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QUASIHYPERBOLIC GEODESICS IN JOHN DOMAINS

F. W. GEHRING*, K. HAG and O. MARTIO

1. Introduction.

Suppose that D is a proper subdomain of euclidean n-space R". The quasi-
hyperbolic length of an arc y in D is defined as

(1.1) kp(y) = f d(x,0D)" ! ds,

where d(x, D) denotes the euclidean distance from x to 0D. Next the quasi-
hyperbolic distance between two points x,, x, in D is given by

(1.2) kp(xy,x,) = infkp(y),
Y
where the infimum is taken over all rectifiable arcs y joining x, to x, in D.
A quasihyperbolic geodesic is an arc y for which the infimum in (1.2) is attained; see
[GO], [GP] and [M].
Suppose that x,, x, € D and that b = 1. A rectifiable arc y is said to be a b-cone
arc from x, to x, if y joins x, to xo in D and if

(1.3) I(y(xy,x)) < bd(x,0D)

for all x ey; here y(x,, x) denotes the subarc of y between x; and x and [(x) the
euclidean length of an arc a. The domain D is then said to be a b-John domain with
center X, if for each x, € D there is a b-cone arc from x, to x,. Inequality (1.3)
implies that D contains the (curvilinear) b-cone

(1.4 Cone(y,b;x0) = | B(x,—l—l)—l(y(xl,x)))

xey
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with axis y, vertex x; and center x,; here B(x,r) denotes the open n-ball with
center x and radius r. If y is the closed segment [x,, xo], then Cone (, b; x,) is the

. . . . . (1
union of a finite euclidean cone with vertex angle § = arcsin (3) at x, and a ball

about x,.
A rectifiable arc y is said to be a double b-cone arc from x, to x, if y joins x, to x,
in D and if

L 1) < blx, — xal,
' min (I(p(x,, X)) 101, %)) < bd(x, 3D)

for all x € y. The domain D is said to be b-uniform if for each x,, x, € D there exists
a double b-cone arc from x, to x,. Inequality (1.5) implies that D contains the
double cone

Cone(y,, b; xo) U Cone(y,, b; x,)

where x, denotes the midpoint of y and y; = p(x;,x,) for j = 1,2.

The classes of John and uniform domains described above are closely related.
For example, D is a b-John domain if and only if all of its points are the vertices of
b-cones in D with a common center; D is b-uniform if an only if each pair of its
points are the vertices of two b-cones in D with a common center for which the
axis length sum does not exceed b times the distance between the vertices. In
particular, if D is b-uniform, then each pair of its points lie in the closure of
a b-John subdomain of D. Moreover, every bounded uniform domain is a John
domain [GM].

If D is c-uniform and if y is a quasihyperbolic geodesic which joins x, and x, in
D, then y is a double cone arc with b = b(c) [GO]. It is natural to ask if this result
has a counterpart for John domains. In particular, suppose that D is a c-John
domain with center x, and that y is a quasihyperbolic geodesic which joins x, to
Xo. Is y a b-cone arc for some b = b(c)? The purpose of this paper is to show that
the answer is yes when n = 2 and D is simply connected, and in general no when
n > 2 or D is multiply connected. We establish these assertions in Sections 4 and
5. Section 4 also contains a new characterization for simply connected John
domains in R2 In Section 3 we exhibit two criteria which are necessary and
sufficient for a quasihyperbolic geodesic y to satisfy the cone condition (1.3).
Section 2 contains estimates for the quasihyperbolic distance and a key lemma on
the location of a quasihyperbolic geodesic in a simply connected plane domain.

2. Estimates for the quasihyperbolic distance.

We derive here three estimates for the quasihyperbolic distance in a proper
subdomain D of R" which will be needed in the remainder of this paper.
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2.1 LEMMA. Suppose that x,,x, are points in D and that d, = d(x,,0D),
d, = d(x,,0D), t = |x; — x,|. If t <d; + d,, then

dy+d, +t
. k Slog-t—2—.
(2:2) p(x1,%;) < log d +d,—t
This bound is sharp. If t < d,, then
2t
(23) kD(xl,xZ) é lOg(l + 'd_'>
1

PROOF. Leta = [x,,x,]and B; = B(x;,d;)for j = 1,2. The triangle inequality
implies thatd, < d, + tandd, < d, + t. Then by making a preliminary change
of variables, we may assume that 0, x,, x, lie in a line A and that

(2.4) d} — |x,)? = d? — |x,|* = d%
Since B; B, = D,

(2.5) d(x,0D)* 2 d(x,d(B, U B,))?* = d* + |x|?
for xea.

Suppose that A is parametrized with respect to arclength s with A(0) = 0,
AMs;) = x;forj = 1,2and s, > 0; by relabeling we may assume that s, < s,. Then
t = s, — s, and we obtain

ko1, x2) = j (@ + Ix|?)"¥2ds

d2+32

= log——+

gd1+sl
di+d, +t
=log——*—
0gd1+d2_t

from integration and (2.4).
Next if D = B, U B, and if y is any arc joining x, and x, in D, then

d(x,dD)? < d? + |x|?

for xey and we obtain equality in (2.2). Finally (2.2) implies (2.3) whenever
t<d,.

2.6. LEMMA. Suppose that y is an arc which joins points x,,x, in D and that
dy = d(x,,0D), d, = d(x,,0D), | = I(y). Then

dy +d; + 1)

. >
(2 7) kD(‘Y) = log 4d1d2
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This bound is sharp. In particular,

(2.8) kp(y) = log(l + 7}—)
1

Proor. If y is parametrized by arclength s with y(0) = x,, then
dx,0D)<d, +s, d(x,0D)<d,+1—s
for xey. Hence r = 4(I + d, — d,)€[0,[] and we obtain (2.7) from

kp(y) = J d(x,0D)™ ' ds

r 1
gj dy + 5)"'ds +_[ dy+1—5)"'ds
V] r

(d +d, + I

=1
8" 44,4,

Equality holds if x, and x, are points in an open subinterval § of a line A,
y = [xy,x,]and D = (R"™\ A) u B. Finally (2.8) follows from (2.7) and the fact that
d,<d, +1

Our third estimate concerns the location of an arc which is a geodesic for either
the quasihyperbolic or hyperbolic metric in a simply connected proper subdo-
main D of R%. For each x e R? we let C(x,r) denote the circle with center x and
radius r.

2.9. LEMMA. Suppose that D is a simply connected proper subdomain of RZ, that
y is a quasihyperbolic or hyperbolic geodesic in D and that x, x4, X, is an ordered
triple of points in y with |x; — xo| = |x, — xo| = r. If D contains a component of
C(xo, )\ {x1,X,}, then

(2.10) r < ad(xy,0D)
where a is an absolute constant.

PROOF OF LEMMA 2.9 FOR THE QUASIHYPERBOLIC CASE. Suppose that y is
a quasihyperbolic geodesic in D. By performing a preliminary similarity map-
ping we may assume that x, = 0 and that d(0,0D) = 1. Next by hypothesis,
C(0,7)\ {x,,x,} hasacomponent C which joins x, and x, in D; by replacing y and
C by subarcs if necessary, we may assume that y and C meet just at the points x,
and x, and hence bound a Jordan domain G which lies in D.

Let y; = y(x;,0) for j = 1,2. Then C(O, —32:;) N G has a component C which
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joins y, €y, to y, €y, in G. Let

E, = {xeé: d(x,7,) £ min (%, d(X,Yz))},
@.11)

E, = {xeC‘: d(x,y,) < min (%,d(x,yl))}.

Then E, and E, are relatively closed subsets of the open arc C with y, e E,\ E,
and y,e E,\ E,. Suppose that xe E, n E,. Then (2.11) implies that

r
d= d(x’)’l) = d(x’yz) < Z

. 3r R .
and since |x| = T the disk B(x,d) lies in D, meets both y, and y, but does not

contain 0. Hence B(x,d) Ny is not connected and we have a contradiction to
Theorem 2.2 in [M]. Thus E, nE, = & and it follows that C\ (E, U E,)
contains an open subarc « with endpoints z, e E; and z, € E,. Moreover, we see
from (2.11) that

r

2.12) dx, V) 27 dx,3D) 2 d(x,06) 2 ¢

for xedand thatd(z,,y,) = d(z,,y,) = % Thus we can choose points w, €y, and
w, €y, such that

r

@13) 22 = wil = lz2 = wal = 7.

We now apply Lemmas 2.1 and 2.6 to obtain upper and lower bounds for
kp(wy,w,) involving r. Let d; = d(w;, dD) for j = 1,2. Since

r
>
d(z;,0D) 2 T
(2.13) and Lemma 2.1 imply that
r

and hence with (2.12) that

kp(wy,w;) < kp(wy,z1) + kp(wa,25) + kplz4,25)

(2.14) , .
< _ — .
=log(l + 2d,> +log<1 + 2d2> + 67
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Next d(0,0D) = 1 and
r
lj = I(V(sto» 2wl 2zl —Iw;—z = 2
for j = 1,2. Since y is a quasihyperbolic geodesic,

d;+1+1)>* r r
k ad LI LN — —
p(w;,0) = log 4, =log(1+ 24, + log g
by Lemma 2.6 and we obtain

kp(wy,w;) = kp(wy,0) + kp(w,,0)

(2.15) > _r r r
2 log l+2d1 + log 1+2d2 +210g8.

Inequalities (2.14) and (2.15) then imply (2.10) with a = 8¢3" completing the proof
for the quasihyperbolic case.

The proof for the hyperbolic case follows directly from the following result.

2.16. LEMMA. Suppose that D is a simply connected proper subdomain of R? and
that vy is a hyperbolic geodesic joining x, and x, in D. For each xo € y\ {x,, x,} there
exists a crosscut a of D containing x, which separates the components of y\ {x,} in
D and satisfies

2.17) (@) < cd(xq, D)
where c is an absolute constant.

PROOF OF LEMMA 2.16. Let f be a conformal mapping of the unit disk B onto
D normalized so that y; = f ~!(x;) are points of the real axis L and y, = 0. Next
let C, and C, denote the components of dB\ L. By Corollary 10.3 in [P1] we can
choose for j = 1,2 an open segment f; joining 0 to C; such that

I/ (B) < 5 d(f(0),3D) = 3 dixo, 3D),

where c is an absolute constant. Thena = (B, U {0} U ,)is a crosscut of D with
the desired properties.

PROOF OF LEMMA 2.9 FOR THE HYPERBOLIC CASE. Suppose now that y is
a hyperbolic geodesic in D, let C denote the component of C(xq, )\ {Xy, X2}
which joins x, and x, in D and let a be the crosscut described in Lemma 2.16.
Since « separates x, and x,, @ must join x, and C in D. Hence

(2.18) r < (o)
and we obtain (2.10) with a = ¢ from (2.17) and (2.18).
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3. Quasihyperbolic geodesics as cone arcs.

Suppose that D is a proper subdomain of R". We derive in this section two
criteria for a quasihyperbolic geodesic y in D to be a cone arc. We begin with the
following preliminary result.

3.1. LEMMA. Suppose that y is a rectifiable arc which joins x, to x4 in D and that
c2 1L If

ly1 = yal
(3.2) kp(y(y1,y,)) < clog(l + m)

forall y,,y, iny with y, between x, and y,, then y is a b-cone arc where b depends
only on ¢ and a,

d(y,oD)
33 a=sup————— < 0.
( ) ye)lv) d(xO’aD)

ProoF. We define inductively a sequence of points y,,..., ¥+ in y as follows.
Set y, = x,, suppose that y; has been defined for some j = 1 and set d; = d(y;, dD).
If

d(x,0D) = 2d;,
let y; ., denote the first point of y(y;, x,) for which
(3.4) djyy =d(y;+,,0D) = 2d;
as we traverse y from y; towards x,; otherwise set y;,; = x, and m = j. Next let
y;=9(¥; yj+1) and [; = I(y;). If x€y;, then

d(x,0D) < 2d;
ifj=1,...,m—1and
d(x,0D) < ad(xy,0D) < 2ad,,

if j = m; hence
(3.5) ,fT’ = 2"J d(x,0D)" ds = 2aknp(y;)
J Vi

for j = 1,...,m. Next (3.2) implies that

1. I, 1/2
(3.6) kp(y;) < clog(l + d—’) < c<—f—>
J

J

and we conclude that

3.7) I, £ (2ac)*d;
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for all j.

Now fix xey. Then x ey, for some j £ m and

(3.8) log < kp(y;x) < kp(y)) < 2ac?

d(x aD)
by Lemma 2.6 or Lemma 2.1 of [GP], (3.6) and (3.7). Hence by (3.7), (3.4) and
(3.8),

J j j . .
Iy(xy, %) £ Yl £ (2ac)* Y d; < 2ac)* Y. 27 1d;
1 1 1

< 8(ac)*d; < bd(x, D)
where b = 8(ac)?e?*’. This is the desired inequality (1.3).

Condition (3.2) allows us to characterize the quasihyperbolic geodesics which
are cone arcs.

3.9 THEOREM. Suppose that y is a quasihyperbolic geodesic joining x, to x, in D.
If y satisfies (3.2), then y is a b-cone arc where b depends only on c in(3.2) and a in
(3.3). Conversely, if y is a b-cone arc, then y satisfies (3.2) where ¢ depends only on b.

Proor. The sufficiency is an immediate consequence of Lemma 3.1. For the
necessity, since y is a quasihyperbolic geodesic, it suffices to show there exists
a constant ¢ such that

ly1 — yal

< -

(3.10) kp(yi,y2) = clog(l + d(y..oD)
for all y,,y, €y with y, e y(xy,y,).

d
Fix y,,y,€yandletd = d(y,,0D),t = |y, — y,|,] = l(y(y1,,). If t £ > then
d(y,,0D) = t and

2 t
(.11) kp(y1,y2) = log<1 + —}) = 2log<1 + 7)

. d
by Lemma 2.1; this is the required inequality (3.10) with ¢ = 2. If t > 5 choose

d d
yey so that l(y(y,, ) = - Then y1 =) £ 5 and

(3.12) kp(y1,y) < log2
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by (3.11). Next if y is parametrized by arclength s with y(0) = y,, then for each
x€Y(y1,¥2)

s £ l(y(x,,x)) < bd(x, oD)

whence

1
d(x,0D)"'ds < bj s lds = blog—21

dj2 d

(3.13) kp(y,y2) = ‘[

(¥, y¥2)
by (1.3). Finally

I = I(y(xy,y2)) < bd(y,,0D) < bd(y,,0D) + |y, — y,l) = b(t + d)
by (1.3), and since b > 1,

kp(¥1,y2) < log2 + blog(2b) + blog(l + 5)

< 2blog(2b) + blog<1 + %)

2blog(2b) t
S|—=F=—+b|logll+—
= ( log32) )\ T
by (3.12) and (3.13). Thus again we obtain inequality (3.10) with ¢ = ¢(b) and the
proof for Theorem 3.9 is complete.

We derive next a second criterion for a quasihyperbolic geodesic y joining x, to
Xo in D to be a cone arc. In this case, inequality (3.2) is replaced by an engulfing
condition, namely that for some constant ¢ = 1,

(3.14) (x4,x) = B(x, cd(x,0D))

for all xey.

3.15. REMARK. It follows from [MS, pp. 385-386] that D is a John domain
with center x, if and only if for each x, € D there exists an arc y from x, to x, which
satisfies (3.14) for some constant ¢ = ¢(D). Thus condition (3.14) characterizes
John domains. However, an arbitrary arc y which satisfies (3.14) need not be
a b-cone arc with b = b(c).

3.16 THEOREM. Suppose that y is a quasihyperbolic geodesic joining x, to xq in
D. If y satisfies (3.14), then y is a b-cone arc where b depends only on c and n.
Conversely, if y is a b-cone arc, then y satisfies (3.14) where ¢ = b.

ProoF. The necessity is an immediate consequence of inequality (1.3). For the
sufficiency we again define inductively a sequence of points y,,..., ¥+, in y. Set
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y; = Xy, suppose that y; has been defined for some j 2 1 and set d; = d(y;, D). If
IXo — yjl 2 3d;,

let y;, ; denote the last point of y(y;, x,) for which
yjer =yl = 14,

as we traverse y from y; towards x,; otherwise let y;,, = xo and m = j.

Now set y; = ¥(y;,yj+1) and [; = I(y;). If Bis any ball with Bc D,thenBnyis
connected by Theorem 2.2 in [M] because y is a quasihyperbolic. Hence it
follows that

(3.17) yj < B(y;,4d))
forj=1,...,mand that
(3.18) 1ye — y;l 2 34;

forl<j<k=m
Since yi—yjedl = fdj,

(3.19) tp(yis yi+1) < log2
by Lemma 2.1 while

I.
(3.20) log<1 + 7’) < kp(y))

J

by Lemma 2.6. Because y; is a quasihyperbolic geodesic, these inequalities imply
that [; < d;, and with (3.14) we conclude that

(3.21) I, <4, £ (c + 1,

forl<jsk<m
Choose an integer p = p(c,n) so that 8 "p > (c + 1)". Observe that if m > p,
then for each je(p, m] there exists an integer j such that

(3.22) 1<j-j<p d;r<1id;
For if this were not the case we would have
(3.23) d, > 4d;

for j — p < k < j. Then the balls B, = B(y,,#d;) would be disjoint by (3.18) and
(3.23), they would lie in B = B(y;, (c + 1)d;) by (3.14), and we would obtain

PR, (&d)" = 3 m(B,) < m(B) = Q,((c + 1)d)’

contradicting our choice of the integer p. \
Now fix xey. Then x € y; for some integer j < m. Next we can use inequality



QUASIHYPERBOLIC GEODESICS IN JOHN DOMAINS 85

(3.22) to define inductively a decreasing sequence of integers jy,...,j,+; With
ji1=jandj,,, = 0such that

(3.24) 1 Sje—jesr Sp, d;, 27K,

fork =1,...,q. Then

Iy(x 1, %)) =

~Ms

G+ oo+ 1, +1)

q
(3.25) < Y Gk —Jer e + D,
1
< 2p(c + 1)d;
by (3.21) and (3.24). Finally xe B(yj, 1d;) by (3.17). Hence
(3.26) d(x,0D) 2 1d;

and we obtain (1.3) with b = 4p(c + 1) from (3.25) and (3.26). This completes the
proof of Theorem 3.16.

We require the following hyperbolic analogue of Theorem 3.16 in what
follows.

3.27. THEOREM. Suppose that D is a simply connected domain in R? and that y is
a hyperbolic geodesic joining x, to xq in D. If y satisfies (3.14), then y is a b-cone arc
where b depends only on c. Conversely, if y is a b-cone arc, then y satisfies (3.14)
where ¢ = b.

Proor. The necessity is clear. For the sufficiency we define the points
Yis--+»Ym+ 1 inyasin the proof for Theorem 3.16. If Bis any disk with B < D, then
B~y is connected by Theorem 2 in [J7]; hence (3.17) and (3.18) hold as above.
Next since D is simply connected, the Schwarz lemma and Koebe distortion
theorem imply that

(3.28) }d(x,0D)™" < pp(x) < d(x,0D) ™"
where p), is the hyperbolic density in D. Thusfor 1 £j < m,
hp(yjsyj+1) < kp(yjsyj+1) S log2

and

1 l; 1

'4_]03 1+ Tj = 'Zkb(?’j) < hp(y;)
by (3.19), (3.20) and (3.28). Hence I; < 15d;,
(3.29) l; £ 15d; £ 15(c + 1)d;

for 1 £j £ k £ mand the proof concludes as above with (3.29) in place of (3.21).
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4. Simply connected John domains in R2.

We show next that quasihyperbolic and hyperbolic geodesics in a simply
connected John domain D in R? satisfy the cone condition (1.3).

4.1. THEOREM. Suppose that D is a simply connected c-John domain in R? with
center x, and that x, is a point in D. If y is either a quasihyperbolic or hyperbolic
geodesic from x, to x, in D, then v is a b-cone arc where b depends only on c.

PROOF. Let a denote the absolute constant in Lemma 2.9. By Theorems 3.16
and 3.27, it is sufficient to show that y satisfies the engulfing condition

4.2 (x4, %) = B(x,(a + 2)(2c + 1)d(x, D))
for all xey.

Suppose that (4.2) does not hold for some xey and let d = d(x,0D) and
r = (a + 1)d. Then there exists a point z, € y(x,, x) such that

4.3) (a+2)(2c + 1)d < |z, — x| < dia(D),
and since D is a c-John domain with center x,, we see that

|xo — x| = d(xq,0D) — d(x,0D) = d;‘;i_D_)_ —d>(a+1ld=r.
Thus x, and x are separated by C(x,r). Then since d < r and since D is simply
connected, C(x,r)\ D # @ and there exists an open subarc C of C(x,r) n D which
separates x, and x in D. (See, for example, Theorem VI.7.1 in [N]). In particular,
there exists a point y, € y(xq, x) N C.

Suppose next that y(x,,x) N C = @ and let z, be as in (4.3). By hypothesis there
exists a c-cone arc f§ joining z, to x, in D which must intersect C at some point z.
With (4.3) we obtain

ia (€) 2 dlz, D) 2 —IBler, D) 2 < ley — 21 2+ lley — x| — |z — x) > 2,

contradicting the fact that C is a subarc of C(x, r). We conclude that there exists
a point y, €y(x,,x) N C.

Now yo, X, y, is an ordered triple of points on y, [y, — x| = |y; — x| = r and
C(x,r) contains a subarc which joins y, and y, in D. Hence Lemma 2.9 implies
that

@+ 1)d =r < ad(x,dD) = ad

and we have a contradiction. Thus (4.2) holds for each x ey and the proof for
Theorem 4.1 is complete.
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There are many ways to describe the class of simply connected John domains
in R2. The following characterization, reminiscent of Ahlfors’ beautiful criterion
for quasicircles, follows from results in Sections 2 and 3. It arose in the course of
a coversation with C. Pommerenke; see [P2].

4.4. THEOREM. Suppose that D is a simply connected bounded domain in R?.
Then D is a John domain if and only if there exists a constant a such that for each
crosscut o of D,

4.5) min (dia(D,),dia(D,)) £ adia(x)
where D, and D, are the components of D\ a.

PROOF. Suppose that D is a John domain with center x,, let « be a crosscut of
D and let D, be a component of D\ a which does not contain x,. If x;,x,€D,,
then for j = 1,2 there exists a b-cone arc y; which joins x; to x, and meets o in
a point y; obviously

ly1 — 2l < dia(a).
Then (1.3) and the fact that « joins y; to dD imply that
Ix; — yl S Uvj(x; ;) < bd(y; 0D) < bdia(x)
for j = 1,2. Thus
Xy — x5l S Ixy — il + lyy — yal + Ix2 — y2| = (2b + 1) dia(a)

and we obtain (4.5) witha = 2b + 1.
Suppose next that D satisfies condition (4.5) for some constant a. We show first
there exists a point x, € D such that

4.6) dia (D) £ 4ac d(x,,dD),
where c is the absolute constant in Lemma 2.16. For this choose y,, y, € D so that
dia(D) = 2|y, — yl,

let y be the hyperbolic geodesic joining y, and y, in D and choose x, €y so that
[¥1 = Xol = |y2 — Xol- Then by Lemma 2.16 there exists a crosscut o of D contain-
ing x, which separates y, and y, and satisfies

4.7 (@) £ cd(xq, 0D).
If D,, D, denote the components of D\ «, then (4.5) implies that
dia (D) £ 2|y; — yal < 4ly; — Xol

“4.8) { < 4min(dia(D,),dia(D,)) < 4al(a)
and we obtain (4.6) from (4.7) and (4.8).
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Now fix x, € D, let y be the hyperbolic geodesic which joins x, to x, in D and
choose x e y\ {xo,x,}. Again by Lemma 2.16 there exists a crosscut « of D con-
taining x which separates the components of y\ {x} and satisfies

4.9) I(@) < cd(x, 3D).

Let D, and D, denote the components of D\ & which contain x, and x;,,
respectively, and set r = ac d(x, oD). If d(x,,0D) < 3r, then

(4.10) dia(D,) < dia(D) £ 12acr
by (4.6). Otherwise sincea = 1andc = 1,
(4.11) |x — xo| = d(xq, D) — d(x,0D) > 2n

and with (4.9) and (4.11) we obtain

B(xy,r) =« D\ a, dia(Dgy) > 2r.
Then (4.5) and (4.9) imply that

min (dia (Dy),dia(D,)) < r
and hence that
4.12) dia(D,) =
Since y(x,, x) = D, U {x}, we conclude from (4.10) and (4.12) that
9(x,,x) < B(x, 12(ac)*d(x, 0D))

and thus by Theorem 3.27 that y is a b-cone arc where b = b(a). This completes
the proof of Theorem 4.4.
5. Examples.

We conclude this paper with examples which show that a quasihyperbolic
geodesic in a c-John domain need not be a b-cone arc with b = b(c) unless n = 2
and D is simply connected. Thus these hypotheses on D in Theorem 4.1 are
necessary.

5.1. EXAMPLE. For each b 2 1 there exists a doubly connected 10-John domain
D, in R? with center x, and a point x, in D, such that any b-cone arc from x, to x is
not a quasihyperbolic geodesic.

5.2. EXAMPLE. There exists an infinitely connected 10-John domain D, in R?
with center x, and, for each b 2 1, a point x, in D, such that any b-cone arc from x
to X¢ is not a quasihyperbolic geodesic.
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5.3. BasiC CONSTRUCTION. For each 6€(0,4] and t€[0,4] set

(5.4) {Sx={z=u+iv: 6*<u<o,v=r1+utanf)},

S;={z=u+iv 6*Su<o,v=1—utanb}
where 0 = arcsin(1/10), and let
(5.5) Do = BO,2\(5;US,), xo=—1, x, =0+ it
5.6. LEMMA. D, is a 10-John domain with center x,.
PROOF. Fix x = u + ive D, and let

iz,
Ix]

(57) A=vHY2 +ivif |x| <1 and |v — 7] S utanb,
—(1=v)"? +ivif x| <1 and |[v — 7| > utané.

Then it is easy to check that « = [x, y] is a 10-cone arc joining x to y in D,. Next
the unit circle contains an arc f joining y to x, with I(8) < n and d(z,dD) 2 3 for
zef. Hence y = a U B is a 10-cone arc from x to x, in D,

6
5.8. LeMMA. If b < > and if y is a b-cone arc from x, to x, in Dy, then vy is not

a quasihyperbolic geodesic.
. 6 . C .
ProOOF. Fix b < —,suppose that y is a b-cone arc joining x, to x, in D, and set
o

Ti={z=0*+it+1) |t| Sc*tan}, T,={z=0+i(t +1) |t| £ otanb}.

Then y n T, # 0 since otherwise we could find a point wey n T, such that
4

b
30% < 0 — 0* < I(y(x;, w)) < bd(w,dD,) < bo* tan § < —g—

contradicting our coice of b.

Nextsety, = ¢* + it,z; = —% + it and let w, be the first pointiny N T, as we
traverse y from x, towards x,. If xey(x,, w,), then
R
d(x,dDy) < Re(x)tan < eg(x)
and we obtain
- Re(w,) 1
= 1 = el
(5.9) kp,(y) = L d(x,0Dgy)" ' ds > 9log< Re(x,) 181og p
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Similarly if xea = [x,, y,], then

d(x,0Dq) = Re(x)sin(‘)=—I—{i;—((—;2
and hence
- Re(x,) 1
510) kp (xy,y,) < | dw,0Dy)"'ds < 10lo (—‘—)= 10log—.
( ) po(X1> Y1) J; ( o) = g Re(y,) ga

Next
d(ylaaD0)=U4tan09 d(zl’aDO)g%"FoA, l))l_zl|=%+a4

and thus
(5.11) kp,(y1,21) Slog(l + (2 + 6~ *)cot ) < 610g—(1;
by Lemma 2.1. Finally d(x,dD,) = 4 for xe f = [z,,x,] and hence
(5-.12) kp,(z1,%0) < 2l(B) < 2log:1;.
Then (5.9), (5.10), (5.11) and (5.12) imply that
(5.13) kpy(x1,%0) < 1810g% <kp,(»

and hence that y is not a quasihyperbolic geodesic in D,,.
5.14 ProoF FOR EXAMPLE S5.1. Fix b = 1, let 6 = arcsin(1/10) and choose

o€e(0,3) so that b < %. Next set

S;={z=u+iv: 6*Su<o, v=1+utanb},
S,={z=u+iv 6*<u<2 v=1—utanb)}
and let
D, = B(0,2)\ (S, L §,).

Suppose that x = u + ive D,. If|x| < 1,let y and « be as in the proof of Lemma
5.6. Then again there exists a subarc f of the unit circle such that y = a U f is
a 10-cone arc from x to yin D,. If |x| 2 1, choose ¢ €[ —n, n] so that x = |x| e®
and let y denote the arc defined by

x(t) _ {lxll-ﬂei((l—twﬂn) if ¢ > _0,

x|t "t -09=1m) if & < g, te[0,1].
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Then an elementary calculation shows that y is again a 10-cone arc from x to x in
D,. Thus D, is a 10-John domain.

Next suppose that y is a b-cone arc from x, = 6> to x, = —1in D,. Then the
proof of Lemma 5.8 with 7 = 0 implies that (5.9), (5.10), (5.11), (5.12) and (5.13)
hold with D, in place of D,. Hence y is not a quasihyperbolic geodesic in D,.

5.15. PROOF FOR EXAMPLE 5.2. Let 0 = arcsin (1/10), let
Sij={z=u+iv 6f Suso;, v=1;+utanf},
S;j={z=u+iv 6f Suso;, v="1;—utanb}

forj=1,2,..., where 0; = 1; = 47/, and set

Dz = B(0,2)\ U(Sl,jUSZ,j)'
1

Next fix x = u + ive D,, let

=i x| 2 1,
(5.16) y={ M .
(1 —=v®)"? +iv if |x] <1 and |v — 7;| £ utan 6 for some j,
—(1—v¥)" +ip if |x| <1 and |v — 7| > utan® for all j,
and set

Ci={z=u+iv 0Su<oo, |v -1/ Zutanb}
fork=1,2,.... Then
S1xUS2)c0C, (81,;US,)NnC = @ for j+k,

and again it is easy to show that « = [x, y] isa 10-cone arc from x to y. Hence D,
is a 10-John domain as in the proof of Lemma 5.6.

Finally fix b 2 1, choose j so that bo; < 6 and let y be a b-cone curve which
joins x; = 6} + it;t0 xo = —1 in D,. Then again the proof of Lemma 5.8 with
0 =t = ¢; = 7; shows that y is not a quasihyperbolic geodesic in D,.

5.17. REMARK. Similar examples existin R" for eachn = 2. For example, in the
n-dimensional analogue of the domain D, we replace each set S; ;U S, ; by the
lateral surface ), ;of a frustum of an n-cone with vertex angle 6. Then whenn > 2,
the frustums ) ; can be joined by segments so that the resulting domain has
a connected boundary.
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