LOCAL MODULI FOR PLANE CURVE SINGULARITIES, THE DIMENSION OF THE τ -CONSTANT STRATUM

HANS OLAV HERÖY

1. Introduction and Generalities

Consider the plane curve singularity defined by $f = x_1^p + x_2^q$, and the set of μ -constant deformations of f with minimal Tjurina number. The set $T_{p,q}$ of isomorphism classes of such deformations, has a natural scheme structure, see [L-M-P]. Zariski, [Z], gave a formula for the dimension of $T_{p,q}$ when q = p + 1, and in [D], Delorme proves a formula for the case $\gcd(p,q) = 1$. In the general case there are recursion formulas, see [L-M-P], best to my knowledge, no other closed formulas are known.

The aim of this paper is to give such a closed formula for the dimension of $T_{p,q}$ when $2 | \gcd(p,q)$.

Let k be any field, and consider a polynomial $f \in k[x_1, x_2]$. Put $\underline{x}^{\underline{\alpha}} := x_1^{\alpha_1} x_2^{\alpha_2}$ for $\underline{\alpha} = (\alpha_1, \alpha_2)$, and let $\{\underline{x}^{\underline{\alpha}}\}_{\underline{\alpha} \in I}$ be a monomial basis for $H^1(f) := k[x_1, x_2]/(f, \partial f/\partial x_1, \partial f/\partial x_2)$. Put

$$\begin{split} \tau(f) &= \dim_k H^1(f), \\ \mu(f) &= \dim_k k[x_1, x_2]/(\partial f/\partial x_1, \partial f/\partial x_2). \end{split}$$

When $f = x_1^p + x_2^q$, $I = \{(\alpha_1, \alpha_2) | 0 \le \alpha_1 \le p - 2, 0 \le \alpha_2 \le q - 2\}$. Moreover, putting $I_\mu = \{(\alpha_1, \alpha_2) \in I | \alpha_1/p + \alpha_2/q \ge 1\}$, one knows that any μ -constant deformation of f is isomorphic to one in the family $F_\mu = \{(\alpha_1, \alpha_2) \in I | \alpha_1/p + \alpha_2/q \ge 1\}$.

$$x_1^p + x_2^q + \sum_{\underline{\alpha} \in I_{\underline{\mu}}} t_{\underline{\alpha}} x_1^{\alpha_1} x_2^{\alpha_2}$$
. Put $H_{\mu} = k[t_{\underline{\alpha}}]_{\underline{\alpha} \in I_{\mu}}$, $\underline{H}_{\mu} = \text{Spec}(H_{\mu})$.

The moduli space $T_{p,q}$, parametrizing isomorphism classes of μ -constant deformations of the singularity f with minimal τ , is a quotient scheme $(\underline{S}/V_{\mu})/G$, where \underline{S} is an open subscheme of $\operatorname{Spec}(H_{\mu})$ and V_{μ} is the kernel of the Kodaira-Spencer map associated to the family F_{μ} . Recall, see [L-M-P], that V_{μ} is

^{*}This paper contains the results of my cand. scient. thesis at the University of Oslo 1985, see [HOH].

Received May 3, 1988

a graded Lie-algebra generated as H_{μ} -module by a finite dimensional Lie-algebra V_0 , acting rationally on \underline{S} , such that $\underline{S}/V_{\mu} = \underline{S}/\exp V_0$. Finally G is a finite group acting rationally on (\underline{S}/V_{μ}) .

Let $H^1_{\mu}(f)$ be the subspace of $H^1(f)$ generated by $\{\underline{x}^{\underline{a}}\}_{\underline{a}\in I_{\mu}}$. Then $H^1_{\mu}(f)$ is the tangent space of \underline{H}_{μ} at 0. In the paper [L-P], Laudal and Pfister consider the action σ of $\mathrm{Der}_k(k[\underline{x}]/(f))$ on $H^1(f)$ defined as follows. Let \bar{D} be a derivation of $k[\underline{x}]$ representing the derivation $D\in\mathrm{Der}_k(k[\underline{x}]/(f))$. Then $\bar{D}(f)=q\cdot f$. Let $\bar{\xi}\in k[\underline{x}]$ represent the element $\xi\in H^1(f)=k[\underline{x}]/(f,\partial f/\partial x_1,\partial f/\partial x_2)$, then $\sigma(D)$ is the class of $\bar{D}(\bar{\xi})=q\cdot \bar{\xi}$ in $H^1(f)$.

It is easy to see that $H^1_{\mu}(f)$ is invariant under σ . Let for $\xi \in H^1_{\mu}(f)$, $o(\xi) \subseteq H^1(f)$ be the orbit of ξ under $\operatorname{Der}_k(k[\underline{x}]/(f))$, i.e. $o(\xi) = \{\sigma(D) \cdot \xi \mid D \in \operatorname{Der}_k(k[\underline{x}]/(f))\}$, then it follows from [L-P], that we have the following results.

PROPOSITION 1. Let
$$f = x_1^p + x_2^q$$
, then dim $T_{p,q} = \dim_k H^1_\mu(f) - \max_{\xi \in H^1_\mu(f)} \dim o(\xi)$.

PROOF. see [L-P] (4.6) (ii), (4.7) and remarks following (4.7) together with (5.7). See also remarks preceding (5.12).

PROPOSITION 2. (i) Let $\xi \in H^1_{\mu}(f)$ be represented by \underline{x}^2 , then $o(\xi)$ is the subspace of $H^1_{\mu}(f)$ generated by the classes of

$$\{(\alpha_1/p + \alpha_2/q - 1)\underline{x}^{\underline{\alpha}} \cdot s \mid s \in k[\underline{x}]\}$$

(ii) Let $H^1_+(f)$ be the subspace of $H^1(f)$ generated by

$$I_{+} = \{ \underline{x}^{\underline{\alpha}} | \underline{\alpha} \in I_{\mu}, \alpha_{1}/p + \alpha_{2}/q > 1 \},$$

then

$$\max_{\xi \in H_{\mu}^{1}(f)} \dim o(\xi) = \max_{\xi \in H_{\mu}^{1}(f)} \dim_{k} O(\xi),$$

where $O(\xi)$ is the subspace of $H^1_+(f)$ generated by $\{\xi \cdot s \mid s \in k [\underline{x}]\}$.

PROOF. See [L-P] (4.6) (iii).

2. Dimension of the generic Component.

The aim of this part is the calculation of the dimension of the maximal orbit of the action σ on $H^1_+(f)$, which according to proposition 2 above enables us to calculate dim $T_{p,q}$. The main result, which will be proved at the end of this paper, is

THEOREM 1. Let $f = x_1^p + x_2^q$ and suppose $2|\gcd(p,q)$. The maximal orbit dimension of the action σ on $H_+^1(f)$ is then

$$\text{maxorbdim} = \left(\frac{p}{2} - 1\right) \left(\frac{q}{2} - 1\right) - \gcd\left(\frac{p}{2}, \frac{q}{2}\right) + \begin{cases} 1 & \text{if } p | q \text{ or } q | p \\ 0 & \text{otherwise} \end{cases}$$

i) Let $h_{\text{gen}} = \sum_{\underline{\alpha} \in I_+} t_{\underline{\alpha}} \underline{x}^{\underline{\alpha}}$ where the $t_{\underline{\alpha}}$ are variables over the field k, i.e. $h_{\text{gen}} \in k \left[t_{\underline{\alpha}} \right] \left[\underline{x} \right] / (x_1^{p-1}, x_2^{q-1})$

ii) Let $h \in H^1_+(f)$, then $h = \sum_{\underline{\alpha} \in I_+} c_{\underline{\alpha}} \underline{x}^{\underline{\alpha}}, c_{\underline{\alpha}} \in k$. Define Support $(h) = S(h) = \{\underline{\alpha} \in I_+ \mid c_{\underline{\alpha}} \neq 0\}$, $S(\underline{\alpha}) = S(\underline{x}^{\underline{\alpha}}h_{gen})$. Then

LEMMA 2.
$$S(\underline{\alpha}) = \{\underline{\alpha}' \in I_+ \mid \alpha_1'/p + \alpha_2'/q > 1 + \alpha_1/p + \alpha_2/q\}$$

PROOF. Follows directly from i) and ii).

iii) Lemma 2 shows that the set $\{\text{Support}(\underline{\alpha}) \mid 0 \le \alpha_1 \le p-2, 0 \le \alpha_2 \le q-2\}$ is linearly ordered under inclusion.

Let $S(\underline{\alpha}_M)\underline{c}...\underline{c} S(\underline{\alpha}_0) = I_+$ be a maximal chain of proper inclusions. We define a subdivision of I_+ as follows:

$$I_M = S(\underline{\alpha}_M), I_m = S(\underline{\alpha}_m) \setminus S(\underline{\alpha}_{m+1}) \text{ for } 0 \leq m < M.$$

Set
$$I_a^b = \bigcup_{m=a}^b I_m$$
.

- iv) Define $\operatorname{Set}(m) = \{\underline{x}^{\underline{\alpha}}h_{\operatorname{gen}} \mid S(\underline{\alpha}) \subseteq I_m^M, S(\underline{\alpha}) \subseteq I_{m+1}^M\}$. We observe that for fixed m, every element of $\operatorname{Set}(m)$ has the same support and that for any $h \in H^1_{\mu}(f)$ a basis for the orbit of h can be injectively embedded in $\bigcup_{m=0}^M \operatorname{Set}(m)$.
 - v) For every finite set X, let #X denote the number of elements of X.

We are going to show that there exists a $w \in \mathbb{N}$, such that

PROPOSITION 3.
$$\# Set(m) \leq \# I_m, \qquad 0 \leq m \leq w-2$$

 $\# Set(w-1) = \# I_{w-1} + 1$
 $\# Set(w) = \# I_w - 1$
 $\# Set(m) \geq \# I_m, \qquad w+1 \leq m \leq M$

Accepting this, we can prove

PROPOSITION 4. The dimension of the maximal orbit of the action σ on $H^1_+(f)$ is

$$\max_{\xi \in H^{\perp}_{+}(f)} \dim o(\xi) = \sum_{m=0}^{M} \min \left(\# I_{m}, \# \operatorname{Set}(m) \right) + 1.$$

PROOF. The inequality \leq follows using Proposition 3:

$$\sum_{m=0}^{M} \min (\#I_m, \#Set(m)) + 1 = \sum_{m=0}^{w-2} \#Set(m) + \#I_{w-1}^{M} \ge \max_{\xi \in H_{+}^{1}(f)} \dim o(\xi).$$

The other direction \geq can be proved as follows:

i) Define a new subdivision of I_+ by fixing an element $\underline{\alpha} \in I_w$, and putting

$$\begin{array}{ll} J_{w-1} = I_{w-1} \cup \{\underline{\alpha}\} \\ J_w = I_w \setminus \{\underline{\alpha}\} \\ J_m = I_m & \text{otherwise.} \end{array}$$

- ii) For $\$ \operatorname{Set}(m) \le \sharp J_m$ choose $\$ \operatorname{Set}(m)$ points from J_m . Enumerate the polynomials of $\operatorname{Set}(m)$ and the chosen points of J_m from 1 to $\$ \operatorname{Set}(m)$. For $\$ \operatorname{Set}(m) > \sharp J_m$ choose $\sharp J_m$ polynomials from $\operatorname{Set}(m)$. Enumerate the points of J_m and the chosen polynomials of $\operatorname{Set}(m)$ from 1 to $\sharp J_m$.
- iii) We then construct the square matrixes C_m , $m=0,\ldots,M$ by setting c_i^j in C_m equal to the coefficient of the monomial of polynomial i in Set(m) corresponding to point j in J_m , (i.e. the monomial $\underline{x}^{\underline{\alpha}}$ corresponds to the point $\underline{\alpha}$). We obtain $0 \neq \det C_m \in k[t_{\underline{\alpha}}]_{\underline{\alpha} \in I_+}, m=0,\ldots,M$, immediately from the fact that no column contains the same $t_{\underline{\alpha}}$ twice. Setting $\{t_{\underline{\alpha}}\}_{\underline{\alpha} \in I_+}$ equal to a closed point of Spec $(k[t_{\underline{\alpha}}]_{\underline{\alpha} \in I_+}/(1-\prod_{m=0}^{M}\det C_m))$ and counting, (using i), ii)) gives the wanted inequality.

We shall now prove that there is a duality between I_{M-m} and Set(m) and later on we shall actually compute I_m and therefore Set(m).

Proposition 5. $\$Set(m) = \I_{M-m} .

PROOF. The 1-1 pairing of the two sets is given by associating to $x_1^{\alpha_1} x_2^{\alpha_2} h_{\text{gen}} \in \text{Set}(m)$ the element $(p-2-\alpha_1, q-2-\alpha_2) \in I_{M-m}$.

- i) Different Set(i) are sent into different I_j : Let $\underline{x}^{\underline{\alpha}}h_{\text{gen}} \in \text{Set}(m)$ and $\underline{x}^{\underline{\alpha'}}h_{\text{gen}} \in \text{Set}(m')$ where m < m'. Choose an element $\underline{\alpha''}$ of I_m . Then, using Lemma 2, $1 + \alpha_1/p + \alpha_2/q \ge \alpha_1''/p + \alpha_2'/q > 1 + \alpha_1/p + \alpha_2/q$ or rearranging $(p-2-\alpha_1)/p + (q-2-\alpha_2)/q > 1 + (p-2-\alpha_1'')/p + (q-2-\alpha_2')/q \ge (p-2-\alpha_1')/p + (q-2-\alpha_2')/q$ which means that (see Lemma 2 and iv) above) $(p-2-\alpha_1, q-2-\alpha_2)$ and $(p-2-\alpha_1', q-2-\alpha_2')$ belong to different I_j .
- ii) Different I_j are sent into different Set(i): Let $\underline{\alpha} \in I_m$, $\underline{\alpha}' \in I_{m'}$, where m < m'. Then there exists $\underline{\alpha}''$, such that (see Lemma 2 and iv) above) $\alpha'_1/p + \alpha'_2/q > 1 + \alpha''_1/p + \alpha''_2/q \ge \alpha_1/p + \alpha_2/q$. Rearranging as in i) and using once more Lemma 2 and (v) above, we reach the desired conclusion.

Applying Proposition 3 we get

COROLLARY 6, $\max_{\xi \in H_+^1(f)} \dim o(\xi) = 2 \# I_w^M - 1$

PROOF. Proposition 4 gives $\max_{\xi \in H_+^1(f)} \dim o(\xi) = \sum_{m=0}^M \min(\#I_m, \#Set(m)) + 1$

 $= \sum_{m=0}^{w-1} \sharp I_{M-m} + \sum_{m=w}^{M} I_m - 1, \text{ using Propositions 3 and 5. Now these imply } M = 2w - 1, i.e.$

$$\max_{\xi \in H_+^1(f)} \dim o(\xi) = 2 \sum_{m=w}^M \# I_m - 1.$$

Set $r = p/\gcd(p,q)$, $s = q/\gcd(p,q)$ and assume, as we may, $r \ge s$. We call $\{(x,y) \in I_m^M \mid y = n\}$ a line in I_m^M .

PROPOSITION 7. Suppose $\underline{x}^{\underline{a}}h_{gen} \in Set(m)$. Then

$$\sharp I_m \ge \sharp \{ \text{lines in } I_m^M \mid r(y - \alpha_2) \equiv 1 \pmod{s} \}$$

with equality if there exists an $\underline{\alpha}'$ with

(*)
$$s\alpha_1' + r\alpha_2' = 1 \text{ and } \alpha_1 + \alpha_1' \ge 0, \alpha_2 + \alpha_2' \ge 0.$$

PROOF. Lines with $r(y - \alpha_2) \equiv 1 \pmod{s}$ represent the points in I_m^M minimalizing the expression x/p + y/q. (*) implies the existence of an $\underline{\alpha}^n$ with support ($\underline{\alpha}^n$) excluding exactly these points of I_m^M .

We say that m satisfies (C1) if there exists $\underline{x}^{\underline{\alpha}}h_{gen} \in Set(m)$ and $\underline{\alpha}'$, such that (*) holds. Denote by [x] max $\{z \in \mathbb{Z} \mid z \leq x\}$. Lemma 2 implies that one can find an element $\underline{x}^{\underline{\alpha}}h_{gen} \in Set(m)$ with $\underline{\alpha} = (\alpha r + \delta, \alpha_2)$ where $0 \leq r, 0 \leq \alpha_2 < s$.

COROLLARY 8. Let $\underline{x}^{\underline{\alpha}}h_{gen} \in Set(m)$ be of the above mentioned type and suppose that m satisfies (C1). Then

$$\sharp I_m = \gcd(p,q) - \alpha - \begin{cases} 2 & \text{if } \delta \ge \left[r^{-1} \frac{r}{s} \right] - 1 \text{ and } \alpha_2 \ge s - (r^{-1} + 1) \\ 1 & \text{if } \delta \ge \left[r^{-1} \frac{r}{s} \right] - 1 & \text{or } \alpha_2 \ge s - (r^{-1} + 1) \\ 0 & \text{otherwise} \end{cases}$$

where $rr^{-1} \equiv 1 \pmod{s}$, $0 < r^{-1} < s$.

PROOF. follows from Proposition 7.

PROPOSITION 9. With the above notations $\$Set(m) \ge \alpha + 1$, with equality hoding if I_m^M contains a point of the type (x, y) where $r(y - \alpha_2) \equiv 1 \pmod{s}$.

PROOF. $\underline{x}^{\alpha'}h_{gen}$, where $(\alpha'_1, \alpha'_2) = ((\alpha - n)r + \delta, \alpha_2 + ns)$, $n = 0, ..., \alpha$, all belong to Set(m). These are the only elements of Set(m) with support not excluding points of the mentioned type.

We call the condition in Proposition 9 (C2).

COROLLARY 10. Suppose m < m'. If m satisfies (C2) then

$$\sharp \operatorname{Set}(m') - \sharp \operatorname{Set}(m) \ge -1.$$

PROOF. Immediate.

The corresponding result for I_m follows from Proposition 7, and we state it as

COROLLARY 11. Suppose m < m'. If m' satisfies (C1) then

$$\sharp I_m - \sharp I_{m'} \geq -1.$$

PROOF. Immediate.

Consider the following conditions, the first implying (C1), the second implying (C2):

- (C1') There exists $\underline{x}^{\underline{\alpha}}h_{gen} \in Set(m)$ with $\alpha_1 \ge r$ or $\alpha_2 \ge s$.
- (C2') I_m^M contains at least s nonempty different lines.

The advantage of this reformulation of (C1) and (C2) is that if m < m' and m satisfies (C1') then m' also satisfies (C1') and if m < m' and m' satisfies (C2') then m also satisfies (C2').

Set
$$w_{\min} = \min \{ m \mid \# \operatorname{Set}(m) > \# I_m \},$$

 $w_{\max} = \max \{ m \mid \# \operatorname{Set}(m) < \# I_m \}.$

We can then reformulate Proposition 3:

Proposition 3. $w_{\min} = w_{\max} - 1$.

Now we prove

PROPOSITION 12. Set
$$w'_{\min} = \min \{ m \mid \#Set(m) = \#I_m + 1 \}, w'_{\max} = \max \{ m \mid \#Set(m) = \#I_m - 1 \}.$$

Suppose that w'_{\min} satisfies (C2') and that w'_{\max} satisfies (C1'). If $w'_{\min} < w'_{\max}$ then $w_{\min} = w'_{\min}$ and $w_{\max} = w'_{\max}$.

PROOF. $w_{\min} \le w'_{\min} < w'_{\max}$ means, using Corollaries 10 and 11 that

$$(\sharp \text{Set}(w'_{\text{max}}) - \text{Set}(w_{\text{min}})) + (\sharp I_{w_{\text{min}}} - \sharp I_{w'_{\text{max}}}) =$$

$$(\#\text{Set}(w'_{\text{max}}) - \#I_{w'_{\text{max}}}) + (\#I_{w_{\text{min}}} - \#\text{Set}(w_{\text{min}})) \ge -2.$$

The definition of w'_{\max} then implies $(\#I_{w_{\min}} - \#Set(w_{\min})) \ge -1$, i.e. $w_{\min} = w'_{\min}$, and $w_{\max} = w'_{\max}$ is proved the same way.

i) We first find w'_{min} .

Let $\underline{x}^{\underline{a}}h_{gen}$ correspond to w'_{min} , where $\underline{\alpha} = (\alpha r + \delta, \alpha_2)$ with $0 \le \delta < r$,

 $0 \le \alpha_2 < s$. Using Propositions 7 and 9 we have $\alpha + 1 = \gcd(p, q) - \alpha - (0 \text{ or } 1 \text{ or } 2) + 1$. Since $2 | \gcd(p, q)$ we have two possibilities

1) $\alpha = \gcd(p, q)/2$, $\delta = \alpha_2 = 0$ or

2)
$$\alpha = \gcd(p,q)/2 - 1, \delta = \left[r^{-1}\frac{r}{s}\right] - 1, \alpha_2 = s - (r^{-1} + 1).$$

But

$$(\gcd(p,q)/2)/p > (\gcd(p,q)/2 - 1)r + \left[r^{-1}\frac{r}{s}\right] - 1)/p + (s - (r^{-1} + 1))/q$$

shows that w'_{\min} corresponds to the second possibility.

ii) Let $\underline{x}^{\underline{\alpha}'}h_{gen}$ correspond to w'_{max} , $\underline{\alpha}'$ as in i). We have $\alpha' + 1 = \gcd(p,q) - \alpha' - (0 \text{ or } 1 \text{ or } 2) - 1$, giving the possibilities

1)
$$\alpha' = \gcd(p, q)/2 - 1$$
, $\delta' = \left[r^{-1} \frac{r}{s} \right] - 2$, $\alpha'_2 = s - (r^{-1} + 1) - 1$

2)
$$\alpha' = \gcd(p, q)/2 - 2$$
, $\delta' = r - 1$, $\alpha'_2 = s - 1$.

Comparing as in i), it turns out that 1) is impossible.

iii) We have

$$((\alpha' - \alpha)r + (\delta' - \delta))/p + (\alpha'_2 - \alpha_2)/q = \gcd(p, q)/pq,$$

therefore $w'_{\text{max}} = w'_{\text{min}} + 1$.

iv) That w'_{min} satisfies (C2') is equivalent to

$$(p-2)/p + (q-2-s)/q > (\alpha r + \delta)/p + (\alpha_2)/q$$

where we suppose that $q-2-s \ge 2$, which are both satisfied if s>1 and gcd(p,q)>2. These two cases must be considered separately.

For w'_{max} to satisfy (C1') it is sufficient to require that

$$(\gcd(p,q)/2-1)r-1 \ge r-1 \text{ or } s-1 \ge s-1$$

which is obvious.

i)-iv) together with Proposition 12 proves Proposition 3.

From Corollary 6 we know that $\max_{\xi \in H^1_+(f)} \dim o(\xi) = 2 \sharp I^M_w - 1$ and using the fact that $w = w'_{\max}$ we get

$$\max_{\xi \in H_{+}^{1}(f)} \dim o(\xi) =$$

$$= 2 \# \{ (\alpha_{1}, \alpha_{2}) | \alpha_{1}/p + \alpha_{2}/q > 1 + (p/2 - r - 1)/p + (s - 1)/q,$$

$$0 \le \alpha_{1} \le p - 2, 0 \le \alpha_{2} \le q - 2 \} - 1$$

$$= \left(\frac{p}{2} - 1\right) \left(\frac{q}{2} - 1\right) - \gcd\left(\frac{p}{2}, \frac{q}{2}\right),$$

thus proving Theorem 1 under the assumptions s > 1 and gcd(p, q) > 2. The -1 in Theorem 1 occurs for s = 1. The remaining cases are easy to check.

REFERENCES

- [D] C. Delorme, Sur les modules des singularités des courbes planes, Bull. Soc. Math. France 106 (1978), 417-446.
- [HOH] H. O. Heröv, Cand. scient thesis, University of Oslo, 1985
- [L-M-P] O. A. Laudal, B. Martin, G. Pfister, Moduli of plane curve singularities with C*-action, Proceedings Banach Center Warsaw, 1985
- [L-P] O. A. Laudal, G. Pfister, The local moduli problem. Applications to isolated hypersurface singularities, to appear in Lecture Notes in Mathematics, Springer Verlag.
- [Z] O. Zariski, Le probleme des modules pour les branches planes, Cours donné au Centre de Mathematiques de l'Ecole Polytechnique, 1973.

MAX PLANCK INSTITUT GOTTFRIED CLAREN STRASSE 26 5300 BONN 3 WEST GERMANY