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SELF-PARALLEL CURVES

F. J. CRAVEIRO DE CARVALHO AND S. A. ROBERTSON

Introduction.

The notion of self-parallelism [3] applies to immersions of an n-dimensional
manifold M in Euclidean m-space E™, for any m = n + k > n > 0, and is closely
related to the notion of transnormality [10]. In this note we shall be mainly
concerned with self-parallelism for embeddings f: S* — E3.

We start by showing that for plane curves transnormality is equivalent to
self-parallelism. If the curve is not plane the situation is quite different and
although it is true that transnormality implies self-parallelism [12] the converse
does not hold. Since every transnormal embedding f: S* — E3 is 2-transnormal
[5] one might however think that any self-parallel embedding f: S! — E3 must
have Z, as self-parallelism group. We show this is not so by constructing for some
m > 2 self-parallel embeddings of S* in E* whose self-parallelism group contains
elements of order m. As a by-product of our construction we find that there are
self-parallel injective immersions of R in E*, albeit with non-closed image, with
infinite self-parallelism group. We recall that the only transnormal embeddings
of R in E® with closed image are 1-transnormal [13, 15].

In § 3 we consider spherical immersions and characterize those smooth maps
f: 8" — E™ whose graphs are self-parallel.

We end with some results on the length and the total torsion of self-parallel
curves.
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1. Definitions.

Let M denote a smooth (= C®) connected boundaryless n-manifold. If
f: M — E™is a smooth immersion with codimension k we shall denote by N(x)
the affine normal k-plane to f at x.

DEFINITION 1. Let f: M — E™ be an immersion. We say that f is transnormal
if, for every xe M, N (x) = N(y), whenever f(y)e N4(x).

DEFINITION 2. Let f, g: M — E™ be immersions. We say that f is parallel to g,
written f | g, if, for every xe M, N (x) = N,(x).

If f| g then | f(x) — g(x)|| does not depend on xe M. A diffeomorphism
0: M — M is a self-parallelism of M with respect to the immersion f: M — E™if
flfoé. The set G(f) of such diffeomorphisms is a subgroup of the group of
self-diffecomorphisms of M. We call G(f) the self-parallelism group of f. In this
note we shall use self-parallel to mean that G(f) is non-trivial. If M is compact
and f: M — E"*1 s a self-parallel embedding then G(f) ~ Z, [3].

By the graph of a smooth map f: S" — E™ we mean the smooth embedding
F: S" > E"*! x E™ = E"*™*! given by F(x) = (x, f(x)).

DEFINITION 3. A map f: S" — E™ is spherical if f(S") is contained in a round
(m — 1)-sphere.

In definition 3 we allow the radius of the receiving sphere to be zero. We
remark thatif f: S" — E™ m < n, is spherical and preserves antipodal points then
it must be constant by the Borsuk-Ulam theorem.

DEFINITION 4. Let f+ M — E"*! be an embedding, where M is compact. We
say that f is convex if, for every x € M, there exists an affine n-plane T(x) such that

T(x) N f(M) = {f(x)}.

This notion of convexity is stronger than the usual one and was already used in
[1]. Of course for each x e M T{x) is unique and is the affine tangent n-plane to
f at x. Also by Reeb’s theorem [7] M must be homeomorphic (and, in fact,
diffeomorphic) to S”. Examples of convex embeddings occur when the Gaussian
curvature of f never vanishes. The important remark to make about such
embeddings is that no straight line in E"*! intersects f(M) in more than two
points [1].

Although sometimes we give more specific references the general reference for
the theory of transnormal embeddings is [10]. For the theory of parallel immer-
sions see [3].
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2. Plane curves.

PROPOSITION 1. Any convex self-parallel embedding f: S* — E"*! is transnor-
mal.

ProOOF. Let § be the non-trivial self-parallelism of S” with respect to f and
x€S". The normal line L to f at x intersects f(S") only in f(x) and f(d(x)). Since
fllfod Lis also normal to f at §(x).

THEOREM 1. Let f: S* — E? be an embedding. Then f is transnormal iff it is

self-parallel.
Proor. It is well known from the theory of transnormal manifolds that if

f is transnormal then it is also self-parallel [9]. Suppose now that f is
self-parallel. Then G(f)~ Z, and there is a non-trivial diffecomorphism
8: S' — S'such that 62 = i, where i is the identity map. Since é is non-trivial there
is ¢ > Osuch that, for every xe !, || f(x) — f(8(x))|l = c. Moreover § has no fixed
points and therefore must be an orientation preserving diffecomorphism.

Let us consider the mapexp: R — S* given by exp (¢) = (cos 2xt, sin 2nt). There
is a diffeomorphism &: R — R, with & > 0, such that the following diagram
commutes

5

R —— R

T

Sl __L Sl
where his either exp or the composition of exp with a change of parameter so that
f ohis parametrized by arc-length. To simplify notations we write just f instead
of f o h(a similar procedure will be adopted in §4, 5). We now proceed to show
that the curvature K, of f never vanishes.

For every teR, (f(t), f(t) — f(5(t))) always determines the same orientation
for E2. At tand d(t) f has parallel tangents and in fact f'(t) = + f'(5(¢)). However
we cannot have f'(t) = f'(5(t)) because in that case (f'((t)), f(5(t)) — f(6(5(t)) =
(f'(t), £(8(2)) — f(t)) would determine the opposite orientation for E2. If we now
take g: R — E? given by g(t) = f(t) — f(8(1)) it is easy to check that K (t) =
K ()/(1 + &'(r)). Since g is spherical K, and consequently K ; never vanish. The
result now follows from proposition 1.

We point out that if f: S?" — E2"*! is an embedding then transnormality is
also equivalent to self-parallelism. In fact it can be deduced from [3] that the
Gaussian curvature of a self-parallel embedding f: $*" — E*"*! never vanishes.

Since there are self-parallel embeddings f: M — E"*! of codimension one
which are not transnormal [3] the following result may be of some interest.

THEOREM 2. An embedding f: M — E"*!, with M compact, is transnormal iff
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there is a diffeomorphism 6: M — M such that, for every xe M,
I1/(x) = f(6(x)|l = diameter f(M).

PrOOF. Again it is well known that the condition is necessary [9]. To prove
sufficiency, observe first that any such f is convex. In fact, for every x € M, the
affine n-plane containing f(x) and normal to f(x) — f(é(x)) intersects f(M) in
exactly one point. Also, the normal line N ((x) is normal at d(x), as a consequence
of the fact that || f(x) — f(6(x))|| is maximal.

We shall give below (see figure 1) an example which shows that theorem 2 does
not hold for codimensions greater than one.

3. Spherical immersions.

The aim of this section is to introduce and deal with a particular type of
self-parallel immersions. Consideration of such immersions allows us to charac-
terize those smooth maps f: S" — E™ whose graphs are self-parallel.

THEOREM 3. Let f:' S" — E™ be an immersion. If f is spherical and preserves
antipodal points then it is self-parallel.

Proor. Suppose that f(S") is contained in a round (m — 1)-sphere with centre
Xxo. Let A: S" — S"and A,: E™ — E™denote the reflections in the origin and in x,
respectively. That f preserves antipodal points means that 4; o f = f o A. Since
f is spherical, to show that f|| f o A we only need to prove that, for every x e S",
(f 0 A)..(T.S") = f,.(T.S"), where(f o A),, and f,, are the linear homomorphisms
between the tangent spaces and we identify the tangent spaces to E™ with E™ itself
in the obvious way. But that follows at once since foA = 4,0 f and A,/
regarded as a map from E™ into itself is just reflection in the origin.

It is perhaps worth pointing out and clear from the above argument that if

Figure 1
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0: §" - S"isadiffetomorphism and f: S" — E™is a spherical immersion such that
A o f = fod then § is also a self-parallelism.

It is known [12] that if f: S' — E™is transnormal then there is a self-parallel-
ism &: S' — S' such that || f(x) — f(8(x))|| = diameter f(S'). The converse is not
true as figure 1 shows.

In figure 1 we have the image of an embedding f: S* — E? with Z, = {i,} as
self-parallelism group and || f(x) — f(6(x))|| = diameter f(S*). However f is not
transnormal: for instance, the equatorial plane is normal to f at only two of the
six points whose image under f lies in that plane.

THEOREM 4. Let f: S" — E™ be a smooth map. Then its graph F is self-parallel iff
f is spherical and preserves antipodal points. If F is self-parallel then G(F) ~ Z,.

ProoF. In [2]itis shown that the conditions we state above are necessary for
the graph to be transnormal. The proofs which were given also work, with minor
modifications, if we assume that F is self-parallel. At the same time one sees that if
F is self-parallel then its self-parallelism group G(F)is {i, A}, where i is the identity
and A is the reflection in the origin.

Conversely, if f is spherical and preserves antipodal points the same happens
with F. Therefore, by theorem 3, F is self-parallel.

Although, as we observed above, the conditions stated in theorem 4 are
necessary for the graph to be transnormal they are not sufficient. Take
f: §' - E? given by f(z) = z3. Then F is not transnormal, for otherwise it would
be 2-transnormal [2], that is to say, we would have # F~!(Ng(x)) = 2, xe §'.
However a straightforward calculation shows that, for instance, the normal
3-plane to F at (1,0) intersects F(S') in more than two points.

4. Space curves.

If one compares the theories of transnormal and self-parallel embeddings one
sees that the order of transnormality corresponds to the order of the self-parallel-
ism group [3]. Irwin showed in [5] that any transnormal embedding f: S' — E3
is 2-transnormal. One might perhaps guess that any self-parallel embedding
f: §' = E* must have Z, as self-parallelism group. As we shall see below, this is
not so.

Let f: S* - E3 be a smooth embedding which we shall treat as a map
f: R— E? of period [ assuming that it is parametrized by arc-length and has
length I. We shall also suppose that the curvature K ; never vanishes so that there
is a well defined Serret-Frenet frame at each point xeR.

Letnowg: R — E*be animmersion given by g(x) = f(x) + a(x)n(x) + B(x)b(x),
where n(x), b(x) denote the principal normal and binormal vectors of f at x. The
immersion g is parallel to f iff o'(x) — B(x)t(x) = 0, B'(x) + a(x)t(x) = 0, where
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7 denotes the torsion of f. Therefore to obtain an immersion g: R — E? parallel
to f one has only to look for the solutions of the differential equation
(o, B) = (B, —a) and make sure that g is an immersion. The differential equation
has global solutions defined in R and we point out that if («, f) is a solution then
l((x), B(x))|| does not depend on x. Also if ||(x(x), f(x))|| = & > 0, with ¢ small
enough then g will be an immersion. The choice of ¢ is related to the fact that,
for ¢ small enough, the end-point map embeds in E* the submanifold
{(z,v)| ze AS"), llv]] = &} of the total space of the normal bundle of f(S*).
Suppose now that we have such a g and that we write (x(x), f(x)) = &(cos 2n6(x),

x+1 x+1
sin 2n0(x)). Then 276'(x) = —1(x),x€ R and J 270 (u)du = — J t(u)du =

x

—1, where 7 denotes the total torsion of f. That is to say g(x + I)is obtained from
g(x) by a rotation of angle —7 around f(x) in the affine normal plane to f at x.
Two cases may occur:

(1) The total torsion 7 is +(m/n)2x, with m and n coprime integers. In this case
g is periodic of period nl and gives rise to an embedding g: S* — E3. The
self-parallelism group of g contains a subgroup isomorphic to Z,. The generator
of such a subgroup is the diffecomorphism 6 which, regarded as a map
4. g(R) — g(R), maps g(x) to g(x + ).

(2) The total torsion is not +(m/n)2n. In this case we obtain an injective
immersion g: R — E* of which the self-parallelism group contains a subgroup
isomorphic to Z, with generator as in (1).

One question which arises naturally is whether embeddings f with total
torsion as in (1) and (2) exist: we shall indicate very briefly how to construct
examples. For full details we refer the reader to [8].

Suppose we start with an embedding f with non-zero total torsion and such
that when projecting in the (x, y)-plane we have a curve with non-vanishing
curvature and, of course, zero total torsion. Then the curve we started with can be
non-degenerately deformed into its projection, that is to say at every stage of the
deformation the corresponding curve has non-vanishing curvature. Moreover at
every stage except possibly the last we have an embedding. Since the total torsion
varies continuously during the deformation it follows that embeddings with total
torsion of the type mentioned in (1) and (2) can be obtained.

The very simple device indicated in Millman and Parker [6] which produces
closed space curves for which the integral of the torsion attains any prescribed
value appears to require the existence of points where the torsion is not defined
and therefore their approach cannot be applied here.

We can now state

THEOREM 5. There are self-parallel embeddings f: S* — E> with self-parallelism
group not isomorphic to Z,.
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THEOREM 6. There are injective immersions f : R — E* with infinite selfparallel-
ism group.

Theorem 6 is of interest in the context of the theory of transnormal manifolds.
We recall that B. Wegner showed that the order of any transnormal embedding
with closed image is finite [ 13, 15]. In particular in the case of embeddings of R™ it
is equal to 1.

5. Length and total torsion.

As before (§2, §4) we shall regard an embedding g: S* — E3 (or E") as a peri-
odicmapg: R — E*(or E"). Whenever possible and convenient, parametrization
by arc-length will be assumed. Diffeomorphisms of S! will be lifted to diffeomor-
phisms of R as in §2.

PROPOSITION 2. If the curvature of g: S* — E* is nowhere vanishing and f||g
then

(1) tf=itg’ nf= _'tng, bf=bg
2 total curvature of f = total curvature ofg
total torsion of f = +total torsion of g

where t, n, b denote the unit tangent, principal normal and binormal vector fields
respectively and the negative sign is to be taken if f'(x) = A(x)g'(x), with A(x) < 0.

Proor. Write f(x) = g(x) + a(x)n,(x) + B(x)b,(x) and use the definitions.

THEOREM 7. Let f: S* — E? be a self-parallel embedding with nowhere vanish-
ing curvature and let 6 be a self-parallelism. If f'(5(x)) and f'(x) point in opposite
directions, then the total torsion of f is zero.

Proor. If f(6(x)) = —f'(x) then (f 0 8) (x) = —d'(x) f'(x). Since ¢ is orienta-
tion preserving 8'(x) > 0. Therefore by proposition 2 we conclude that the total
torsions of f and f o & are symmetrical. But on the other hand they are also equal.
Consequently the total torsion of f must be zero.

On the other hand for instance the self-parallel closed curves in §4 have total
torsion equal to +27m.

Since the curvature of a transnormal embedding f: S! — E3 never vanishes it
makes sense to speak of the total torsion of a transnormal curve.

COROLLARY 1. If f: S' — E? is transnormal then its total torsion is zero.

ProOF. Let d be the antipodal involution of S*. Since f is 2-transnormal then

J00x) = —f').
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Corollary 1 already appears in [14] where it is proved using the fact that
a spherical embedding of S! in E3 has zero total torsion [4].

Our final result generalizes a theorem of Biickner [14] and is an immediate
corollary to a theorem proved in [11].

THEOREM 8. Let f: S' — E" be an embedding. If 6€ G(f) has order 2 and
| f(x) — f(8(x))|| = a then length f = na.

Proor. Take g(x) = f(x) — f(d(x)). Then |g'(x)|| £ 1 + ¢(x) and therefore
length g < 2 length f. Since g is spherical and it is not contained in an open
hemisphere then length g = 27a [11]. The result then follows.
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