D_2 . Then again the proof of Lemma 5.8 with $\sigma = \tau = \sigma_i = \tau_j$ shows that γ is not a quasihyperbolic geodesic in D_2 .

5.17. REMARK. Similar examples exist in \mathbb{R}^n for each $n \geq 2$. For example, in the n-dimensional analogue of the domain D_2 we replace each set $S_{1,j} \cup S_{2,j}$ by the lateral surface \sum_j of a frustum of an n-cone with vertex angle θ . Then when n > 2, the frustums \sum_j can be joined by segments so that the resulting domain has a connected boundary.

REFERENCES

- [GM] F. W. Gehring and O. Martio, Lipschitz classes and quasiconformal mappings, Ann. Acad. Sci. Fenn. 10 (1985), 203-219.
- [GO] F. W. Gehring and B. G. Osgood, Uniform domains and the quasi-hyperbolic metric, J. Analyse Math. 36 (1979), 50-74.
- [GP] F. W. Gehring and B. P. Palka, Quasiconformally homogeneous domains, J. Analyse Math. 30 (1976), 172-199.
- [J] V. Jørgensen, On an inequality for the hyperbolic measure and its applications in the theory of functions, Math. Scand. 4 (1956) 113-124.
- [M] G. J. Martin, Quasiconformal and bi-Lipschitz homeomorphisms, uniform domains and the quasihyperbolic metric, Trans. Amer. Math. Soc. 292 (1985), 169-191.
- [Ma] O. Martio, Definitions for uniform domains, Ann. Acad. Sci. Fenn. 5 (1980), 197-205.
- [MS] O. Martio and J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. 4 (1978/79), 383-401.
- [N] M. H. A. Newman, Elements of the Topology of Plane Sets of Points, Cambridge Univ. Press, 1954.
- [P1] C. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, 1975.
- [P2] C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer Verlag (to appear).

UNIV. OF MICHIGAN ANN ARBOR, MICHIGAN USA UNIV. OF TRONDHEIM NTH TRONDHEIM NORWAY UNIV. OF JYVÄSKYLÄ JYVÄSKYLÄ FINLAND