QUASIHYPERBOLIC GEODESICS IN JOHN DOMAINS

F. W. GEHRING, K. HAG and O. MARTIO

1. Introduction.

Suppose that D is a proper subdomain of euclidean n-space \mathbb{R}^n. The quasihyperbolic length of an arc γ in D is defined as

$$k_D(\gamma) = \int_{\gamma} d(x, \partial D)^{-1} \, ds,$$

where $d(x, \partial D)$ denotes the euclidean distance from x to ∂D. Next the quasihyperbolic distance between two points x_1, x_2 in D is given by

$$k_D(x_1, x_2) = \inf_{\gamma} k_D(\gamma),$$

where the infimum is taken over all rectifiable arcs γ joining x_1 to x_2 in D. A quasihyperbolic geodesic is an arc γ for which the infimum in (1.2) is attained; see [GO], [GP] and [M].

Suppose that $x_0, x_1 \in D$ and that $b \geq 1$. A rectifiable arc γ is said to be a b-cone arc from x_1 to x_0 if γ joins x_1 to x_0 in D and if

$$l(\gamma(x_1, x)) \leq b \, d(x, \partial D)$$

for all $x \in \gamma$; here $\gamma(x_1, x)$ denotes the subarc of γ between x_1 and x and $l(\alpha)$ the euclidean length of an arc α. The domain D is then said to be a b-John domain with center x_0 if for each $x_1 \in D$ there is a b-cone arc from x_1 to x_0. Inequality (1.3) implies that D contains the (curvilinear) b-cone

$$\text{Cone}(\gamma, b; x_0) = \bigcup_{x \in \gamma} B \left(x, \frac{1}{b} \, l(\gamma(x_1, x)) \right),$$

* This research was supported in part by the National Science Foundation, Grant DMS-87-02356.

Received October 7, 1988
with axis γ, vertex x_1 and center x_0; here $B(x, r)$ denotes the open n-ball with center x and radius r. If γ is the closed segment $[x_1, x_0]$, then $\text{Cone}(\gamma, b; x_0)$ is the union of a finite euclidean cone with vertex angle $\theta = \arcsin \left(\frac{1}{b} \right)$ at x_1 and a ball about x_0.

A rectifiable arc γ is said to be a double b-cone arc from x_1 to x_2 if γ joins x_1 to x_2 in D and if

$$l(\gamma) \leq b|x_1 - x_2|, \quad \min (l(\gamma(x_1, x)), l(\gamma(x, x_2))) \leq bd(x, \partial D)$$

for all $x \in \gamma$. The domain D is said to be b-uniform if for each $x_1, x_2 \in D$ there exists a double b-cone arc from x_1 to x_2. Inequality (1.5) implies that D contains the double cone

$$\text{Cone}(\gamma_1, b; x_0) \cup \text{Cone}(\gamma_2, b; x_0)$$

where x_0 denotes the midpoint of γ and $\gamma_j = \gamma(x_j, x_0)$ for $j = 1, 2$.

The classes of John and uniform domains described above are closely related. For example, D is a b-John domain if and only if all of its points are the vertices of b-cones in D with a common center; D is b-uniform if an only if each pair of its points are the vertices of two b-cones in D with a common center for which the axis length sum does not exceed b times the distance between the vertices. In particular, if D is b-uniform, then each pair of its points lie in the closure of a b-John subdomain of D. Moreover, every bounded uniform domain is a John domain [GM].

If D is c-uniform and if γ is a quasihyperbolic geodesic which joins x_1 and x_2 in D, then γ is a double cone arc with $b = b(c)$ [GO]. It is natural to ask if this result has a counterpart for John domains. In particular, suppose that D is a c-John domain with center x_0 and that γ is a quasihyperbolic geodesic which joins x_1 to x_0. Is γ a b-cone arc for some $b = b(c)$? The purpose of this paper is to show that the answer is yes when $n = 2$ and D is simply connected, and in general no when $n > 2$ or D is multiply connected. We establish these assertions in Sections 4 and 5. Section 4 also contains a new characterization for simply connected John domains in \mathbb{R}^2. In Section 3 we exhibit two criteria which are necessary and sufficient for a quasihyperbolic geodesic γ to satisfy the cone condition (1.3). Section 2 contains estimates for the quasihyperbolic distance and a key lemma on the location of a quasihyperbolic geodesic in a simply connected plane domain.

2. Estimates for the quasihyperbolic distance.

We derive here three estimates for the quasihyperbolic distance in a proper subdomain D of \mathbb{R}^n which will be needed in the remainder of this paper.
2.1 Lemma. Suppose that \(x_1, x_2 \) are points in \(D \) and that \(d_1 = d(x_1, \partial D) \), \(d_2 = d(x_2, \partial D) \), \(t = |x_1 - x_2| \). If \(t < d_1 + d_2 \), then

\[
k_D(x_1, x_2) \leq \log \frac{d_1 + d_2 + t}{d_1 + d_2 - t}.
\]

This bound is sharp. If \(t \leq d_2 \), then

\[
k_D(x_1, x_2) \leq \log \left(1 + \frac{2t}{d_1} \right).
\]

Proof. Let \(\alpha = [x_1, x_2] \) and \(B_j = B(x_j, d_j) \) for \(j = 1, 2 \). The triangle inequality implies that \(d_1 \leq d_2 + t \) and \(d_2 \leq d_1 + t \). Then by making a preliminary change of variables, we may assume that \(0, x_1, x_2 \) lie in a line \(\lambda \) and that

\[
d_1^2 - |x_1|^2 = d_2^2 - |x_2|^2 = d^2.
\]

Since \(B_1 \cup B_2 \subset D \),

\[
d(x, \partial D)^2 \geq d(x, \partial (B_1 \cup B_2))^2 = d^2 + |x|^2
\]

for \(x \in \alpha \).

Suppose that \(\lambda \) is parametrized with respect to arclength \(s \) with \(\lambda(0) = 0 \), \(\lambda(s_j) = x_j \) for \(j = 1, 2 \) and \(s_2 > 0 \); by relabeling we may assume that \(s_1 < s_2 \). Then \(t = s_2 - s_1 \) and we obtain

\[
k_D(x_1, x_2) \leq \int_\alpha (d^2 + |x|^2)^{-1/2} ds
\]

\[
= \log \frac{d_2 + s_2}{d_1 + s_1}
\]

\[
= \log \frac{d_1 + d_2 + t}{d_1 + d_2 - t}
\]

from integration and (2.4).

Next if \(D = B_1 \cup B_2 \) and if \(\gamma \) is any arc joining \(x_1 \) and \(x_2 \) in \(D \), then

\[
d(x, \partial D)^2 \leq d^2 + |x|^2
\]

for \(x \in \gamma \) and we obtain equality in (2.2). Finally (2.2) implies (2.3) whenever \(t \leq d_2 \).

2.6. Lemma. Suppose that \(\gamma \) is an arc which joins points \(x_1, x_2 \) in \(D \) and that \(d_1 = d(x_1, \partial D) \), \(d_2 = d(x_2, \partial D) \), \(l = l(\gamma) \). Then

\[
k_D(\gamma) \geq \log \frac{(d_1 + d_2 + l)^2}{4d_1d_2}.
\]
This bound is sharp. In particular,

\[(2.8) \quad k_D(\gamma) \leq \log \left(1 + \frac{l}{d_1}\right).\]

Proof. If \(\gamma \) is parametrized by arclength \(s \) with \(\gamma(0) = x_1 \), then

\[d(x, \partial D) \leq d_1 + s, \quad d(x, \partial D) \leq d_2 + l - s\]

for \(x \in \gamma \). Hence \(r = \frac{1}{2}(l + d_2 - d_1) \in [0, l] \) and we obtain (2.7) from

\[k_D(\gamma) = \int_0^r d(x, \partial D)^{-1} ds \]

\[\geq \int_0^r (d_1 + s)^{-1} ds + \int_r^l (d_2 + l - s)^{-1} ds \]

\[= \log \frac{(d_1 + d_2 + l)^2}{4d_1d_2}.\]

Equality holds if \(x_1 \) and \(x_2 \) are points in an open subinterval \(\beta \) of a line \(\lambda \), \(\gamma = [x_1, x_2] \) and \(D = (\mathbb{R}^n \setminus \lambda) \cup \beta \). Finally (2.8) follows from (2.7) and the fact that \(d_2 \leq d_1 + l \).

Our third estimate concerns the location of an arc which is a geodesic for either the quasihyperbolic or hyperbolic metric in a simply connected proper subdomain \(D \) of \(\mathbb{R}^2 \). For each \(x \in \mathbb{R}^2 \) we let \(C(x, r) \) denote the circle with center \(x \) and radius \(r \).

2.9. **Lemma.** Suppose that \(D \) is a simply connected proper subdomain of \(\mathbb{R}^2 \), that \(\gamma \) is a quasihyperbolic or hyperbolic geodesic in \(D \) and that \(x_1, x_0, x_2 \) is an ordered triple of points in \(\gamma \) with \(|x_1 - x_0| = |x_2 - x_0| = r \). If \(D \) contains a component of \(C(x_0, r) \setminus \{x_1, x_2\} \), then

\[(2.10) \quad r \leq a d(x_0, \partial D)\]

where \(a \) is an absolute constant.

Proof of Lemma 2.9 for the Quasihyperbolic Case. Suppose that \(\gamma \) is a quasihyperbolic geodesic in \(D \). By performing a preliminary similarity mapping we may assume that \(x_0 = 0 \) and that \(d(0, \partial D) = 1 \). Next by hypothesis, \(C(0, r) \setminus \{x_1, x_2\} \) has a component \(C \) which joins \(x_1 \) and \(x_2 \) in \(D \); by replacing \(\gamma \) and \(C \) by subarcs if necessary, we may assume that \(\gamma \) and \(\bar{C} \) meet just at the points \(x_1 \) and \(x_2 \) and hence bound a Jordan domain \(G \) which lies in \(D \).

Let \(\gamma_j = \gamma(x_j, 0) \) for \(j = 1, 2 \). Then \(C(0, \frac{3r}{4}) \cap G \) has a component \(\bar{C} \) which
joins \(y_1 \in \gamma_1 \) to \(y_2 \in \gamma_2 \) in \(G \). Let
\[
E_1 = \left\{ x \in \bar{C} : d(x, \gamma_1) \leq \min \left(\frac{r}{4}, d(x, \gamma_2) \right) \right\},
\]
\[
E_2 = \left\{ x \in \bar{C} : d(x, \gamma_2) \leq \min \left(\frac{r}{4}, d(x, \gamma_1) \right) \right\}.
\]
(2.11)

Then \(E_1 \) and \(E_2 \) are relatively closed subsets of the open arc \(\bar{C} \) with \(y_1 \in \bar{E}_1 \setminus \bar{E}_2 \) and \(y_2 \in \bar{E}_2 \setminus \bar{E}_1 \). Suppose that \(x \in E_1 \cap E_2 \). Then (2.11) implies that
\[
d = d(x, \gamma_1) = d(x, \gamma_2) \leq \frac{r}{4}
\]
and since \(|x| = \frac{3r}{4} \), the disk \(\bar{B}(x, d) \) lies in \(D \), meets both \(\gamma_1 \) and \(\gamma_2 \) but does not contain 0. Hence \(\bar{B}(x, d) \cap \gamma \) is not connected and we have a contradiction to Theorem 2.2 in [M]. Thus \(E_1 \cap E_2 = \emptyset \) and it follows that \(\bar{C} \setminus (E_1 \cup E_2) \) contains an open subarc \(\alpha \) with endpoints \(z_1 \in E_1 \) and \(z_2 \in E_2 \). Moreover, we see from (2.11) that
\[
d(x, \gamma_1 \cup \gamma_2) \geq \frac{r}{4}, \quad d(x, \partial D) \geq d(x, \partial G) \geq \frac{r}{4}
\]
(2.12)
for \(x \in \bar{C} \) and that \(d(z_1, \gamma_1) = d(z_2, \gamma_2) = \frac{r}{4} \). Thus we can choose points \(w_1 \in \gamma_1 \) and \(w_2 \in \gamma_2 \) such that
\[
|z_1 - w_1| = |z_2 - w_2| = \frac{r}{4}.
\]
(2.13)

We now apply Lemmas 2.1 and 2.6 to obtain upper and lower bounds for \(k_D(w_1, w_2) \) involving \(r \). Let \(d_j = d(w_j, \partial D) \) for \(j = 1, 2 \). Since
\[
d(z_j, \partial D) \geq \frac{r}{4},
\]
(2.13) and Lemma 2.1 imply that
\[
k_D(w_j, z_j) \leq \log \left(1 + \frac{r}{2d_j} \right)
\]
and hence with (2.12) that
\[
k_D(w_1, w_2) \leq k_D(w_1, z_1) + k_D(w_2, z_2) + k_D(z_1, z_2)
\]
(2.14)
\[
\leq \log \left(1 + \frac{r}{2d_1} \right) + \log \left(1 + \frac{r}{2d_2} \right) + 6\pi.
\]
Next \(d(0, \partial D) = 1 \) and
\[
l_j = l(\gamma(w_j, 0)) \geq |w_j| \geq |z_j| - |w_j - z_j| = \frac{r}{2}
\]
for \(j = 1, 2 \). Since \(\gamma \) is a quasihyperbolic geodesic,
\[
k_D(w_j, 0) \geq \log \left(\frac{(d_j + 1 + l_j)^2}{4d_j} \right) \geq \log \left(1 + \frac{r}{2d_j} \right) + \log \frac{r}{8}
\]
by Lemma 2.6 and we obtain
\[
k_D(w_1, w_2) = k_D(w_1, 0) + k_D(w_2, 0)
\]
(2.15)
\[
\geq \log \left(1 + \frac{r}{2d_1} \right) + \log \left(1 + \frac{r}{2d_2} \right) + 2 \log \frac{r}{8}.
\]
Inequalities (2.14) and (2.15) then imply (2.10) with \(a = 8e^{3\pi} \) completing the proof for the quasihyperbolic case.

The proof for the hyperbolic case follows directly from the following result.

2.16. Lemma. Suppose that \(D \) is a simply connected proper subdomain of \(\mathbb{R}^2 \) and that \(\gamma \) is a hyperbolic geodesic joining \(x_1 \) and \(x_2 \) in \(D \). For each \(x_0 \in \gamma \setminus \{x_1, x_2\} \) there exists a crosscut \(\alpha \) of \(D \) containing \(x_0 \) which separates the components of \(\gamma \setminus \{x_0\} \) in \(D \) and satisfies
(2.17) \[
l(\alpha) \leq c \, d(x_0, \partial D)
\]
where \(c \) is an absolute constant.

Proof of Lemma 2.16. Let \(f \) be a conformal mapping of the unit disk \(B \) onto \(D \) normalized so that \(y_j = f^{-1}(x_j) \) are points of the real axis \(L \) and \(y_0 = 0 \). Next let \(C_1 \) and \(C_2 \) denote the components of \(\partial B \setminus L \). By Corollary 10.3 in [P1] we can choose for \(j = 1, 2 \) an open segment \(\beta_j \) joining 0 to \(C_j \) such that
\[
l(f(\beta_j)) \leq \frac{c}{2} \, d(f(0), \partial D) = \frac{c}{2} \, d(x_0, \partial D),
\]
where \(c \) is an absolute constant. Then \(\alpha = f(\beta_1 \cup \{0\} \cup \beta_2) \) is a crosscut of \(D \) with the desired properties.

Proof of Lemma 2.9 for the Hyperbolic Case. Suppose now that \(\gamma \) is a hyperbolic geodesic in \(D \), let \(C \) denote the component of \(C(x_0, r) \setminus \{x_1, x_2\} \) which joins \(x_1 \) and \(x_2 \) in \(D \) and let \(\alpha \) be the crosscut described in Lemma 2.16. Since \(\alpha \) separates \(x_1 \) and \(x_2 \), \(\alpha \) must join \(x_0 \) and \(C \) in \(D \). Hence
(2.18) \[
r \leq l(\alpha)
\]
and we obtain (2.10) with \(a = c \) from (2.17) and (2.18).
3. Quasihyperbolic geodesics as cone arcs.

Suppose that D is a proper subdomain of \mathbb{R}^n. We derive in this section two criteria for a quasihyperbolic geodesic γ in D to be a cone arc. We begin with the following preliminary result.

3.1. LEMMA. Suppose that γ is a rectifiable arc which joins x_1 to x_0 in D and that $c \geq 1$. If

$$k_D(\gamma(y_1, y_2)) \leq c \log \left(1 + \frac{|y_1 - y_2|}{d(y_1, \partial D)}\right)$$

for all y_1, y_2 in γ with y_1 between x_1 and y_2, then γ is a b-cone arc where b depends only on c and a,

$$a = \sup_{y \in \gamma} \frac{d(y, \partial D)}{d(x_0, \partial D)} < \infty.$$

PROOF. We define inductively a sequence of points y_1, \ldots, y_{m+1} in γ as follows. Set $y_1 = x_1$, suppose that y_j has been defined for some $j \geq 1$ and set $d_j = d(y_j, \partial D)$. If $d(x_0, \partial D) \geq 2d_j$, let y_{j+1} denote the first point of $\gamma(y_j, x_0)$ for which

$$d_{j+1} = d(y_{j+1}, \partial D) = 2d_j$$

as we traverse γ from y_j towards x_0; otherwise set $y_{j+1} = x_0$ and $m = j$. Next let $\gamma_j = \gamma(y_j, y_{j+1})$ and $l_j = l(\gamma_j)$. If $x \in \gamma_j$, then

$$d(x, \partial D) \leq 2d_j$$

if $j = 1, \ldots, m - 1$ and

$$d(x, \partial D) \leq a d(x_0, \partial D) \leq 2ad_m$$

if $j = m$; hence

$$\frac{l_j}{d_j} \leq 2a \int_{\gamma_j} d(x, \partial D)^{-1} \, ds = 2a k_D(\gamma_j)$$

for $j = 1, \ldots, m$. Next (3.2) implies that

$$k_D(\gamma_j) \leq c \log \left(1 + \frac{l_j}{d_j}\right) \leq c \left(\frac{l_j}{d_j}\right)^{1/2}$$

and we conclude that

$$l_j \leq (2ac)^2 d_j$$
for all j.

Now fix $x \in \gamma$. Then $x \in \gamma_j$ for some $j \leq m$ and

$$\log \frac{d_j}{d(x, \partial D)} \leq k_D(y_j, x) \leq k_D(\gamma_j) \leq 2ac^2$$

by Lemma 2.6 or Lemma 2.1 of [GP], (3.6) and (3.7). Hence by (3.7), (3.4) and (3.8),

$$k(\gamma(x_1, x_2)) \leq \sum_{i=1}^{j} l_i \leq (2ac)^2 \sum_{i=1}^{j} d_i \leq (2ac)^2 \sum_{i=1}^{j} 2^{i-j} d_j \leq 8(ac)^2 d_j \leq b(d(x, \partial D))$$

where $b = 8(ac)^2 e^{2ac^2}$. This is the desired inequality (1.3).

Condition (3.2) allows us to characterize the quasihyperbolic geodesics which are cone arcs.

3.9 THEOREM. Suppose that γ is a quasihyperbolic geodesic joining x_1 to x_0 in D. If γ satisfies (3.2), then γ is a b-cone arc where b depends only on c in (3.2) and a in (3.3). Conversely, if γ is a b-cone arc, then γ satisfies (3.2) where c depends only on b.

PROOF. The sufficiency is an immediate consequence of Lemma 3.1. For the necessity, since γ is a quasihyperbolic geodesic, it suffices to show there exists a constant c such that

$$k_D(y_1, y_2) \leq c \log \left(1 + \frac{|y_1 - y_2|}{d(y_1, \partial D)}\right)$$

for all $y_1, y_2 \in \gamma$ with $y_1 \in \gamma(x_1, y_2)$.

Fix $y_1, y_2 \in \gamma$ and let $d = d(y_1, \partial D), t = |y_1 - y_2|, l = l(\gamma(y_1, y_2))$. If $t \leq \frac{d}{2}$, then $d(y_2, \partial D) \geq t$ and

$$k_D(y_1, y_2) \leq \log \left(1 + \frac{2t}{d}\right) \leq 2 \log \left(1 + \frac{t}{d}\right)$$

by Lemma 2.1; this is the required inequality (3.10) with $c = 2$. If $t > \frac{d}{2}$, choose $y \in \gamma$ so that $l(\gamma(y_1, y)) = \frac{d}{2}$. Then $|y_1 - y| \leq \frac{d}{2}$ and

$$k_D(y_1, y) \leq \log 2$$
by (3.11). Next if \(\gamma \) is parametrized by arclength \(s \) with \(\gamma(0) = y_1 \), then for each \(x \in \gamma(y_1, y_2) \)

\[
s \leq l(\gamma(x_1, x)) \leq b d(x, \partial D)
\]

whence

\[
(3.13) \quad k_D(y, y_2) = \int_{y(y, y_2)} d(x, \partial D)^{-1} ds \leq b \int_{d/2}^{l} s^{-1} ds = b \log \frac{2l}{d}
\]

by (1.3). Finally

\[
l \leq l(\gamma(x_1, y_2)) \leq b d(y_2, \partial D) \leq b(d(y_1, \partial D) + |y_1 - y_2|) = b(t + d)
\]

by (1.3), and since \(b > 1 \),

\[
k_D(y_1, y_2) \leq \log 2 + b \log (2b) + b \log \left(1 + \frac{t}{d}\right)
\]

\[
\leq 2b \log (2b) + b \log \left(1 + \frac{t}{d}\right)
\]

\[
\leq \left(\frac{2b \log (2b)}{\log (3/2)} + b\right) \log \left(1 + \frac{t}{d}\right)
\]

by (3.12) and (3.13). Thus again we obtain inequality (3.10) with \(c = c(b) \) and the proof for Theorem 3.9 is complete.

We derive next a second criterion for a quasihyperbolic geodesic \(\gamma \) joining \(x_1 \) to \(x_0 \) in \(D \) to be a cone arc. In this case, inequality (3.2) is replaced by an engulfing condition, namely that for some constant \(c \geq 1 \),

\[
(3.14) \quad \gamma(x_1, x) \subset \overline{B}(x, c d(x, \partial D))
\]

for all \(x \in \gamma \).

3.15. Remark. It follows from [MS, pp. 385–386] that \(D \) is a John domain with center \(x_0 \) if and only if for each \(x_1 \in D \) there exists an arc \(\gamma \) from \(x_1 \) to \(x_0 \) which satisfies (3.14) for some constant \(c = c(D) \). Thus condition (3.14) characterizes John domains. However, an arbitrary arc \(\gamma \) which satisfies (3.14) need not be a \(b \)-cone arc with \(b = b(c) \).

3.16 Theorem. Suppose that \(\gamma \) is a quasihyperbolic geodesic joining \(x_1 \) to \(x_0 \) in \(D \). If \(\gamma \) satisfies (3.14), then \(\gamma \) is a \(b \)-cone arc where \(b \) depends only on \(c \) and \(n \). Conversely, if \(\gamma \) is a \(b \)-cone arc, then \(\gamma \) satisfies (3.14) where \(c = b \).

Proof. The necessity is an immediate consequence of inequality (1.3). For the sufficiency we again define inductively a sequence of points \(y_1, \ldots, y_{m+1} \) in \(\gamma \). Set
\(y_1 = x_1, \) suppose that \(y_j \) has been defined for some \(j \geq 1 \) and set \(d_j = d(y_j, \partial D). \) If

\[
|x_0 - y_j| \geq \frac{1}{2} d_j,
\]

let \(y_{j+1} \) denote the last point of \(\gamma(y_j, x_0) \) for which

\[
|y_{j+1} - y_j| = \frac{1}{2} d_j
\]
as we traverse \(\gamma \) from \(y_j \) towards \(x_0; \) otherwise let \(y_{j+1} = x_0 \) and \(m = j. \)

Now set \(\gamma_j = \gamma(y_j, y_{j+1}) \) and \(l_j = l(\gamma_j). \) If \(B \) is any ball with \(\overline{B} \subset D, \) then \(\overline{B} \cap \gamma \) is connected by Theorem 2.2 in [M] because \(\gamma \) is a quasihyperbolic. Hence it follows that

\[
\gamma_j \subset \overline{B}(y_j, \frac{1}{4} d_j)
\]
for \(j = 1, \ldots, m \) and that

\[
|y_k - y_j| \geq \frac{1}{2} d_j
\]
for \(1 \leq j < k \leq m. \)

Since \(|y_j - y_{j+1}| \leq \frac{1}{2} d_j, \)

\[
t_d(y_i, y_{i+1}) \leq \log 2
\]
by Lemma 2.1 while

\[
\log \left(1 + \frac{l_j}{d_j} \right) \leq k_d(\gamma_j)
\]
by Lemma 2.6. Because \(\gamma_j \) is a quasihyperbolic geodesic, these inequalities imply that \(l_j \leq d_j, \) and with (3.14) we conclude that

\[
l_j \leq d_j \leq (c + 1)d_k
\]
for \(1 \leq j \leq k \leq m. \)

Choose an integer \(p = p(c, n) \) so that \(8^{-m}p > (c + 1)^n. \) Observe that if \(m > p, \) then for each \(j \in (p, m] \) there exists an integer \(j \) such that

\[
1 \leq j - \tilde{j} \leq p, \quad d_j \leq \frac{1}{2} d_j.
\]
For if this were not the case we would have

\[
d_k > \frac{1}{4} d_j
\]
for \(j - p \leq k < j. \) Then the balls \(B_k = B(y_k, \frac{1}{8} d_j) \) would be disjoint by (3.18) and (3.23), they would lie in \(B = B(y_j, (c + 1)d_j) \) by (3.14), and we would obtain

\[
p\Omega_n(\frac{1}{8} d_j)^n = \sum m(B_k) \leq m(B) = \Omega_n((c + 1)d_j)^n
\]
contradicting our choice of the integer \(p. \)

Now fix \(x \in \gamma. \) Then \(x \in \gamma_j \) for some integer \(j \leq m. \) Next we can use inequality
(3.22) to define inductively a decreasing sequence of integers \(j_1, \ldots, j_{q+1} \) with \(j_1 = j \) and \(j_{q+1} = 0 \) such that

\[
1 \leq j_k - j_{k+1} \leq p, \quad d_{j_k} \leq 2^{1-k}d_j
\]

for \(k = 1, \ldots, q \). Then

\[
\ell(\gamma(x_1, x)) \leq \sum_{k=1}^{q} (l_{j_k} + \ldots + l_{j_{k+1}+1})
\]

(3.25)

\[
\leq \sum_{k=1}^{q} (j_k - j_{k+1})(c + 1)d_{j_k}
\]

\[
\leq 2p(c + 1)d_j
\]

by (3.21) and (3.24). Finally \(x \in \bar{B}(y_j, \frac{1}{4}d_j) \) by (3.17). Hence

(3.26)

\[
d(x, \partial D) \geq \frac{1}{4}d_j
\]

and we obtain (1.3) with \(b = 4p(c + 1) \) from (3.25) and (3.26). This completes the proof of Theorem 3.16.

We require the following hyperbolic analogue of Theorem 3.16 in what follows.

3.27. THEOREM. Suppose that \(D \) is a simply connected domain in \(\mathbb{R}^2 \) and that \(\gamma \) is a hyperbolic geodesic joining \(x_1 \) to \(x_0 \) in \(D \). If \(\gamma \) satisfies (3.14), then \(\gamma \) is a \(b \)-cone arc where \(b \) depends only on \(c \). Conversely, if \(\gamma \) is a \(b \)-cone arc, then \(\gamma \) satisfies (3.14) where \(c = b \).

PROOF. The necessity is clear. For the sufficiency we define the points \(y_1, \ldots, y_{m+1} \) in \(\gamma \) as in the proof for Theorem 3.16. If \(B \) is any disk with \(\bar{B} \subset D \), then \(\bar{B} \cap \gamma \) is connected by Theorem 2 in [J]; hence (3.17) and (3.18) hold as above. Next since \(D \) is simply connected, the Schwarz lemma and Koebe distortion theorem imply that

(3.28)

\[
\frac{1}{4}d(x, \partial D)^{-1} \leq \rho_D(x) \leq d(x, \partial D)^{-1}
\]

where \(\rho_D \) is the hyperbolic density in \(D \). Thus for \(1 \leq j \leq m \),

\[
h_D(y_j, y_{j+1}) \leq k_D(y_j, y_{j+1}) \leq \log 2
\]

and

\[
\frac{1}{4} \log \left(1 + \frac{l_j}{d_j} \right) \leq \frac{1}{4} k_D(\gamma_j) \leq h_D(\gamma_j)
\]

by (3.19), (3.20) and (3.28). Hence \(l_j \leq 15d_j \),

(3.29)

\[
l_j \leq 15d_j \leq 15(c + 1)d_k
\]

for \(1 \leq j \leq k \leq m \) and the proof concludes as above with (3.29) in place of (3.21).
4. Simply connected John domains in \mathbb{R}^2.

We show next that quasihyperbolic and hyperbolic geodesics in a simply connected John domain D in \mathbb{R}^2 satisfy the cone condition (1.3).

4.1. Theorem. Suppose that D is a simply connected c-John domain in \mathbb{R}^2 with center x_0 and that x_1 is a point in D. If γ is either a quasihyperbolic or hyperbolic geodesic from x_1 to x_0 in D, then γ is a b-cone arc where b depends only on c.

Proof. Let a denote the absolute constant in Lemma 2.9. By Theorems 3.16 and 3.27, it is sufficient to show that γ satisfies the engulfing condition

$$\gamma(x_1, x) \subset B(x, (a + 2)(2c + 1)d(x, \partial D))$$

for all $x \in \gamma$.

Suppose that (4.2) does not hold for some $x \in \gamma$ and let $d = d(x, \partial D)$ and $r = (a + 1)d$. Then there exists a point $z_1 \in \gamma(x_1, x)$ such that

$$\frac{(a + 2)(2c + 1)d}{2c} < |z_1 - x| \leq \text{dia}(D),$$

and since D is a c-John domain with center x_0, we see that

$$|x_0 - x| \geq d(x_0, \partial D) - d(x, \partial D) \geq \frac{\text{dia}(D)}{2c} - d > (a + 1)d = r.$$

Thus x_0 and x are separated by $C(x, r)$. Then since $d < r$ and since D is simply connected, $C(x, r) \setminus D \neq \emptyset$ and there exists an open subarc C of $C(x, r) \cap D$ which separates x_0 and x in D. (See, for example, Theorem VI.7.1 in [N]). In particular, there exists a point $y_0 \in \gamma(x_0, x) \cap C$.

Suppose next that $\gamma(x_1, x) \cap C = \emptyset$ and let z_1 be as in (4.3). By hypothesis there exists a c-cone arc β joining z_1 to x_0 in D which must intersect C at some point z. With (4.3) we obtain

$$\text{dia}(C) \geq d(z, \partial D) \geq \frac{1}{c} \ell(\beta(z_1, z)) \geq \frac{1}{c} |z_1 - z| \geq \frac{1}{c} (|z_1 - x| - |z - x|) > 2r,$$

contradicting the fact that C is a subarc of $C(x, r)$. We conclude that there exists a point $y_1 \in \gamma(x_1, x) \cap C$.

Now y_0, x, y_1 is an ordered triple of points on γ, $|y_0 - x| = |y_1 - x| = r$ and $C(x, r)$ contains a subarc which joins y_0 and y_1 in D. Hence Lemma 2.9 implies that

$$(a + 1)d = r \leq a d(x, \partial D) = ad$$

and we have a contradiction. Thus (4.2) holds for each $x \in \gamma$ and the proof for Theorem 4.1 is complete.
There are many ways to describe the class of simply connected John domains in \mathbb{R}^2. The following characterization, reminiscent of Ahlfors’ beautiful criterion for quasicircles, follows from results in Sections 2 and 3. It arose in the course of a conversation with C. Pommerenke; see [P2].

4.4. THEOREM. Suppose that D is a simply connected bounded domain in \mathbb{R}^2. Then D is a John domain if and only if there exists a constant a such that for each crosscut α of D,

$$\min (\text{dia} (D_1), \text{dia} (D_2)) \leq a \text{ dia} (\alpha)$$

where D_1 and D_2 are the components of $D \setminus \alpha$.

PROOF. Suppose that D is a John domain with center x_0, let α be a crosscut of D and let D_1 be a component of $D \setminus \alpha$ which does not contain x_0. If $x_1, x_2 \in D_1$, then for $j = 1, 2$ there exists a b-cone arc γ_j which joins x_j to x_0 and meets α in a point y_j; obviously

$$|y_1 - y_2| \leq \text{dia} (\alpha).$$

Then (1.3) and the fact that α joins y_j to ∂D imply that

$$|x_j - y_j| \leq l(\gamma_j (x_j, y_j)) \leq b d(y_j, \partial D) \leq b \text{ dia} (\alpha)$$

for $j = 1, 2$. Thus

$$|x_1 - x_2| \leq |x_1 - y_1| + |y_1 - y_2| + |x_2 - y_2| \leq (2b + 1) \text{ dia} (\alpha)$$

and we obtain (4.5) with $a = 2b + 1$.

Suppose next that D satisfies condition (4.5) for some constant a. We show first there exists a point $x_0 \in D$ such that

$$\text{dia} (D) \leq 4ac d(x_0, \partial D),$$

where c is the absolute constant in Lemma 2.16. For this choose $y_1, y_2 \in D$ so that

$$\text{dia} (D) \leq 2|y_1 - y_2|,$$

let γ be the hyperbolic geodesic joining y_1 and y_2 in D and choose $x_0 \in \gamma$ so that $|y_1 - x_0| = |y_2 - x_0|$. Then by Lemma 2.16 there exists a crosscut α of D containing x_0 which separates y_1 and y_2 and satisfies

$$l(\alpha) \leq c d(x_0, \partial D).$$

If D_1, D_2 denote the components of $D \setminus \alpha$, then (4.5) implies that

$$\begin{cases}
\text{dia} (D) \leq 2|y_1 - y_2| \leq 4|y_j - x_0| \\
\leq 4 \min (\text{dia} (D_1), \text{dia} (D_2)) \leq 4a l(\alpha)
\end{cases}$$

and we obtain (4.6) from (4.7) and (4.8).
Now fix $x_1 \in D$, let γ be the hyperbolic geodesic which joins x_1 to x_0 in D and choose $x \in \gamma \setminus \{x_0, x_1\}$. Again by Lemma 2.16 there exists a crosscut α of D containing x which separates the components of $\gamma \setminus \{x\}$ and satisfies

$$l(\alpha) \leq c \ d(x, \partial D).$$

Let D_0 and D_1 denote the components of $D \setminus \alpha$ which contain x_0 and x_1, respectively, and set $r = ac \ d(x, \partial D)$. If $d(x_0, \partial D) \leq 3r$, then

$$\text{dia} (D_1) \leq \text{dia} (D) \leq 12acr$$

by (4.6). Otherwise since $a \geq 1$ and $c \geq 1$,

$$|x - x_0| \geq d(x_0, \partial D) - d(x, \partial D) > 2n$$

and with (4.9) and (4.11) we obtain

$$B(x_0, r) \subset D \setminus \alpha, \quad \text{dia} (D_0) > 2r.$$

Then (4.5) and (4.9) imply that

$$\min (\text{dia} (D_0), \text{dia} (D_1)) \leq r$$

and hence that

$$\text{dia} (D_1) \leq r.$$

Since $\gamma(x_1, x) \subset D_1 \cup \{x\}$, we conclude from (4.10) and (4.12) that

$$\gamma(x_1, x) \subset B(x, 12(ac)^2d(x, \partial D))$$

and thus by Theorem 3.27 that γ is a b-cone arc where $b = b(a)$. This completes the proof of Theorem 4.4.

5. Examples.

We conclude this paper with examples which show that a quasihyperbolic geodesic in a c-John domain need not be a b-cone arc with $b = b(c)$ unless $n = 2$ and D is simply connected. Thus these hypotheses on D in Theorem 4.1 are necessary.

5.1. Example. For each $b \geq 1$ there exists a doubly connected 10-John domain D_1 in \mathbb{R}^2 with center x_0 and a point x_1 in D_1 such that any b-cone arc from x_1 to x_0 is not a quasihyperbolic geodesic.

5.2. Example. There exists an infinitely connected 10-John domain D_2 in \mathbb{R}^2 with center x_0 and, for each $b \geq 1$, a point x_1 in D_2 such that any b-cone arc from x_1 to x_0 is not a quasihyperbolic geodesic.
5.3. BASIC CONSTRUCTION. For each $\sigma \in (0, \frac{1}{4}]$ and $\tau \in [0, \frac{1}{4}]$ set

$$S_1 = \{ z = u + iv : \sigma^4 \leq u \leq \sigma, v = \tau + u \tan \theta \},$$
$$S_2 = \{ z = u + iv : \sigma^4 \leq u \leq \sigma, v = \tau - u \tan \theta \}$$

where $\theta = \arcsin(1/10)$, and let

$$D_0 = B(0, 2) \setminus (S_1 \cup S_2), \quad x_0 = -1, \quad x_1 = \sigma^3 + i\tau.$$

5.6. LEMMA. D_0 is a 10-John domain with center x_0.

Proof. Fix $x = u + iv \in D_0$ and let

$$y = \begin{cases} \frac{x}{|x|} & \text{if } |x| \geq 1, \\ (1 - v^2)^{1/2} + iv & \text{if } |x| < 1 \text{ and } |v - \tau| \leq u \tan \theta, \\ -(1 - v^2)^{1/2} + iv & \text{if } |x| < 1 \text{ and } |v - \tau| > u \tan \theta. \end{cases}$$

Then it is easy to check that $\alpha = [x, y]$ is a 10-cone arc joining x to y in D_0. Next the unit circle contains an arc β joining y to x_0 with $l(\beta) \leq \pi$ and $d(z, \partial D) \geq \frac{\sigma}{3}$ for $z \in \beta$. Hence $\gamma = \alpha \cup \beta$ is a 10-cone arc from x to x_0 in D_0.

5.8. LEMMA. If $b < \frac{6}{\sigma}$ and if γ is a b-cone arc from x_1 to x_0 in D_0, then γ is not a quasihyperbolic geodesic.

Proof. Fix $b < \frac{6}{\sigma}$, suppose that γ is a b-cone arc joining x_1 to x_0 in D_0 and set

$$T_1 = \{ z = \sigma^4 + i(\tau + t) : |t| \leq \sigma^4 \tan \theta \}, \quad T_2 = \{ z = \sigma + i(\tau + t) : |t| \leq \sigma \tan \theta \}.$$

Then $\gamma \cap T_2 \neq \emptyset$ since otherwise we could find a point $w \in \gamma \cap T_1$ such that

$$\frac{1}{3} \sigma^3 \leq \sigma^4 - \sigma^4 \leq l(\gamma(x_1, w)) \leq b d(w, \partial D) \leq b \sigma^4 \tan \theta < \frac{b \sigma^4}{9}$$

contradicting our choice of b.

Next set $y_1 = \sigma^4 + i\tau, z_1 = -\frac{1}{3} + i\tau$ and let w_1 be the first point in $\gamma \cap T_2$ as we traverse γ from x_1 towards x_0. If $x \in \gamma(x_1, w_1)$, then

$$d(x, \partial D) \leq \Re(x) \tan \theta < \frac{\Re(x)}{9}$$

and we obtain

$$k_{D_0}(\gamma) = \int_{\gamma} d(x, \partial D_0)^{-1} \, ds > 9 \log \left(\frac{\Re(w_1)}{\Re(x_1)} \right) = 18 \log \frac{1}{\sigma}.$$
Similarly if \(x \in \alpha = [x_1, y_1] \), then
\[
d(x, \partial D_0) \geq \Re(x) \sin \theta = \frac{\Re(x)}{10}\]
and hence
\[(5.10) \quad k_{D_0}(x_1, y_1) \leq \int_{\alpha} d(w, \partial D_0)^{-1} ds \leq 10 \log \left(\frac{\Re(x_1)}{\Re(y_1)} \right) = 10 \log \frac{1}{\sigma}.
\]
Next
\[
d(y_1, \partial D_0) = \sigma^4 \tan \theta, \quad d(z_1, \partial D_0) \geq \frac{1}{2} + \sigma^4, \quad |y_1 - z_1| = \frac{1}{2} + \sigma^4
\]
and thus
\[(5.11) \quad k_{D_0}(y_1, z_1) \leq \log (1 + (2 + \sigma^{-4}) \cot \theta) < 6 \log \frac{1}{\sigma}
\]
by Lemma 2.1. Finally \(d(x, \partial D_0) \geq \frac{1}{2} \) for \(x \in \beta = [z_1, x_0] \) and hence
\[(5.12) \quad k_{D_0}(z_1, x_0) \leq 2l(\beta) < 2 \log \frac{1}{\sigma}.
\]
Then (5.9), (5.10), (5.11) and (5.12) imply that
\[(5.13) \quad k_{D_0}(x_1, x_0) < 18 \log \frac{1}{\sigma} < k_{D_0}(\gamma)
\]
and hence that \(\gamma \) is not a quasihyperbolic geodesic in \(D_0 \).

5.14 Proof for Example 5.1. Fix \(b \geq 1 \), let \(\theta = \arcsin(1/10) \) and choose \(\sigma \in (0, \frac{1}{4}) \) so that \(b < \frac{6}{\sigma} \). Next set
\[
S_1 = \{ z = u + iv : \sigma^4 \leq u \leq \sigma, \quad v = \tau + u \tan \theta \}, \\
\bar{S}_2 = \{ z = u + iv : \sigma^4 \leq u \leq 2, \quad v = \tau - u \tan \theta \}
\]
and let
\[
D_1 = B(0, 2) \setminus (S_1 \cup \bar{S}_2).
\]
Suppose that \(x = u + iv \in D_1 \). If \(|x| < 1 \), let \(y \) and \(\alpha \) be as in the proof of Lemma 5.6. Then again there exists a subarc \(\beta \) of the unit circle such that \(y = \alpha \cup \beta \) is a 10-cone arc from \(x \) to \(y \) in \(D_1 \). If \(|x| \geq 1 \), choose \(\phi \in [-\pi, \pi] \) so that \(x = |x|e^{i\phi} \) and let \(\gamma \) denote the arc defined by
\[
x(t) = \begin{cases}
|x|^{1-t}e^{i((1-t)\phi + \tau \phi)} & \text{if } \phi > -\theta, \\
|x|^{1-t}e^{i((1-t)\phi - \tau \phi)} & \text{if } \phi < -\theta,
\end{cases} \quad t \in [0, 1].
\]
Then an elementary calculation shows that γ is again a 10-cone arc from x to x_0 in D_1. Thus D_1 is a 10-John domain.

Next suppose that γ is a b-cone arc from $x_1 = \sigma^3$ to $x_0 = -1$ in D_1. Then the proof of Lemma 5.8 with $\tau = 0$ implies that (5.9), (5.10), (5.11), (5.12) and (5.13) hold with D_1 in place of D_0. Hence γ is not a quasihyperbolic geodesic in D_1.

5.15. **Proof for Example 5.2.** Let $\theta = \arcsin(1/10)$, let

$$S_{1,j} = \{z = u + iv: \sigma_j^4 \leq u \leq \sigma_j, \; v = \tau_j + u \tan \theta\},$$

$$S_{2,j} = \{z = u + iv: \sigma_j^4 \leq u \leq \sigma_j, \; v = \tau_j - u \tan \theta\}$$

for $j = 1, 2, \ldots$, where $\sigma_j = \tau_j = 4^{-j}$, and set

$$D_2 = B(0, 2) \setminus \bigcup_{j=1}^{\infty} (S_{1,j} \cup S_{2,j}).$$

Next fix $x = u + iv \in D_2$, let

$$y = \begin{cases}
\frac{x}{|x|} & \text{if } |x| \geq 1, \\
(1 - v^2)^{1/2} + iv & \text{if } |x| < 1 \text{ and } |v - \tau_j| \leq u \tan \theta \text{ for some } j, \\
-(1 - v^2)^{1/2} + iv & \text{if } |x| < 1 \text{ and } |v - \tau_j| > u \tan \theta \text{ for all } j,
\end{cases}$$

and set

$$C_k = \{z = u + iv: 0 \leq u < \infty, \; |v - \tau_k| \leq u \tan \theta\}$$

for $k = 1, 2, \ldots$. Then

$$(S_{1,k} \cup S_{2,k}) \subset \partial C_k, \quad (S_{1,j} \cup S_{2,j}) \cap C_k = \emptyset \quad \text{for } j \neq k,$$

and again it is easy to show that $\alpha = [x, y]$ is a 10-cone arc from x to y. Hence D_2 is a 10-John domain as in the proof of Lemma 5.6.

Finally fix $b \geq 1$, choose j so that $b\sigma_j < 6$ and let γ be a b-cone curve which joins $x_1 = \sigma_j^3 + i\tau_j$ to $x_0 = -1$ in D_2. Then again the proof of Lemma 5.8 with $\sigma = \tau = \sigma_j = \tau_j$ shows that γ is not a quasihyperbolic geodesic in D_2.

5.17. **Remark.** Similar examples exist in \mathbb{R}^n for each $n \geq 2$. For example, in the n-dimensional analogue of the domain D_2 we replace each set $S_{1,j} \cup S_{2,j}$ by the lateral surface \sum_{j} of a frustum of an n-cone with vertex angle θ. Then when $n > 2$, the frustums \sum_{j} can be joined by segments so that the resulting domain has a connected boundary.
REFERENCES

