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RADICAL OF SPLITTING RING EXTENSIONS

PAUL E. JAMBOR

Abstract.

The ring extension R £ S of associative rings with the same identity 1 is said to be right splitting if
there exists a homomorphism p: Sz — Ry of the right R-modules such that p(1) = 1. Estimates for
projective and injective modules, and the Jacobson radical of right splitting extensions are given.

The objective of this paper is to lay elementary foundations to the study of
one-sided splitting ring extensions, which appear to be natural generalizations of
classical Everrett extensions, semitrivial extensions [8], monoid rings, and
skew-polynomials.

All rings considered are associative unless specified otherwise and in what
follows R and S stand for rings with identity 1 # 0.

The most general form of a right splitting extension is given by a ring
monomorphism i: R — S preserving the identity 1 and pe Homg(Sg, Rg) such
that p(1) = 1. Here, the right R-module structure of Sg is given by s-r = si(r).
Without loss of generality we may redefine the extension by requiring that i is
a subring inclusion. Then p is an epimorphism and Kz = kernel(p) is a direct
summand of Sg.

The class of all splitting extensions of R is closed under compositions (i.e., if
R, € R, = R;is achain of extgnsions and p, : R, = R, and p,: R; = R, are the
corresponding epimorphisms then R; £ R; with the epimorphism p,p, is again
a splitting extension of R,). Notice, that by using compositions we can build up
generalized triangular and full matrix rings ([6], [8]).

Given a ring automorphism ¢ of R and a o-derivation 6 (J is an abelian group
endomorphism of R such that (rs)” = r’s® + rs®, for r, s € R) we denote the general
skew-polynomial ring over R by R[x; g, §], where the commutation is subject to
rx = xr’ + r® ([4], p. 34).

Define R[x;0] = R[x;0,0] and R[x;6] = R[x; 1,4].

Since every field extension, or more generally, an extension of an artinian
semisimple ring is splitting, a meaningful complete classification of splitting
extensions of a given ring does not seem to be feasible. (An extension S of
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acommutative ring R such that Sy is projective is also splitting, [ 3]). However, by
imposing conditions which emulate particular classes of splitting extensions, e.g.,
monoid rings or matrices, we can obtain results valid for families of ring exten-
sions larger than those we wanted to emulate. Advantage is a unified treatment
allowing us to see interdependence of particular classes of splitting extensions.

For the used definitions and notation the reader is referred to [1] or [S]. Let us
recall some of the less frequently used terminology. Let Tbe also a ring and rAx
and ¢Bj be bimodules. The set of all homomorphisms Homg(rA4 g, sBg) is equip-
ped with S-T bimodule structure is given by (sft)(a) = s(f(ta), for se S, te T, and
ae A. Consequently, when we consider right homomorphisms we apply the
arguments to the right of the homomorphisms f and the composition of two
homomorphisms f; g is given by (fg)a) = f(g(a)). For the left homomorphisms,
change it mutatis mutandis.

A subset L of a ring is said to be right (left) T-nilpotent if for every sequence
a,a,,...in L there is an n such that a,...a,a, = 0(a,a,...a, = 0).

1. Structure of splitting extensions.

1.1. THEOREM. Let gAg be a bimodule endowed with a binary operation making it
a ring (possibly non-associative and without identity), o« € Homg(R ® ; Ag, RR),
BeHompg(A ® g Ag, Rg) be such that

(i) (rs®a)* —(r®sa)* =rs® a)

(i) r(ab) — (ra)b = (r ® a)*b

(iii) a(br) = (ab)r

(iv) Ha®b) —(ra®b)f = (r ® a)* ® b)* — (r ® ab)*
(v) (ar)b — a(rb) = a(r ® b)*

(vi) a(bc) — (ab)c = (a ® b)’c — ab ® ¥

(vii) (@@ bc)ff —(ab® cf =(a® b) @ o)),

for every choice of r,seR and a,b,ce A.
Then S = RX A as the abelian group with multiplication given by

(r,a)s,b) = (rs + (r ® b)* + (a ® b, rb + as + ab)

is a right splitting extension of R, and it will be denoted by R*V* A (tensor
representation of S). Conversely, every right splitting extension of R arises in this
way, up to a ring-isomorphism.

PROOF. Let S = R x A be the abelian group with the described multiplica-
tion. Then the distributivity of tensor product implies the left and right dis-
tributivity of the multiplicaton, and (1,0), obviously, serves as the identity. It
takes a tedious checking to verify that the conditions (i){vii) and (1 ® a)* = 0, for
every a€ A, are equivalent to the associativity of the multiplication. However,
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(1 ® a)* = 0, for every a€ A, is a direct consequence of the condition (i). Now, the
projection map p: S — R is clearly a right R-homomorphism and p(1,0) = 1.
Hence S with the defined multiplication is a right splitting extension.
Conversely, if R < S and p: Sz = Ry is a right splitting extension then we can
define A = ker(p), (r ® a)* = p(ra), (a ® by’ = p(ab), a-b = ab — p(ab), and the
left R-module structure of A by r-a = ra — p(ra), for every reR, and a,be A.
Since p is an epimorphism and Ry is projective, Ay is a direct summand and
S = Rz @ Ay. Also, the associativity of S implies the conditions (i) through (vii).
Obviously, the correspondence between right splitting extensions of R and
their tensor representations is 1-1 up to a ring-isomorphism which is stable on R.

1.2. EXAMPLE. Let R be a ring with a derivation D (with respect to the identity
automorphism) such that D? = 0 and the ideal 2(R)°R # R. Put T= R/((2(R)°R)
and define S = T*V# 4, where B = 0, ;A; = ;T with the multiplication given by
t*s = (t%s, and (t ® a)* = (t %)a (J is the derivation of Tinduced by D).

Then S is a right splitting extension of T isomorphic to a factor ring of
R[x; D]/(x?).

Notice that SA = (T?)T@® A is nilpotent if and only if T? is so (c.f., Theorem
1.4.).

The interdependence between splitting extensions and their tensor representa-
tions is illustrated on the following proposition which is left to the reader to
verify. Notice that «a = = 0 corresponds to classical Everret extensions and
a = 0 together with A being the zero-ring corresponds to sgmitrivial extensions

[8].

1.3. PROPOSITON. Let R < S and p:Si — Ry be a right splitting extension and
S = RV’ A be its tensor representation. Then
(i) The following are equivalent
a) a=0,
b) o€ Homg(R ® g AR, Rg),
¢) pe Homg(gS, gR),
d) r(ker(p)) E gS.

(ii) The following are equivalent
a) a=p=0,
b) ker (p) is a left ideal of S,
c) ker(p) is an ideal of S,
d) pis a ring-epimorphism.

(iii) B = O if and only if ker (p) is a right ideal of S.

1.4. THEOREM. Let R< S and p:Sp— Ry be a right splitting extension,
K =ker(p), and I = SK n R. Suppose that Mg is an S-module and Ny, is an
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R-module. T hen the following assertions hold:

i) If Mg is projective then (M/MK); is (R/I)-projective. Conversely, if N is
projective then (N ® g S)s is projective.

ii) If SK is right T-nilpotent and Py is a projective cover of (M/MK)g then
(P ®g S)s is a projective cover of M.

iil) Suppose that SK is right T-nilpotent and (R/I)g is projective. Then, My is
projective if and only if (M/MK)g is projective and Mg ~ (M/MK)® zSs. In
such a case, (MK)g is a direct summand of M.

iv) If My is injective then (M : K) = {me M; m(SK) = 0} is (R/I)-injective. Con-
versely, if N is injective then (Homg(sS g, N g))s is injective.

v) If SK is left T-nilpotent and Eg is an injective hull of (M:K)g then
(Hompg(sS g, ER))s is an injective hull of M.

vi) Suppose that SK is left T-nilpotent and g(R/I) is flat. Then M is injective if and
only if (M : K)g is injective and

Mg ~ (Homg (sSg, (M : K)g))s-
In such a case (M : K)y is a direct summand of M g.

ProoF. (i) Suppose that My is projective. Without loss of generality we may
assume that Mg is a direct summand of () = Mg ® Ny, for some cardinal w.
Then (SK)“ = (S“XSK) = M(SK) ® N(SK) = MK ® NK and (R/[) ~
(S/SK)®) ~ §@/(S“YSK)) ~ M/MK @ N/NK, and consequently M/MK is
(R/I) — projective. (Take into account the fact that SK = I @ K and SK is an
ideal of S). The converse statement follows from the Hom-tensor product adjoint
duality ([5], p. 430).

(ii) Consider the following commutative diagram

Py «— Py

! | =
(P/Pl)‘i — (M/MK)g
(P ®@(S/SK))s
1®@w I
(P ®@&rS)s _T" Ms,

where

n is the assumed projective cover,
n' is the induced epic following from the fact that SK = I ® K, and that in turn
implies PI < ker(n),
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w is the projection gS — g(S/SK),
«— is the isomorphism induced by S/SK ~ R/I, and
— denotes natural projections.

Since both (P/PI) and (M/MK) have the trivial structure of right S-modules
and in that structure n’ is an S-homomorphism, the existence of « now follows
from the projectivity of P ® g Ss. Furthermore, since = is a superfluous epic, ' is
a superfluous epic, too, and SK being right T-nilpotent implies that
(P®gS)SK)s = ker (1 ® w)s is small ([1], p. 314). Hence the composition
n'(-)(1,®w) is a superfluous epic. Similarly, the natural projection
Mg — (M/MK)g has the small kernel M(SK), and thus it is a superfluous epic.
Therefore, a must be a superfluous epic, too ([1], 5.15, p. 74).

(ii)) Suppose that M is projective. Then, by using (i), (M/MK)g is (R/I)-projec-
tive, and since (R/I)g is projective, the hom-tensor product adjoint duality yields
Homg((M/MK)g,()r) =~ Homg((M/MK) ® (g/1(R/D)r, ()r) = Homg(M/MK)p,
Hom (g1 (R/I, ()r)). Hence (M/MK)y is projective. In particular, (MK)y is
a direct summand of M. Consider the map g:(M/MK) ®g S)s = (M/MK)g
given by g(m ® s)” = (ms)”, where i1 stands for the equivalence class of me M
modulo MK. Obviously, g is a well defined S-epimorphism and since
((M/MK) ® gS)s is projective there exists g'e Homgy((M/MK) ® g S)s, M) such
that g’ = g, where 1: Mg —» (M/M(SK))s is the projection. Furthermore, SK
being right T-nilpotent implies that (MK)s = (M(SK))s is small in Mg and
therefore ¢’ is an epimorphism. Let Z ((r); ® s;) e ker(g), where s; = r; + k;, r;€e K
and k;ek. Then ZXZ((m),®s)=(Emr)®1)+Z((Mm);®k) and since
X ((r); ® k;) e ker(g) we obtain (X (ri1);r;) = 0. Thus ker(g) = (M/MK) ® g SYSK)
and that, thanks to SK being right T-nilpotent, implies ker(g') < ker(g) is small,
too. Hence ¢ is a projective cover and since Mg is projective,
Ms =~ (M/MK) ®g S)s-

The converse statement follows directly from (i).

(iv), (), and (vi) are dual statements to (i), (ii), and (iii), respectively, and the
proofs can be run along the same lines as above with slight modifications.

1.5. EXAMPLE. Ler R be a skew-field and g4y be the set of all the countably
infinite square upper triangular matrices over R with zeroes on the main diagonal
and only finitely many non zero entries off the diagonal. Puta = § =0. Then A is
a right T-nilpotent ideal of S = R°V# A, J(S) = A (c.f., theorem 2.3), and
S-projectives are free.

2. Jacobson radical.

The Jacobson radical Jg(Mp) of the right R-module My, is the intersection at
all maximal submodules of My. Precisely, J g(Mg) = N ker(f), f € Homg(Mg, Tg),
where the intersection runs through all choices of f and simple modules Tj.
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Denote Jg(Rg) = J(R) which can be characterized as the largest right (left) ideal
consisiting of right (left) quasi-invertible elements ([7], p. 196). In the following,
R < S and pe Homg(Sg, Ry)is a given right splitting extension, Kz = ker(p), and
W= {reR|Kr < J(S)}.

2.1. THEOREM. SWn J(S) = (WN J(R)) @ KW.

PrROOF. Obviously, (Wn J(R)) @ KW< SWand KW g J(S). Let re Wn J(R)
ands =1 + ke S,forsometeRand ke K. Put § = sr = tr + kr. Since trre J(R)
there exists a left quasi-inverse be R such that bx(tr) = tr + b + btr = 0 and
consequently b*f8 = kr + bkr = y e J(S). That, in turn, yields the existence ofde S
such that d»y = 0 and since the “star” composition * is associative, (d*b)*f = 0.
Therefore, re J(S) and we obtain (Wn J(R)® KW < SWn J(S). Conversely,
since Wn J(S) € Rn J(S) € J(R), we obtain SWn J(S) = (WD KWn J(S) =
(WnJ(ES) @ KWg (WnJ(R)) @ KW.

2.2. ExampLE. If S = R[x;a], where a is an automorphism of R, then
W= {reR;xreJ(S)} and K = {Zx'r, r,eR, and i=1}. Furthermore,
J(S) = (Wn J(R)) @ KW, ([2]).

2.3. THEOREM. Suppose that J(R)S < SJ(R). Then either of the following condi-
tions implies J(R) < J(S).
(i) J(R) is right T-nilpotent,
(i) Sg is finitely generated,
(iii) Simple right S-modules are R-projective.

ProOOF. Let M be a simple S-module. Thanks to J(R)K = SJ(R), MJ(R)is an
S-submodule of M. Since either of the three conditions (i), (ii), or (iii) implies that
MJ(R) + M ([1], p. 198, 314]) we obtain MJ(R) = 0. Hence J(R) < J(S). (Notice
that the Theorem holds for arbitrary extensions with the same identity).

2.4. THEOREM. Suppose M + K is a right S-ideal for each maximal right ideal
M c R(e.g, MK € M + K and K* < J(R) + K). Then J(S) £ J(R) ® K. More-
over, if K is nil modulo J(R) then J(S) = J(R) ® K.

Proor. If M @ K is aright S-ideal then J(S) € n(M @ K) = J(R) @ K, where
the intersection runs through all maximal Mg £ Ri. Now, assume that K is nil
modulo J(R). i.e., for each ke K there exists a natural number n such that
k"eJ(R). Let j+ keJ(R)@® K and seS. According to the hypothesis
G+ ks =j + k', where j e JRR),ie.,(1 —(G+k)s)=(1 —j)—k.

Since je€J(R) there exists reR such that (1—j)y=1, ie,
(I —=@G+ks)(1 —(¢ + k)s)r =1 —k'r,and k're K. Now, (k'r)" € J(R), for some n,
and hence (1 — (k'r)"r’ = 1,forsomr’ € R. However,1 = (1 — (k'r)")r' = (1 — k'r)

n—1
( Yr k’r)‘) r’ yields that (1 — k'r) has a right inverse. Thus (j + k)e J(S).

i=0
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The following two theorems provide a generalization and an improvement of
the normalizing basis theorem ([9], p. 276).

2.5. THEOREM. Suppose Ky is projective. Then
(i) If Hompg(gSg, Mg)g is of finite length n,, for every simple Mg then
J*(S) < SJ(R), where w = sup {n,,}.
(ii) If Ky is finitely generated free then either of the following conditions implies
that Homg(gSg, Mg)g is of finite length for every simple Mg.
a) Each maximal Ny < Ry is an ideal of R and NS = SN,
b) R/J(R) is artinian and SJ(R) = J(R)S,

©) Sg= )Y xR is a free module with basis {x;i = 1,...,n};x, = 1; and for
i=1

j—1
every reR, there are r,eR,1 £i <n,ry =r, such that rx; = < Z x,-r,-) +
i=1
x;0{r),1 <j < n,where the o;’s are ring automorphisms of R (triangular matrix
commutation).

PrOOF. (i) If Ug=Homg(zSg,Mg)g is of finite length then
Us = Hompg(sSg, My)s is of finite length, too, and length (Us) < n,,. Therefore,
U(J4S)) = 0, where k = n,,. Since Ky is projective, Sy is projective, too, and
Jr(Sg) = SU(R)([1], p. 196). On the other hand, U(JS)) =0 yields that
Hompg(sSg, Mg)s (J¥(S)) = 0, for every simple Mg, and that in turn implies
JY(S) € Jr(Sgr) (define J™(S) = n J"(S), where the intersection runs through
ne{ny}).

(i) (a) Let Mg ~ R/N, where Ng & Ry is maximal.

Then M ® g Sg ~ (S/NS)g = (S/SN)g is a homogeneous semisimple R-mod-
ule of finite length. Since (Hompg(gSg, Mg)g)N =0, Homg(gSg, Mg)r is
semisimple and homogeneous. Now, the natural homomorphism
gHOMR(M ® g Sg, eMg) =~ gHomg(Mg, fHomg(gSg, eMg)g); where E=
Endyg (Mp) is a skewfield, implies that Hompg (gSg, MR)g is of finite length, too.

(b) Again, let Mz ~ R/N, when Ng < Ry is maximal. Then M ®j Sp ~
(S/NS)y is isomorphic to a factor module of (S/(J(R)S))g = (S/(SJ(R)))g that is
semisimple of finite length. Similarly, since (Homg(gSg, Mg)r)J(R) =0 and
R/J(R)is artinian semisimple we obtain that Homg(zS g, M)y is semisimple, too.
Now, using the natural transformation introduced in the proof above again we
obtain that Hompg(zM'g, Hompg(gSg, Mg)r)r is finite dimensional over
F = Endg(M’y), for every simple M'. Since the representative set of simple right
R-modules is finite (thanks to R/J(R) being artinian), Homg(gS g, Mg)r is necess-
arily of finite length.

) Let ) xu;eSg. Then r( Y xiu,) = Y x;t;and the relationship between
i=1 i=1

i=1
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u;s and s can be expressed in an upper-triangular matrix form by

ty r X  x.. x x u,
Ooyr) x... x x
t, 0 0 e 00,0 ||u,

Consequently, there is a ring monomorphism ¥: R — UT,(R), where UT,(R) is
the ring of upper triangular matrices of the size n with entries from R, such that
the diagonal entries of ¥(r) are given by (¥Y(r)); = o(r), i = 1,...,n, (define
g, = identity). Now, let fe Homg(zSg, Mg)r and f(x;) =m;, i = 1,...,n. Then
(ﬁ')( Yy x,-r,~> = f( Y mjtj> and we can view Hom g(gS g, Mg)r =~ (M})g asdirect

i=1 i=1
sum(M,;® ... ® M,)g, where M = M,,i = 1,...,n, with the scalar right R-multi-
plication being accomplished by right matrix multiplication with elements of
Y(R). In particular, if 1 < x < n, then for every m, e M,, (0,...,m,,0,...0) r
=(0,...,0,mo(r),m,,...,m",), for some m,eM, i=k+1,...,n. Hence
M@ ...®M,)is an R-submodule of (M, @ ... ®M,)g forevery 1 £ k < n,and
since My is simple,

M@®...®M)R = (0,...,0,m,,0,...,0R + (My,, ® .. ®BM,)R

for each 0 + m, e M. Furthermore, g, being a ring automorphism implies that
{reRmreM,, @ ... ®M,)} = o, ' {re R;myr = 0}, a maximal right ideal of
R. Thus M@ ... ®M,)/[(M,, @ ... DM,)) is simple for each 1 < k < n, and
consequently (M, @ ... ®M,)g is of finite length n.

2.6. THEOREM. If Hompg(gSg, Mg)g is semisimple for each simple Mg and every
S-submodule that is an R-direct summand of an S-module is also an S-direct
summand, then J(S) € J(R) @ Jg(KR). Either of the following conditions implies
that Hom g(gS g, MRg)g is semisimple, for every simple Mg.

(i) Each maximal Ny < Ry is an ideal of R and NS < SN

(i) R/J(R) is artinian and J(R)S < S J(R)

(iii) Sg=Zx;R is a free module with basis {x;ie A} and for every reR,
rx; = x,0(r), i€ A, where a's are ring automorphisms of R; and either K is
finitely generated or R/J(R) is artinian. (Diagonal matrix commutation).

ProoF. Let My be simple. The hypothesis implies that Homg(sS g, Mg)s is
semisimple, too, and 0 = Homg(Sg, Mg)J(S). Therefore, J(S)S = J(S) = Jx(Sp) =
J(R) @Jx(KR). For the proofs of (i) and (ii) we can use the same methods as we did
in proving Theorem 2.5 ii) a) and b). (Notice that we don’t require that
Homg(gSg, My)r be of finite length here).

(iii) If Ky is finitely generated then similarly as in the proof of Theorem 2.5.



58 PAUL E. JAMBOR

ii)c), R is acting on Homg(zSg, My)r as diagonal matrices

r0 0 ..0 0
00,0 ... 0 O
00 .. 0 o)

(we set g,(r) = r, for convenience), Homg(gSg, Mp)g =~ (M, @D ... ®M,)g, Where
(Mg =~ Mg, for each k=1,...,n, and (0,...0,M,,0,...,0)p ~ M, ie,
Hompg(gSg, Mg)r is semisimple. In general, the “diagonal” commutation hy-
potheses implies that J(R)S = S J(R) (since J(R) is stable under ring automo-
rphisms of R). Therefore Homg(gxSg, Mg)gJ(R) = 0 and R/J(R) being artinian
implies that Homg(gSg, M) is semisimple.
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