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LOCAL MODULI FOR PLANE CURVE SINGULARITIES,
THE DIMENSION OF THE -CONSTANT STRATUM

HANS OLAV HEROY

1. Introduction and Generalities

Consider the plane curve singularity defined by f = x? + x4, and the set of
u-constant deformations of f with minimal Tjurina number. The set T, , of
isomorphism classes of such deformations, has a natural scheme structure, see
[L-M-P]. Zariski, [Z], gave a formula for the dimension of T, , wheng = p + 1,
and in [D], Delorme proves a formula for the case gcd (p, ) = 1. In the general
case there are recursion formulas, see [L-M-P], best to my knowledge, no other
closed formulas are known.

The aim of this paper is to give such a closed formula for the dimension of T, ,
when 2| gcd (p, ).

Let k be any field, and consider a polynomial f € k[x;, x,]. Put x® : = x}' x3*for
@ = (ay,0,),and let {x?} ., be a monomial basis for H'(f):= k[x,, x,1/(f, of /0x,,
0f /0x,). Put

o(f) = dim, H'(f),
u(f) = dimy k[x,, x,1/(0f /04, of /0x,).

When f = x§ + x§, I = {(2;,2,)|0L0; Sp—2,05 0, Sq—2}.
Moreover, putting I, = {(a;,a,)el|o,/p + a;/g 2 1}, one knows that
any p-constant deformation of f is isomorphic to one in the family F, =
X} +x§+ ) t,x7'x3% Put H, = k[t )yer , H, = Spec(H)).
aely

The moduli space T, ,, parametrizing isomorphism classes of u-constant
deformations of the singularity f with minimal 7, is a quotient scheme (S/V,)/G,
where S is an open subscheme of Spec(H,) and V, is the kernel of the
Kodaira-Spencer map associated to the family F,. Recall, see [L-M-P], that V, is

*This paper contains the results of my cand. scient. thesis at the University of Oslo 1985, see
[HOH].
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a graded Lie-algebra generated as H,-module by a finite dimensional Lie-algebra
Vo, acting rationally on §, such that §/V, = S/exp¥;. Finally G is a finite group
acting rationally on (S/V)).

Let H)(f) be the subspace of H'(f) generated by {55}56,”. Then H)(f) is the
tangent space of H, at 0. In the paper [L-P], Laudal and Pfister consider the
action ¢ of Der, (k[ x]/(/)) on H!(f) defined as follows. Let D be a derivation of
k[x] representing the derivation D eDer,(k[x]/(f)). Then D(f)=gq- f. Let
Eek[x] represent the element & e H!(f) = k[x]/(f, df/0x,, Of/0x,), then a(D) is
the class of D(§) — q- & in H'(f).

It is easy to see that H(f) is invariant under o. Let for £ € H}(f), o(¢) = H'(f)
be the orbit of & under Der(k[x]/(f)), i.e. o(&) = {a(D)- & | D € Der(k[x1/(f))},
then it follows from [L-P], that we have the following results.

PROPOSITION 1. Let f = x§ + x4, then dim T, , = dim H}(f) — :rr:l?();) dim o(¢).
€y

ProoF. see [L-P](4.6)(ii), (4.7) and remarks following (4.7) together with (5.7).
See also remarks preceeding (5.12).

PROPOSITION 2. (i) Let ¢ € HL(f) be represented by x%, then o(¢) is the subspace
of H)(f) generated by the classes of

{(ar/p + 22/q — 1) x*-s|sek[x]}
(ii) Let H'.(f) be the subspace of H'(f) generated by
I, ={x*lael,,a/p + ar/qg > 1},

then

max dim o(¢) = max dim, O(¢),
EeH () geH ()

where O(¢) is the subspace of H} (f) generated by {¢-s|sek[x]}.
PRrROOF. See [L-P] (4.6)(iii).

2. Dimension of the generic Component.

The aim of this part is the calculation of the dimension of the maximal orbit of
the action ¢ on HL(f), which according to proposition 2 above enables us to
calculate dim T}, ,. The main result, which will be proved at the end of this paper,
is

THEOREM 1. Let f = x% + x% and suppose 2|gcd(p, q). The maximal orbit dimen-
sion of the action o on HL(f) is then

(p q X 1 if plg or glp
maxorbdim = (2 1)<2 1) — ged (2’2> + {0 otherwise
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i) Let hg, = Y t,x* where the t, are variables over the field %, i.e.
ael +

hoen € k [t [x1/x5 ™4, x471)

ii) Let heHL(f), then h= ) X% c,€k. Define Support(h) = S(h) =
(ael,lc, +0}, S@ = S(xthy,) Then

LEMMA 2. S(a) = {o' el |oy/p + o/q > 1 + ay/p + a,/q}

ProoF. Follows directly from i) and ii).

iii) Lemma 2 shows that the set {Support(2) |0 S ¢, £ p—2,0=5a;, S q— 2}
is linearly ordered under inclusion.

Let S(ap)c...c S(2o) = I, be a maximal chain of proper inclusions. We define
a subdivision of I, as follows:

IM = S(QM)’ Im = S(gm)\s(g.m+ 1) for 0 é m< M.
b
Set IZ = () I,

iv) Define Set(m) = {xh,, | S(2) < LY, S(2) & I+, }. We observe that for fixed
m, every element of Set(m) has the same support and that for any he H;(f) a basis
M
for the orbit of h can be injectively embedded in () Set(m).
m=0

v) For every finite set X, let #X denote the number of elements of X.

We are going to show that there exists a we N, such that

PROPOSITION 3. #Set(m) b 7 0Emsw—-2
#Setw — 1) =#I,_, + 1
#Set(w) =%, -1
#Set(m) = 41, w+l<msM

Accepting this, we can prove

PROPOSITION 4. The dimension of the maximal orbit of the action 6 on H (f) is

M
max dimo(§) = min (¥1,,, #Set(m)) + 1.
SeHL () m=0

ProoF. The inequality < follows using Proposition 3:

M w—2

min (#1,,, #Set(m)) + 1 = Y #Set(m) + #I}", = max dim o(¢).
=0

m m=0 &eH! (f)
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The other direction = can be proved as follows:
i) Define a new subdivision of I, by fixing an element a € I,,, and putting

Jw-l = Iw—l v {g}
Jo =1, \{a}
Jo =1, otherwise.

ii) For #Set(m) < #J,, choose #Set(m) points from J,,. Enumerate the poly-
nomials of Set(m) and the chosen points of J, from 1 to #Set(m). For
#Set(m) > #J,, choose #J,, polynomials from Set(m). Enumerate the points of J,,
and the chosen polynomials of Set(m) from 1 to #J,,.

ili) We then construct the square matrixes C,,,m = 0,..., M by setting c/in C,,
equal to the coefficient of the monomial of polynomial i in Set(m) corresponding
to point j in J,, (i.e. the monomial x# corresponds to the point o). We obtain
0+ det C,,ek[t,]4er,» m = 0,..., M, immediately from the fact that no column
contains the same t, twice. Setting {t,},;, equal to a closed point of

M

Spec(k[ty]ger /(1 — [ detC,)) and counting, (using i), ii)) gives the wanted
m=0
inequality. .
We shall now prove that there is a duality between I, _,, and Set(m) and later
on we shall actually compute I,, and therefore Set(m).

PROPOSITION 5. #Set(m) = #1,,_,,.

Proor. The 1-1 pairing of the two sets is given by associating to
X'x52hg., € Set(m) the element (p — 2 — oy, g — 2 — )€l

i) Different Set(i) are sent into different I; Let x%h,,€Set(m) and
X¥hg,, € Set(m’) where m < m'. Choose an element «” of I,,. Then, using Lemma 2,
1 4 o)/p + a/q = a/p + a3/q > 1 + a,/p + a,/q or rearranging (p — 2 — a,)/p
+@—-2-a)/g>1+(p—-2—a)/p+(@—-2-03)/q2Z(p—2—-)/p+
(@ — 2 — a3)/q which means that (see Lemma 2 and iv) above) (p — 2 — «,,
q—2—oay)and (p — 2 —ay, g — 2 — a3) belong to different I;.

ii) Different ; are sent into different Set(i): Let a€ I, &' €1,,, where m < m'.
Then there exists a”, such that (see Lemma 2 and iv) above) o /p + a3/q > 1 +
oi/p + a3/q = o,/p + a,/q. Rearranging as in i) and using once more Lemma
2 and (v) above, we reach the desired conclusion.

Applying Proposition 3 we get

COROLLARY 6, max dim o(¢) = 241 — 1
geH) ()
M
PROOF. Proposition 4 gives max dimo(é) = min (%1, #Set(m)) + 1
teH () m=0
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w—1 M

=Y #Iy_.+ Y I,—1, using Propositions 3 and 5. Now these imply
m=0 m=w

M =2w—1,1ie.

M
max dimo(¢) =2 Z %1, — L.
EeHY (f) m=w

Set r = p/gcd(p, 9), s = q/gcd(p,q) and assume, as we may, r = s. We call
{(x,y)eI¥|y = n} a line in IM.

PROPOSITION 7. Suppose x%h,,, € Set(m). Then
#1,, = #{lines in I} |r(y — a,) = 1(mod s)}
with equality if there exists an o with
(*) say +ray =land oy +aj 20,0, + a3, 2 0.

PROOF. Lines with r(y — a,) = 1(mod s) represent the points in I* minimaliz-
ing the expression x/p + y/q. (*) implies the existence of an a” with support (2”)
excluding exactly these points of I¥.

We say that m satisfies (C1) if there exists x%h,,, € Set(m) and ', such that (*)
holds. Denote by [x] max {zeZ|z £ x}. Lemma 2 implies that one can find an
element x%h,., € Set(m) with @ = (ar + J,a,) where 0 < r,0 S a, < s.

CoOROLLARY 8. Let xh,., € Set(m) be of the above mentioned type and suppose
that m satisfies (C1). Then

2 iféé["_lg]—landazgs—(r“.;.])

r

#p = god(p,q) — o - 1 ifég[r'lg]—l ora,2s—(r 1 +1)

0 otherwise

where rr! = 1(mods),0 <r ! <.

Proor. follows from Proposition 7.

PROPOSITION 9. With the above notations #Set(m) = o + 1, with equality hoding
if IM contains a point of the type (x, y) where r(y — o) = 1(mod s).

PROOF. x¥h,.,, where (&), a}) = (@ — n)r + 6,2, + ns),n = 0,...,a, all belong
to Set(m). These are the only elements of Set(m) with support not excluding points
of the mentioned type.
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We call the condition in Proposition 9 (C2).
COROLLARY 10. Suppose m < m'. If m satisfies (C2) then

#Set(m') — #Set(m) = —1.
ProoF. Immediate.
The corresponding result for I, follows from Proposition 7, and we state it as
COROLLARY 11. Suppose m < m'. If m’ satisfies (C1) then

¥, — %1, = —1.

PrROOF. Immediate.

Consider the following conditions, the first implying (C1), the second implying
(C2):

(C1') There exists x*h,, € Set(m) with a; = rora, 2 s.
(C2) IM contains at least s nonempty different lines.

The advantage of this reformulation of (C1) and (C2) is that if m < m’ and
m satisfies (C1’) then m’ also satisfies (C1') and if m < m’ and m’ satisfies (C2') then
m also satisfies (C2').

Set Wi, = min {m|#Set(m) > #I,,},
Wmax = max {m|#Set(m) < #1,}.
We can then reformulate Proposition 3:

PROPOSITION 3. w i, = W — L.

max

Now we prove

PROPOSITION 12. Set w;mn = min {m|#Set(m) = #I,, + 1},
Winax = max {m| #Set(m) = #I,, — 1}.
Suppose that w,;, satisfies (C2') and that w,,, satisfies (C1'). If w;, <
Wain = Wnin GNd Winay = Wiy

then

mnx

PROOF. Wi, S Wiin < Winax means, using Corollaries 10 and 11 that

(#Set(Whgy) — Set(Wpmin)) + (#1,,,, — #1,; ) =

)+ (#1,,, — #Set(wy)) = —

min

(#Set(Wimax) —

The definition of w),,, then implies (#1,,_,_— #Set(Wy;s)) 2 — 1, 1.6. Wmin = Wain)
and w,,,, = W, is proved the same way.

i) We first find wi,,,.
Let x%h,, correspond to Wy, Where = (ar+d,a;) with 06 <,
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0 £ a, < s. Using Propositions 7 and 9 we have « + 1 = ged(p,q) — a — (0 or
1 or 2) + 1. Since 2 |gcd(p, ) we have two possibilities

1) a = ged(p,g)/2,0 =a,=0o0r

2) o = ged(p,)/2 — 1,6=[r-1§]— Loay=s—(r"+1)

But

(ged(p, 9)/2)/p > (ged(p,9)/2 — Dr + [r' ! g:‘ —Dp+ ="+ 1)q

’

shows that wi; corresponds to the second possibility.

ii) Let x¥h,, correspond to w,,, o as in i). We have «' + 1 = ged(p,q) —
o — (0 or 1 or 2) — 1, giving the possibilities
1) o =ged(p,q)2 — 1,6 = l:r”‘g] —2,d=s—(""+1)—1
2) o =ged(p,q))2—2,0=r—1,0,=s—1.
Comparing as in i), it turns out that 1) is impossible.

iii) We have

(o' — a)r + (0" = 9))/p + (o — 22)/q = ged(p, 9)/py,

therefore w,,, = wi, + 1.

iv) That w,,, satisfies (C2') is equivalent to

(P—2)/p+(q—2—3)q>(r+0)/p+(2)/q

where we suppose that ¢ — 2 — s = 2, which are both satisfied if s > 1 and
ged(p, q) > 2. These two cases must be considered separately.

For w,,,, to satisfy (C1’) it is sufficient to require that

(gedp, )2 —)r—1=2r—1lors—1z2s—1

which is obvious.
i)-iv) together with Proposition 12 proves Proposition 3.

From Corollary 6 we know that max dim o(¢) = 2#I¥ — 1 and using the fact
EeHL (f)
that w = w,, we get

max dimo(¢) =
geHL ()
=28 {(a, @) ay/p + aa/q > 1+ (p/2 =7 — 1)/p + (s — 1)/q,

0<a, £p—-20=ZLa,5q-2}—1

()G =G
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thus proving Theorem 1 under the assumptions s > 1 and gcd(p,q) > 2. The —1
in Theorem 1 occurs for s = 1. The remaining cases are easy to check.
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