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THE FIRST TERM IN A MINIMAL
PURE INJECTIVE RESOLUTION

EDGAR E. ENOCHS

Abstract.

The zero-the term of the minimal pure injective resolution of a commutative noetherian ring R over
itself is well understood and determines (in a sense to be made precise) the Jacobson radical of R. In
this paper we will study the first term of this resolution and will show that it determines another
radical of R which is related to the completeness of R. If Ris a coordinate ring over the real or complex
numbers, a complete description of the first term will be given. This term will be used to prove
a generalization of the approximation theorem for Dedekind domains to rings of Krull dimension
one.

1. Terminology and the Statement of the Theorem.

We will use the notation, terminology and results of Enochs [1] and [2]. R will
always denote a commutative noetherian ring. For any R-module M, we let

0> M — PE°(M) » PE! (M) > ...

denote a minimal pure injective resolution of M. If M = F is flat, then each
PE*(F)is flat and in fact is uniquely up to isomorphism a product H Ty (over all
B e Spec(R)) where Ty is the completion of a free Rg-module (see [1], pg. 183,
Theorem and [2], pg. 352, Lemma 1.1). The cardinality of the base of the free
module is denoted 7, (B, F). If (B, F) > 0, or equivalently Ty, # 0, we say that
B appears in PE*(F). In this paper, Ty will always denote such a completion. We
note that by Griffith [17] (Proposition 2.10) or, more generally, by Bartijn and
Strooker [18] (Corollary 3.15), every Ty is a flat Rg-module (and so a flat
R-module).

Warfield in [3] proved that if F = R, then PE° R) = [] Ry (over all maximal
ideals M of R), so only maximal ideals appear in PE? (R). Hence the intersection
of the prime ideals appearing in PE° (R) is the Jacobson radical, rad (R), of R. In
this paper we will consider the intersection of all the prime ideals P that appear in
PE°(R) or in PE! (R). Our object is to prove the following:
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THEOREM 1.1. Suppose dim R is finite. If X is the set of prime ideals that appears
in PE*(R) and I is an ideal of R then
a) if I = rad(R), then R is complete with respect to the I-adic topology if and only
if 1 <P forall Pe X
b) R/I is a complete semilocal ring if and if I ¢ B for all Pe X.

2. Preliminaries.
Inthis section we will again use the terminology and results of [1] and [2].

LeEMMA 2.1 If F is a flat and pure injective (or equivalently, flat and cotorsion)
R-module and F is separated with respect to the I-adic topology for some ideal I of
R, then

F->F®R/I =F/IF
is a flat cover.

ProOOF. By Lemma 4.1 of [2], IF is pure injective, so Ext! (G, IF) = Owhen Gis
flat. This means that the canonical surjection ¢: F — F/IF is a flat precover, and
so there is a decomposition F = F, @ F, with F, < ker(¢) = IF so that
F, — F/IF is a flat cover. But then IF, = F,. Since F is separated with the I-adic
topology this means F, = 0 and so F — F/IF is a flat cover.

We note that the condition that F = [| T be separated with the I-adic
topology just means that I < ¢ whenever Ty + 0. If I < R is an ideal and R* is
the completion of R with respect to the I-adic topology, then R/I =~ R*/I* where
I* = IR*. Then the prime ideals P* > I* of R* are in a one-to-one correspon-
dence with the prime ideals 8 > I of R. The correspondence is such that

P* = PR* corresponds to P. Note then that Ry = R This means that each
Ty Hence flat and pure injective R*-modules F* = | | Ty with T = 0 unless

P* o I* are also flat and pure injective R-modules, and flat and pure injective
R-modules F = [[ Ty with Ty =0 unless B > I are flat and pure injective
R*-modules. We also note that when B o I, T3 ® R/I = Ty ® R*/I*.

If F—» M and F' - M’ are flat covers of R-modules with M =~ M’, then any
isomorphism M — M’ can only be lifted by isomorphisms F — F'. This follows
easily from the definition of a cover.

In the proof of the theorem to follow, and also in the following section, we will
appeal several times to the change of ring theorem (Theorem 4.2, pg. 363 of [2]).
In part the theorem says that if a ring homomorphism R — R’ makes R’ into
a finite R-module, then for any flat R-module F, PE*(F) ® R’ =~ PE*(F ® R’)for
all k = 0. This implies that if ' = R’ is a prime ideal lying over P = R then
(P, R') = (B, R). Hence P appears in PE*(R) if and only if P’ appears in
PE*(R’). We note that P appears in PE*(R) if and only if Ry is a summand of
PE*(R). We have
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PROPOSITION 2.2. If a prime ideal B appears in PE** 1 (F) for any flat module F
then there is a prime ideal Q 2 P which appears in PE* (F).

PrOOF. Ifa prime ideal = B appears in PE*(R), then by Theorem 2.1 of [2]
there is a prime ideal Q 2 P which appars in PE*(R).

Hence suppose no prime ideal Q = P appears in PE*(F) = [ T. Then if
To+0, QPP and so To®@ R/P =0 (since if reP, r¢Q, Ty -5 Ty is an
isomorphism and R/ = R/ is 0). But then PE*(F) ® R/P = 0. By the change
of ring theorem

0>F®R/P—PE(F)QR/B—...

is a minimal pure injective resolution of F ® R/® over R/, so by minimality, if
PE*(F) ® R/ = Othen PE**! (F) ® R/ = 0. The latter is not possible if B ap-
pears in PE¥* 1 (F).

COROLLARY 2.3. If B appears in PE*(F) then coht P = k.

ProoF. Immediate.

We note this was a comment in [2], pg. 356 (but without sufficient justifica-
tion).

The Corollary immediately gives Gruson and Jensen’s result [ 7], Proposition
7.6) that I PE*(F) = PE*(F) whenever dim I < k — 1 (for k = 1).

PrOOF OF THE THEOREM. By the Theorem of [4], if R is complete with the
I-adic topology then I < P for all B that appear in any PE*(R) (i.e. for all k = 0).
This gives the “only if” part of a).

Now we prove the “if” part of a). Let R* be the completion of R with the I-adic
topology and let I* = IR*. By the remarks of the previous section, each PE* (R*)
is pure injective as an R-module. This means that there is a commutative diagram

0-R —PE°(R) -»PE'(R) —...

1) I !
0 - R* » PE°(R*) > PE' (R*) > ...

with R — R* the natural map.

Now by the change of ring Theorem [2], if we apply R/I ® - to the minimal
resolution of R we get a minimal resolution of R/I as a module over itself. We do
the same with R*/I* ® - applied to the resolution of R*. Then diagram (1) gives
us a diagram

0— R/I -PE°(R) ® R/ »PE'(R) ® R/l —...

! ! l
0 — R*/I* — PE°(R*) @ R*/I* » PE' (R*) ® R¥/I* - ...

with both rows minimal pure injective resolutions of R/I and R*/I* (respectively)
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over themselves. Since R/I — R*/I* is an isomorphism, minimality implies that
all the vertical maps are isomorphisms.

Since I = rad (R), I = M for all maximal ideals, sp PE°(R) is separated with
the I-adic topology. Then using the remarks and the Lemma 2.1 of the previous
section,

PE°(R) - PE°(R) ® R/I = PE°(R)/I PE°(R)

is a flat cover as R-modules, or as R*-modules.
By hypothesis, I = 9 for all B that appear in PE! (R), so similarly we get

PE!(R) » PE!(R) ® R/I

is aflat cover over R and over R*. Another appeal to the Theorem of [4] says that
I* = P*for all prime ideals B* of R* that appear in any PE*(R*), so in particular
in PE°(R*) and in PE! (R*). Then we get that

PE*(R*) - PE*(R*) ® R*/I*
are flat covers as R*-modules for k = 0,1. Then the isomorphisms

PE*(R) ® R/I - PE¥(R*) ® R*/I*, k =0,1

can be lifted only by isomorphisms PE*(R) - PE*(R*), k = 0,1, guaranteeing
that each are isomorphisms. An appeal to the diagram (1) then gives that R — R*
is an isomorphism, and shows that R is already complete. Note that R — R* an
isomorphism guarantees that in fact each PE*(R) — PE* (R*)is an isomorphism.

For b) we first note that using Warfield’s result we see that R — PE°(R) =
I1 Rgs (M a maximal ideal of R) is an isomorphism if and only if R is a complete
semilocal ring. But R - PE°(R) is an isomorphism if and only if PE! (R) = 0. We
now use the change of ring theorem. If PE'(R) =[] Ty, then PE!(R/I) =
PE!(R)® R/I. We see that PE'(R/I)=0 if and only if (] Ty) ® R/I =
[1(TyR/I)=0. But T, ® R/ =Oonlyif Ty =0orI ¢ P.

In sum, R/I is complete semilocal if and only if PE! (R/I) = 0 and PE! (R/I) =
0if and only if I & B for all Pe X. This completes the proof of the theorem.

REMARK 1. The intersection I of all prime ideals 8 appearing in PE® (R) or in
PE! (R) is the largest ideal such that R is complete with the I-adic topology (cf.
Matsumura [5], exercise 8.1, pg. 63). This coincides with what Eakin and
Sathaye [6] denote I(R).

REMARK 2. By the theorems of [4] and the theorem of this paper, we get no
further radicals by generalizing the procedure used above, ie. if k = 1, the
intersection of all the prime ideals appearing in one of PE°(R), PE!(R),...
PE*(P) coincides with the intersection of those appearing in one of PE°(R),
PE! (R).
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REMARK 3. The prime ideals B that appear in PE! (R) all have coht P > 1. If
coht P = 1, P may fail to appear but if and only if B is contained in a unique
maximal ideal M of R and if the formal fibre of Ry over P is trivial, i.e.
Rey ® k(PB) = k(P) over R (cf. Proposition 2.1 of [4]).

REMARK 4. If I = 0 in the Theorem 1.2, then b) coincides with Gruson and
Jensen’s theorem 9.1 of [7].

3. Ext/(K, R) = 0 and PE' (R) for coordinate rings.

Gruson ([8], Proposition 3.2) proved that if k is an uncountable field then
Ext! (k(x, y), k[x, y]) = 0. In this section we prove that if R is an inegral coordi-
nate ring over the real or complex numbers and K is its field of fractions then
Ext! (K,R) = 0 whenever dimR =2 (If dimR =1 for any domain R then
Ext! (K, R) = 0 if and only if R is a complete local domain). We then use these
results to show that the set X of the theorem of the previous section for

such coordinate rings (Whether integral or not) consists of the prime ideals of
coheight 1.

LeEMMA 3.1. If M is an R-module and E = PE (M) is an injective submodule and
EnM =0,then E = 0.

PRrROOF. Let PE(M) = S@® E and x = (¢,(x), ¢,(x)) for xe M. If MNE =0
then ¢,(x) — ¢,(x) is a well-defined linear map so can be extended to g: S — E.
Then ¥: (yy,¥2) = (¥1,¥2 — 9(¥,)) is an automorphism of PE (M), so PE (M) is
a pure injective envelope of Y(M). Since (M) N E = 0, we can assume Y(M) = §
(let S > Y(M) be maximal with S n E = 0). Then /(M) — S is a pure injection so
Y(M) —» PE(M)/E = S is too. Hence by minimality, E = 0.

LEMMA 3.2. Let R be a domain and K its field of fractions and
0— F - PE°(F)> PE!(F)>...

be the minimal pure injective resolution of a flat module F. Then the complex
0 —» Hom (K, PE® (F)) » Hom (K, PE! (F)) — ... has all its maps 0.

Proor. If 6: K — PE‘(F) and ¢ % 0 then ¢ is an injection since PE! (F) is flat
and so torsion free. Then we want to argue that K — PE(F) - PE'*! (F)is 0. If
not, then it is an injection and so K n ker (PE‘(F) — PE‘*! (F)) = 0. This contra-
dicts Lemma 3.1.

As an immediate consequence we get

Corollary 3.3. Ext(K, F) # 0if and only if K = PE'(F)(as a submodule), i.e. if
and only if (0) appears in PE'(R).
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PROOF. Asnoted in Raynaud and Gruson [9], since K is flat Ext! (K, F) can be
computed using pure injective resolutions of F (this uses the fact that Hom (—,—)
is balanced by Flat x Pure Inj, Enochs and Jenda [10]). The result then follows
immediately from the preceding Lemma.

DEerINITION. For a ring R, by the curve-adic topology on a module M, we
mean that topology with all IM as neighborhoods of 0 where I < R is any ideal
with dim R/I £ 1.

PROPOSITION 3.4. Whenn = 2,
PE(C[x,,...,x,])/C[xy,-..,X,]
is separated with the curve-adic topology (C the complex numbers).

Proor. Let P < C[x,,...,x,] be a homogeneous prime ideal of coheight 1.
Then the projective variety V() = P*~*(C) is a point, say with homogeneous
coordinates (ay,a,,...,a,). Suppose S eC[[xl, ,x,,]] is in the closure of
C[x,,...,x,] with the curve-adic topology on C[[xl, o Xp ]] Then S — feP
C[[xl,...,x,,]]for some f € C[X;,...,x,]. If S = Sg + S, + ... with S;homogene-
ous of degree i, then for large i, S;e'® and so Si(a,,...,a,) =0. If S is not
a polynomial, then infinitely many S; # 0 and by the above v V(S;) (over S; £ 0)
is "~ 1(C). This is impossible by the Baire category theorem. Now note that
PE(C[xy,...,x,]) = [ C[[x, — ay,.. —a,]] over all a=(a,,...,a,)eC"
([3], Theorem 3). Suppose (S, )ePE (C[xl,...,x,,]) is in the closure of
C[x,,...,x,]- Then by the above, each S, is a polynomial. Now given any prime
ideal B = C[x,,...,x,] of coheight 1 and any k = 1, thereis an f € C[x,,...,x,]
so that S,— feB*C[[x, —ay,....,x,—4a,]] for all aeC" But
CIx4s. s Xndxy —ay.....an—ay IS PUTEIN C[[xl — Ay Xy — a,,]](Serre [11], Prop-
osition 2.7) so we get

Sa_fEsBkC[xl"'ﬂxn](x,-a. ..... an—ap)*
But then if be C",
Sa - Sbe‘nk(c[xl""’xn](xl—al ..... an—ay) + C[xl""’xn](xl—m ..... a,.—a,.))

If a,be V(P) = C" (for example, suppose V(P) is the line through a and b) then
S. — $,€B“(C[xy,...,x,]q)- Since k = 1 was arbitrary, we get S, = S,. This
completes the proof.

THEOREM 3.5. If Ris a coordinate ring over the real or complex numbers, then no
prime ideal B = R with coht B = 2 can appear in PE! (R).

ProOOF. By the previous Proposition, if n = 2, then (C[x,,...,x,])/C[x1,...,X,]
is separated in the curve-adic topology, hence it clearly cannot contain C(x;, . . ., x,)
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as a submodule, hence by Lemma 3.2 the prime ideal (0) doesn’t appear in
PE!(C[x,...,x,]). If C[x,,...,x,] = Ris a finite integral extension, then by the
change of ring theorem, no minimal prime ideal ¥ = R can appear in PE! (R).
Now let R be any coordinate ring over C and suppose B with coht P = 2 appears
in PE! (R). Then by the change of ring theorem, (0) appears in PE! (R/$8). But (0)
is minimal in R/B and dim R/B = 2,s0 R/P > C[x,,..., x,] is finite integral for
some s = 2. This contradicts the above and completes the proof. The proof for
a coordinate ring R over the reals in proved similarly. We only need note that
R ® C (over the reals) is a coordinate ring over C and that R - R ® C is a finite
integral extension and then appeal to the change of ring theorem.

We note that by ([2], Proposition 1.2) when coht ‘B = 1 in the above, it is not
hard to argue that =, (B, R) has the cardinality of the continuum. This gives then
a complete description of PE! (R).

Corollary 3.6. If R is a coordinate ring over the real or complex numbers and
Q < R is a prime ideal with coht Q = 2 then Ext' (Rg, R) = 0.

PrOOF. By the theorem PE!(R) = IT Ty (over P with coht P = 1). By [2]
(Corollaries 1 and 2, pg. 353), Hom (Rg, PE! (R)) = 0 and so Ext' (Rg,R) = 0.

CoOROLLARY 3.7. If R is an integral coordinate ring over the real or complex
numbers and K is its field of fractions, then if dim R = 2, Ext! (K,R) = 0.

Proor. This is a special case of the previous corollary with Q = 0, for then
R(o) = R(o) = K.

We remark that if R is any domain and dim R = 1, then Ext! (K, R) = 0if and
only if R is a complete local ring. For the only prime that can appear in PE! (R) is
(0) and if Ext! (K, R) = 0it doesn’t, so PE' (R) = 0. Hence R = PE°(R) = [| Ry
(over maximal 9MM). Since R is a domain, there is only one maximal ideal M and
R = Ry, This is a slight addition to Matlis’ Theorem 4 in [12].

In connection with the above we have:

Proposition 3.8. If R is adomain and R is complete with the I-adic topology for
some ideal I % 0, then Ext'(K, R) = 0 for all i (with K the field of fractions).

By ([4], Theorem) if (0) appears in PE'(R) then (0) would have to contain
I which is impossible. This means we cannot have K = PE'(R). As noted earlier,
if Hom (K, PE‘(R)) # 0 then K = PE(R). This shows Ext'(K,R) = 0.

Remark 1. If R is a coordinate ring over the real or complex numbers we
conjecture that a prime ideal § = R appears in PE'(R) if and only if coht B = i.

By the methods used in the proof of Theorem 3.5 this is equivalent to the
following:
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Forn = 1, Ext/(C(x,,..., x,), C[x,,...,x,]) = Ofori < nand Ext"(C(x,,...,X,),
C[x,,...,x,]) # 0. Gruson in [8] proved this form of the conjecture in case n = 2
(for any uncountable field).

There seems to be no hope of proving this conjecture without additional set
theory hypotheses (cf. [7], Theorem 7.10).

We note that for even regular local rings, the corresponding form of the
conjecture is not true.

Remark 2. There is an interesting analogy between results on the injective
resolution of a ring R over itself and its minimal pure injective resolution.

1) In the first primes go up in some sense (see Bass [13], Lemma 3.1) and in the
second they go down (Proposition 2.2 above and [2], Theorem 2.1).

2) In this first, if R is local with maximal ideal %, Hom (R/9,-) applied to the
injective resolution gives a trivial complex ([13], pg. 12) in the second Hom (K, -)
gives a trivial complex when R is adomain K its field of fractions (Lemma 3.2).

3) In E%(R) only the minimal primes appear ([ 14], Matlis) and in PE° (R) only
the maximal ideals appear.

ReEMARK 3. If R is a coordinate ring over any field k, then the change of ring
theorem and the relations between chains of prime ideals of R and those of
k[xy,...,x,] = R(where the extension k[x,,...,x,] = Risintegral and x,..., x,
are indeterminants over k, cf. Serre [16], Theorem 2, Chapter 3) show that if
B, Q = Rare prime ideals and coht P = coht Q, then 7,(B, R) = (X, R)for all i.
In particular, B appears in PE‘(R) if and only if Q does.

4. A Generalized Approximation Theorem.

Let R be a Dedekind domain and K its field of fractions. If 4 is the ring of
restricted adeles, then 4 o HRW, (over all maximal ideals ). The approxi-
mation theorems says that the natural map K — A/[| Ry is a surjection (cf.
Bourbaki [15], Proposition 2, pg. 497). A can be identified with K ® ]—[R,,, and
so [ ] Rmisidentified with A ® HR,,,. So by right exactness of the tensor product,
K ® Ryp/A ® [] Ry = K/R ® Rgp. Then the image of K in K/R® [[ R is
K/R ® R. Hence the theorem says the quotient of K/R ® [ | Ry by K/R ® RisO0,
or equivalently that K/R ® [] Rg/R is 0.

Now let R be any ring of Krull dimension 1 and let K be its total quotient ring.
Then since PE°(R) =[]Ry, and since PE?(R)=0 ([7], Theorem 7.1),
PE!(R) = H Rg/R, so the above says K/R ® PE! (R) = 0 when R is Dedekind.
We claim

PROPOSITION 4.1. If R is of Krull dimension 1 and K is its total quotient ring,
then K/R ® PE! (R) = 0.
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ProOF. By Proposition 2.2, PE'(R) =[] T, with the product over mini-
mal primes P of R. If reR is regular, then r¢B for any such P, so
PE!(R) - PE! (R) is an isomorphism so for each ye PE! (R), y = rz for some
ze PE'(R). But for xe K/R, rx = 0 for some such r. Then x®@ y = x®rz =
xr®z=0.
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