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GALOIS ACTIONS ON RINGS
AND FINITE GALOIS COVERINGS

MAURICE AUSLANDER', IDUN REITEN AND SVERRE O. SMAL@?

Introduction.

Bongartz, Gabriel and Riedtmann introduced in [BG, G, R] galois coverings of
k-categories which have become an important tool in studying the representation
theory of finite dimensional algebras over an algebraically closed field k. Al-
though the general theory of galois coverings of k-categories obviously lies
outside ring theory, this is not the case for finite galois coverings. One of the main
aims of this paper is to develop a notion of galois extensions for general rings
which when suitably specialized gives a purely ring theoretic formulation of finite
galois covers (see section 6). Another requirement we had in mind for this general
theory was that it gives the usual theory also when specialized to commutative
rings. We recall that a commutative ring extension S of R is said to be a galois
extension with galois group G if a) G is a finite group of R-automorphisms of
S such that R = S€, the fixpoint ring, b) S is a finitely generated projective
R-module and c) the natural ring morphism from S(G) to Endg(S) is an isomor-
phism where S[G] is the skew group ring (see [AG2]). Using Morita theory it is
not difficult to see that b) and c) together are equivalent to S being a projective
S[G]-generator. It is this latter formulation of commutative galois ring exten-
sions that we adapt for arbitrary rings.

Specifically, let I be a subring of a ring 4 and G a finite group of auto-
morphisms of A such that I' is equal to the fixpoint ring A€, and A is a finitely
generated I'-module. A is defined to be a pregalois extension of I" with group G if
Ais a projective A[G]-generator, and we then say that the pair (4, G) is pregalois.
It is an easy consequence of Morita theory that (A4, G) being pregalois is equival-
ent to the fixpoint functor from Mod A[G] to Mod A€ being an equivalence of
categories.
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While pregalois ring extensions are interesting in their own right, they are not
restrictive enough to give a suitable theory of finite galois coverings. This aim is
accomplished by the following definition.

We say that a pregalois extension A of I' with group G is galois if for every
simple left or right A-module S, I'/ann S is a semisimple artin ring. Here ann, S is
the annihilator of S viewed as a I'-module.

It should be observed that when A is commutative, this last condition is
automatically satisfied, so that this definition of galois extension coincides with
the usual one for commutative rings.

We now discuss the content of this paper section by section.

Let A be a ring and G a finite group acting on A. In section 1 we give
descriptions of A being a projective A[G]-module and of A being a A[G]-gener-
ator in terms of the existence of certain elements in A[G]. We apply this to'show
that (A, G) is pregalois if and only if (4°7, G) is.

In section 2 we show that if (4, G) is pregalois and H is a subgroup of G, then
(A,H) is pregalois via the induced action of H on A. Also if H is a normal
subgroup we show that (4¥, G/H) is pregalois. If I is a G-ideal in A, we prove in
section 3 that if (4, G) is pregalois, then (A/1, G) is, and if (A/rad A, G) is pregalois,
then (4, G) is.

The notion of (4, G) being galois is introduced in section 4, and we prove that
results similar to those in sections 2 and 3 hold for galois extensions.

In section 5 (A4, G) being galois is related to the condition that G acts fieely on
the isomorphism classes of simple A-modules. Section 6 is devoted to showing
that finite galois coverings for finite dimensional algebras correspond to our
notion of galois extensions.

In section 7 we return to considering pregalois (4, G). First we recall various
well known interpretations in terms of relative global dimension and derivations
of the fact that the multiplication morphism A ® 4 A — Ais a split epimorphism
as A-bimodules. We also give charaterizations of when the multiplication mor-
phism A[G] ® , A[G] — A[G] is a split epimorphism of A[G]-bimodules.

1. Preliminaries.

Let A be a ring and let G be a finite group operating on A as a group of
automorphims. Let A[G] denote the skew group ring of A by G, i.e. A[G]is a free
left A-module with the elements of G as basis and the multiplication in A[G] is
defined by the rule 4,9- A,h = A,9(44)gh for A, A,e A, and g,heG. A left A[G]-
module M may be thought of as a A-module M with an action of G such that the
equality g(Am) = g(4)g(m) holds for each g€ G, A€ A and me M. In the same way
a A[G]-morphism between two A[G]-modules M and N is a A-morphism
J: M — N such that f(g(m)) = g(f(m)) for each me M and geG.
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We say that the action of G on A is pregalois if A is a projective A[G]-
generator, where A is considered as a left A[G]-module by Ag-x = Ag(x) for
A, x€A and g e G. In this situation we also say that the pair (4, G) is pregalois.

Let I' be a subring of 4. We also say that (A, I') is pregalois if I' is the fixpoint
set A% = {Ae A|g(4) = A, for all ge G} of a finite group G acting on A with (4, G)
pregalois.

When G operates on A as a group of automorphisms, the same action induces
an action of G as a group of automorphisms on A°?, the opposite ring of A. The
map f: A[G] —» A°°[G] defined by f(A,9) = g~ '(4g)g~" is easily seen to be an
antiisomorphism. Hence, with this map we may identify (A[G])°® with A°P[G].
The left A°°[ G]-structure on A°P will by this identification correspond to the right
A[G]-structure on A given by A-4,g = g™ '(44,) for each 1 in A and each 4,9 in
A[G].

The main aim of this first section is to establish the fact that (4, G) is pregalois if
and only if (A°P, G) is pregalois. By the above discussion, this may be reformulated
as A is a projective left A[G]-generator if and only if A is a projective right
A[G]-generator. This will be done separately for the two properties involved in
the definition of pregalois. In order to do this we need different characterizations
of the fixpoint set M¢ = {me M |g-m = m for all ge G} of a A[G]-module M.
The subgroup M€ of M is easily seen to be a left module over the fixpoint ring A¢
., of A. We begin with the following well known result.

PROPOSITION 1.1. a) The evaluation map ¢, : Hom 46,(A, M) = M defined by
om(f) = f(1) induces a functorial isomorphism ¢ : Hom 46, (A, M) — M€ for all
left A(G)-modules M.

b) ¢,:End 4/(A)°° > A is a ring isomorphism.

As a consequence of the isomorphism End ,,(4)°® ~ 4 we have from general
Morita theory the following connection between Mod A[ G], the category of left
A[G]-modules, and Mod A9, the category of left A°-modules, when (4, G) is
pregalois.

PROPOSITION 1.2. (A,G) is pregalois if and only if A® 46 —:Mod A% —
Mod A[G] and Hom 46,(A —): Mod A[G] — Mod A€ are inverse equivalences of
categories.

Proor. Assume first that (A4, G) is pregalois. Hence A is a finitely generated
projective A[G]-generator. Then from general Morita theory, Hom 46,(4, —)
induces an equivalence of categories between Mod A[G] and Mod (End 4;6,(4)°?)
with 4 ®g.q aweyaer — s inverse (see [AF, Section 22]). But from the above
proposition End ,(4)°® is naturally isomorphic to A%, which completes the
proof of the only if part of the proposition. From Moritas characterization of
equivalence the converse follows (see [AF, Section 22]).
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We now use the obvious embedding of A as a subring of A[G] to give several
descriptions of (A[G])® which will be useful in describing when A is a A[G]-
generator as a left A[G]-module. We also include a description of the set of
elements x in A[G] such that xg = x for all ge G which will be needed later on.

PROPOSITION 1.3. a) The following three equalities hold:

(Z 9)'/1 = (Z 9)/1[0] = (A[G))° = {Z g(l)glleA}.

geG geG geG

b) (A[G])S is isomorphic to A as a right A-module with Y, g as a generator.
geG
¢) The following two equalities hold:

A(Z g) = A[G]~<Z g) = {xeA[G]|x g = x,YgeG}.
geG geG '

This A[LG]-A%-bimodule is again isomorphic to Hom 4,(4, A[G]) by the map
&(f) = f(1), where A and A[G] are considered as right A[G]-modules.

ProOF. The proof of a) and c) is straightforward and b) follows directly from

a).

Let I'be any ringand M and N be left I'-modules. The trace, 7)(N), of M in N is
defined as the subgroup of N generated by {Im f| fe Hom (M, N)}. Obviously,
Tp(N) s a left I'-submodule of N. Using this definition, Proposition 1.3 gives the
following result.

COROLLARY 1.4. a) Consider A and A[G] as left A[G]-modules. Then
1 ,(A[G]) is equal to the twosided A[G]-ideal generated by Y g which is equal to

geG

the abelian group generated by the elements {A;"Y ;e 2,1 Ay, A, € A}.
b) Consider A°° and A°P[G] as left A°°[ G]-modules. Thent ,(A[G]) = 7 40s(A°P[G])
as twosided A[G]-ideal.

Let I" be any ring and M a left '-module. Then M is called a I'-generator if
() = I'. Using the description of 7 ,(A[G]) given above we get the following
description of when A is a A[G]-generator which will be used throughout this

paper.
COROLLARY 1.5. A is a A[G]-generator if and only if there exist A; and y; in

Asuchthatl =Y A < Yy g) 7;. Moreover, A is a A[G]-generator if and only if A°P

i=1 geG
is a A°°[G]-generator.

Proor. This s a direct conequence of the description of 7 ,(A[G]) given in the
previous corollary.
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We have some general consequences of A being a A[G]-generator. Part b)
establishes a relationship with [V].

PROPOSITION 1.6. Let A be a A[G]-generator. Then we have the following.
a) A is both a left and a right finitely generated projective A¢-module.

b) The natural map a: A ® 4o A > A[G] given by a(x ® y) =x* Y, g*y is an
geG

isomorphism of A[G]-bimodules, where the left A[G]-structure on A ® 46 A is
induced by the left A[ G]-structure on the first A and the right A[G]-structure by the
right A[G]-structure on the second A.
c) The natural map B:A[G] — End A given by B(xg)(y) = xg(y) is a ring
isomorphism, where g€ G, x and y in A and A is considered as a right A%-module.
d) If A and A are considered as right A®-modules, then the natural map

p: A - Hom 46(A, A®) given by () = Y, g- A is an isomorphism of right A-mod-

geG
ules.

e) The natural multiplication map 6: A ® 46A — A is a split epimorphism as
A-bimodule map.

PROOF. Part a) follows by standard Morita theory (see [AF, p. 195]).
The natural isomorphism of A¢-A[G]-bimodules y: A4 — Hom 4,(4, A[G])

given by y(AX1) = Y. g- 4 induces an isomorphism
geG

$:A® 64 > Hom 4,(4, A[G]) ®EndA[G](A) A

of A[G]-bimodules given by &(x ® y) = y(y) ® x. From [AG1, Th. A.2] we then
get a commutative diagram

A®uA 225 A® 46 Homyo(A, A%)
lo !
A[G] End e (A)
Since A is a A[G]-generator, « is surjective. It then follows from [AG1, Th. A.2]
that all maps in the diagram are isomorphisms. It is easy to see that o is
a A[G]-bimodule homomorphism, so that b) and c) follow.

Themapt = ) gis a twosided 419-homomorphism from A to A°. Since 4 is
geG
a A[G]-generator, there are elements x; and y; in A (1 £i < n), such that

n
1 =Y x;ty,. By the definition of the right A-structure on Hom s (4, A%), we
et

have A = Y x; + (y;4). Let now f: 4 — A® be a right A°-homomorphism. For
i=1
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Ae A we get
10 = 3 fexityid) = 3 Sty = ¥ dfayid)

This shows that f =t ) f(x,)y;, so that Hom ,c(A, A%) is generated by ¢ as
i=1

a right A-module. It follows from [AG1, Th. A.2] that u is a monomorphism.

This finishes the proof of d).

The map p, : A[G] — A given by p, (Z /lag) = A,,where 1 is the identity of G,
geG
is clearly a split epimorphism as A-bimodule map. Since f = p, o, it follows

from a) that 6: 4 ® ,c A — A is a split epimorphism as A-bimodule map.

We now show that A is a projective A[G]-module if and onlu if A°? is
a projective A°°[G]-module, obtaining the same symmetry as for generators.
This proof also uses an elementwise description of when A is a projective A[G]-
module which will be used repeatedly throughout this paper without further
references.

Define ¢;: A[G] — A by s,(Z l,g) = Y A, This map is called the left aug-
geG geG
mentation map, and is a left A[G]-morphism. Similarly, the map ¢,: A[G] —» 4

defined by ¢, ( YA, G) = Y g(4,-1)is called the right augmentation map, and is

geG geG
a right A[G]-morphism.
With these definitions we have the following result.

PROPOSITION 1.7. The following statements are equivalent:
i) A is a projective left A[G]-module;
i) ¢ is a split epimorphism;
iii) there exists a Ain A such that Y g(1) = 1;
iv) &, is a split epimorphism; 9<G
V) A is a projective right A[G]-module.

Proor. That i) and ii) are equivalent is obvious. So we want to prove that ii)
and iii) are equivalent. The rest then follows since iii) is left right symmetric.
Assume first that g, is a split epimorphism. Then there exists a A[G]-morphism
d:A — A[G] such that g,06 = id ,. However, ¢ is uniquely determined by é(1)
which is in (A[G])°. Now (A[G])¢ = {z g(}.)gMeA} by Proposition 1.3, so

geG

8(1) = Y g(A)g for a A in A. Therefore 1 = (,06)(1) = Y, g(4) which shows that
€eG

g geG
iii) follows from ii).
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To prove the converse, let A be in A such that ) g(d) =1 and define

geG

5:A4 - A[G] by 8(x) = x* Y. g(A)g. Since Y, g(4)ge(A[G])® we have that ¢ is

g9eG geG
aleft A[ G]-morphism and obviously (g, 0 d)(x) = x for all xin A. Hence ii) follows
from iii) and the proof of the proposition is complete.

As a consequence of this proposition and Corollary 1.5 we get that the notion
of pregalois is left right symmetric, which was the main goal of this section.

COROLLARY 1.8. (A4, G) is pregalois if and only if (A°®?, G) is pregalois.
The following result connected with Proposition 1.7 will be needed later on.

PROPOSITION 1.9. If A is a projective A[G]-module, then A = A is a A%-sum-
mand both as a left and as a right A°-submodule of A. Moreover, if there exists a A in
the centralizer of A% in A suchthat Y, g(A) = 1,then A€ is a twosided summand of A.

geG

ProoF. By Proposition 1.7 we have that A being a projective A[ G]-module is

equivalent to that there exists a Ain A such that ) g(4) = 1. Definev: A — A% by
geG

u(x) = Y g(Ax)andu: A - ASbyu(x) = Y. g(xA). Then it is easy to verify that v is
geG geG
aright A°-morphism and that u is a left A°-morphism, both being left inverses of

the inclusion of A€ in A. Further, if 1 can be choosen in the centralizer of A€ in

A with Y g(4) = 1, then both u and v as defined above are in fact twosided
geG

A%-morphisms.

We now apply Propositions 1.7 and 1.9 to obtain the following description of
when (4, G) is pregalois.

PROPOSITION 1.10. If A is a left (right) A[G]-generator, then the following are
equivalent.
a) AS — A is a split monomorphism as right (left) A%-modules.
b) A is a right (left) AS-generator.
c) A is aright (left) ALG]-projective module.

PrROOF. By Proposition 1.9 we have that c) implies a). That a) implies b) is
obvious. So we only need to prove that b) implies c).
Since A is a A%-generator, we have a surjection h: A" — A%, and hence A%-mor-

phisms h;: 4 » A® and elements A, for 1 £i < n, such that Y h(4,) = 1. By
i=1

Proposition 1.6 we have that Hom 46(A, A°)is generated as a right A%-module by



12 MAURICE AUSLANDER, IDUN REITEN AND SVERRE SMAL®

t =) g. Hence for each i, h; = tx; for some x; in 4 so that 1 = Y tx,(4) =
9eG i=1

Y t(x;A;). This shows by Proposition 1.7 that A is a projective A[G]-module.
i=1

CoMMENTS. The above proposition can be used to get sufficient conditions for
A being a left A[ G]-generator implying that (A, G) is pregalois. Consider the class
of rings X with the property that if i: ¥ — I' is an inclusion of rings such that I' is
a finitely generated left projective X-module, then i: £ — I' is a split monomor-
phism as left Z-modules. If A is such that A€ is in this class of rings, then we see
that (4, G) is pregalois if A4 is a A[G]-generator, by using Proposition 1.10. It is
not hard to see that A€ is in this class of rings if either a) A€ is a finite product of
local rings, b) A€ is commutative, or ¢) A€ is self-injective (for example semisimple
artin).
However, the following example shows that A may be a A[G]-generator
k k k
without (A4, G) being pregalois: Let A = [k k k] , where k = Z/2Z, and let
k k k

1 00
g: A — A be the automorphism given by conjugation with the matrix [O 1 O] .
1 11
Then G = {g) is a group of order 2. One can show that 4 is a A[ G]-generator,
but not a projective A[ G]-module, by using Corollary 1.5 and Proposition 1.7.
We now give an example where (4, G) is pregalois, showing that A% is not
always a twosided A%-summand of A. -

ExaMPLE 1.11. Let k be a field and let A be the subring of the lower 4 by 4 matrix
ring over k described by

a 000
0b 0O
A= 0 ¢ a0 |a,b,c,dek
d 0 0D
Now, conjugation by the matrix

0100
1 000

M=100 01
0010

is obviously of order two, and acts as an automorphism ¢ of A. Let G = {id, ¢}.
Using the elementwise description of when A is a projective A[ G]-module we have
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from the equality

1000 1000 1000
0100 0000 0000
o010/ loo1o|lT o010l
000 1 0000 0000

that A is a projective A[G]-module. Similarly, it is easy to verify that A is a
A[G]-generator using the elementwise description of when A is a A[ G]-generator.
Further, direct calculations gives that

AS =

o O O 8
o 8 O

0

Ifchar k # 2,then} + ¢(3) = 1,s0 by the proposition above we always have that A¢
isa twosided A%-summand of A. However, if char k = 2it is easy to show that there is
no twosided A%-complement of A% in A.

The final result of this section is also a consequence of Proposition 1.7.

COROLLARY 1.12. If A is a projective A[G]-module, then M = (Z g) M for
geG
all left A[G]-modules M.

PrOOF. Obviously ( y g) *M < M€, In order to prove the other inclusion, let

geG

meMC. Then m= Y g(4):m for a AeA by the elementwise description of
geG

projectivity in Proposition 1.7. Hence we get m = Z g(Am) because g(m) = m by
geG

assumption. Therefore me ( Y g) - M which completes the proof.

geG

2. Pregalois correspondence.

In the first section we showed that the notion of pregalois action of a finite
group G on a ring A was left and right symmetric. In this section we show that if
(4, G) is pregalois then the induced ation of any subgroup H of G makes (A, H)
pregalois. We also prove that the induced action of G/H on A" for any normal
subgroup H of G is pregalois if (4, G) is pregalois.

LeEMMA 2.1. Let H be a subgroup of G. If A is a projective A[ G]-module, then
A'is a projective ALH]-module.
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ProOOF. We have that A[G] is a free A[ H]-module, and that any A[G]-sum-
mand of A[G] is also a A[ H]-summand. From this it follows that A is a projective
A[H]-module if A is a projective A[ G]-module.

LEMMA 2.2. Let H be a subgroup of G. IfA is a A[G]-generator, then A is
a A[H]-generator.

PRroOOF. Since A[G] is clearly a A[ H]-generator, any A[G]-generator is also
a A[H]-generator.

These two lemmas then immediately give the following.

PROPOSITION 2.3 Let H be a subgroup of G. If (A, G) is pregalois, then (A, H) is
pregalois.

As a consequence of this we have the following connection between the rings
A% A" and A for H a subgroup of G when (A, G) is pregalois.

COROLLARY 2.4. Let H be a subgroup of G. If (A, G) is pregalois, then A is both
a projective left and a right A¥-module, and A" is projective both as a left and as
a right A%-module.

Proor. The first of these statements is a restatement of Proposition 1.6 in
a weaker form.

The second statement uses Proposition 1.9. From the above proposition (A, H)
is pregalois, so in particular A is a projective A[ H]-module. Hence, by Proposi-
tion 1.9, A is a summand of A both as a left and as a right A#¥-submodule. But we
already know that that A is a projective left as well as a right 4°-module, and
since any A¥-summand of A is also a A°-summand we have that A" is a projec-
tive A%-module on both sides.

Before obtaining the final results about quotient groups, we need some pre-
liminary results. In the following lemma we view A and A" as right A%-modules
when H is a subgroup of G.

LEMMA 2.5. Let H be a subgroup of G. If (A, G) is pregalois, then Hom 46 (A#, A®)
is generated as a right A"-module by the map o defined by o(x) = Z gi(x) where the
elements g; are representatives of the left cosets of H in G. ’

PROOF. Obviously o is a A%-morphism from A to A% since y: 4 — A" defined

by ¥(x) = ), h(x) is surjective. Let f be a A%-morphism from A* to A¢. By
heH
Proposition 1.9 A" is a summand of A as a right A¥-module, so the restric-

tion map Hom ,c(4, A%) - Hom 46(4", A is a split epimorphism. Hence,
there is a A%morphism f': A — A€ such that f’|,= = f. From a result of
Auslander and Goldman (see [AG2]) we have that Hom ,6(4, A) is generated as
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aright A-module by the map ¢ defined by ¢(x) = Z g(x). Therefore there is a A

geG
in A with f' = ¢+ 1. Now f(x) = f'(x) = ¢(Ax) = Y g(Ax) = Zg,(Z h(lx)) =
geG i heH
Z g (( Z h(i)) x). Therefore f = o+ ( Yy h(l)) which completes the proof of the
i heH heH
lemma.

LEMMA 2.6. Let H be a normal subgroup of G. Then A" is a faithful A" [ G/H]-
module if A is a faithful A[G]-module.

ProoF. Let ) A, bea nonzero element of A¥[G/H]. Consider the element
teG/H

Y A (Z g) in A[G]. Since by assumption A is a faithful A[ G]-module, there is

teG/H get

an x in A such that A,(Z g) (x) £ 0. But Y h(x)e A and we have that

teG/H get heH

Y A,(Z g> (x) = < Y Ag. Y h) (x) by choosing one representative g, from

teG/H get teG/H heH

each coset 7. Hence, ( Y A,g,)(z h(x)) = 3y ll,t(z h(x)) 4+ 0, with

teG/H heH teG/H heH

Y. h(x)e A". From this we conclude that A" is a faithful A¥[G/H]-module.

heH
In order to apply these results we need the following.

LEMMA 2.7. A is a A[G]-generator if the following statements hold.
a) A is a finitely generated projective A°-module.

b) Hom 46(A 46, A®) is generated as a right A-module by Y. g.
geG
c) A is afaithful A[G]-module.

PROOF: Statement a) that A is a finitely projective 4¢-module implies that A is
an End 4e(A4 4c)-generator. Statement c) is equivalent to A[G] being a subring of
End 46(A4 46) by the natural map ¥ : A[G] - End 4s(4 45) given by ¥(4,9)(4) =
4,9(A). Statement b) together with a) implies that every element of End ,6(4 4c) is
represented by an element in A[G]. So ¥ is surjective and therefore A[G] ~
End ,¢(A4 46). Hence A is a A[G]-generator.

We now apply this lemma to the ring A" with the action of the group G/H for
a normal subgroup H of G, to prove the main result of this section.

THEOREM 2.8. Let H be a normal subgroup of G. If (A, G) is pregalois, then
(A", G/H) is pregalois.
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PROOF. We first prove that A® is a A#[G/H]-generator by using Lemma 2.7.
Assume that (4, G) is pregalois. Then by Corollary 2.4, A¥ is a projective
A%-module. Hence, condition a) of Lemma 2.7 is satisfied for (4%, G/H). Using

Lemma 2.5 we know that Hom ,6(A4", A%) is generated by ), t, so condition b)
teG/H

of Lemma 2.7 is satisfied for the ring A¥ and the induced action from the group
G/H. Finally, Lemma 2.6 gives that A" is a faithful A#[G/H]-module, so the third
hypothesis of Lemma 2.7 is satisfied. Therefore we conclude that A¥ is a
AH[G/H]-generator by Lemma 2.7.

It remains to prove that A¥ is a projective A¥[G/H]-module when (4, G) is
pregalois. This follows from the next lemma which completes the proof.

LEMMA 2.9. Let H be a normal subgroup of G. If A is a projective A[G]-module,
then A" is a projective A"[G/H]-module.

PrOOF. Assume that A is a projective A[ G]-module. Then there exists a 4 in

Asuchthat ) g(4) = 1.Since ) h(4)isinA"and Y 1(2 h(l)) =Y g(d) =1,
geG heH teG/H heH geG

A" is a projective A¥[G/H]-module.

It would be nice to have a ring theoretical charaterization of the fixpoint rings
corresponding to subgroups H of G in the case (A, G) is pregalois.

3. Factor rings.

In this section we want to look into how the induced action of G on quotient
rings of A by twosided G-ideals of A behaves with respect to the notion of
pregalois, where by a twosided G-ideal of A we mean a twosided A-ideal which is
also a A[G]-submodule of A. We first prove that if (4, G) is pregalois, then
(4/1,G) is pregalois for each G-ideal I in A. The converse of this also holds if we
restrict to those G-ideals which are contained in the radical of A. More precisely,
if (A/rad A, G) is pregalois, then (A, G) is pregalois.

In order to prove the first of these results we need a result connecting the rings
A[G] and (A/I)[G] for a G-ideal I of A.

LEMMA 3.1. Let I be a twosided G-ideal of A. Then a.: A[G] — (A/I)[G] defined
by a(z lgg> =Y A,g induces an isomorphism A[G]/(I-A[G]) ~ (A/D[G]

geG geG
where A’ denotes the residue class of A in A/I.

PROOF. Itis easy to see that o is a ring map and that the kernel of ais I - A[G],
which completes the proof of the lemma.
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PROPOSITION 3.2. Let I be a twosided G-ideal in A. Then
a) A/l is a (A/D)[G]-generator if A is a A[G]-generator;
b) A/l is a projective (A/I)[G]-module if A is a projective A[G]-module;
c) (A/1,G) is pregalois if (A, G) is pregalois.

Proor. Using the above lemma and the elementwise description of A being
a A[G]-generator given in Corollary 1.5, statement a) is easily established.

In the same way, using the elementwise description of Proposition 1.7 of when
A is a projective A[G]-module, statement b) follows.

The main result of this section is the following result.

THEOREM 3.3. Let (A, G) be as usual and let rad A denote the radical of A. Then
the following are true.
a) If A/rad A is a (A/rad A)[G]-generator, then A is a A[G]-generator.
b) If A/rad A is a projective (A/rad A)[G]-module, then A is a projective A[G]-
module.
c) If the induced action of G on A/rad A is pregalois, then (A, G) is pregalois.

PROOF. Assume that A/rad A is a (A/rad A)[G]-generator. Then there exist 4,

and y;in A such that )’ 4; ( Y. g) u; = 1, where ;and y; are the images of 4, and y;

i geG

by the natural map from A to A/rad A, respectively. Henceu = 1 — Y 4, < Y g) W

i geG

is in (rad A)- A[G] < rad (A[G]). So ZA,(Z g) W; is a unit in A[G]. Therefore
i geG

the trace, 7 ,(A[G]), of A in A[G] contains a unit (see Corollary 1.4) and must

therefore be all of A[G]. So A is a A[G]-generator.

To prove statement b) assume that A/rad A is a projective (4/rad A)[G]-mod-

ule. Then there exists a 4 in A such that ), g(4') = 1 in A/rad A, where A’ is the
geG

image of 4 by the natural map from A to A/rad 4. So 1 — ) g(4)erad A4 and

geG

therefore ) g(/4) is a twosided unit with unique inverse . Since Y. g(4)is in AS,
geG geG

also u is in A% but then 1 = (Z g(l))y = Y g(Au). This shows that A is

geG geG
a projective A[G]-module, which completes the proof of statement b) as well as
the proof of the whole theorem.

4. Galois actions.

In this section we introduce the notion of galois and extend the results from
Section 2 and Section 3 by substituting pregalois by galois.
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Let A and G be as usual. We say that (A, G) is left (right) galois if the following
two conditions are satisfied:

a) (A, G) is pregalois,

b) A%/ann . S is a semisimple artinian ring for each simple left (right) A-mod-
ule S. (Here ann 4c S denotes the annihilator of S as a A%-module.)

We say that (A, G) is galois if (A4, G) is both left and right galois.

The notions of left galois and right galois are equivalent for the class of rings
A such that A/ann, S is a simple artinian ring for each simple left and right
A-module S. This follows because for this class of rings there is a duality between
the left and right simple A-modules. Polynomial identity rings satisfy this
property as well as rings which are finitely generated as modules over their
centers and rings which are semisimple artinian modulo their radicals.

We prove that the notion of galois and pregalois coincide for basic rings, where
by a basic ring we mean a ring such that A/ann 4 S is a division ring for each simple
left and right A-module S. In particular the notion of galois and pregalois
coincide for commutative rings as well as rings which are basic semisimple
artinian modulo their radicals.

For simplicity, we will let simple and semisimple mean simple artinian and
semisimple artinian respectively, both when used for modules and rings through
the rest of this paper.

We first prove that the results from Section 3 hold if we substitute pregalois by
left (right) galois.

PRrOPOSITION 4.1. Let I be a G-ideal of A. If (A, G) is left (right) galois, then
(A/1, G) is left (right) galois.

Proor. From Proposition 3.2 we know that (A/I, G) is pregalois. Therefore it
is enough to prove that (A4/I)°/ann4,;c S is semisimple for each simple A/I-
module S. Let S be a simple A/I-module. Then I is contained in ann, S, so
1) A% < ann, S () A¢ = ann 4. S. However, (4, G) being galois implies that the
fixpoint functor is exact, so

AS/ann 6 S = (A9/1 () A%)ann 46 S/I () A®) = (A/I)/ann, ;e S

since obviously I¢ = I ") AS. Further, A%/ann ,c S is semisimple by assumption,
which completes the proof of the proposition.

The analog of Theorem 3.3 is also valid when pregalois is replaced by left
(right) galois.

THEOREM 4.2. If the induced action of G on A/rad A is left (right) galois, then
(A, G) is left (right) galois.

Proor. This follows from the fact that rad A is contained in the annihilator of
all simple left and right A-modules.
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CoMMENT. The following is an easily verified consequence of Theorem 4.2.
Suppose A/rad A is semisimple and A is a A[ G]-generator. Then the following
statements are equivalent. a) (4, G) is galois, b) (4/rad A)¢ is semisimple, c)
(A/rad A)[G] is semisimple.

We next want to give an example showing that the notions of galois and
pregalois do not coincide even when the ring is a finite dimensional algebra.

EXAMPLE 4.3. Let k be a field of characteristic 2 and let A = M,(k), the ring
of two by two matrices over k. Let ¢ be the inner automorphism of A obtained

. . . (1
by conjugation by the matrix ( 11

the explicit action of ¢ is given by ¢(‘: Z) = <a +Zilc)+ b f_ d) and

that ¢ has order two. Let G = {id, ¢}. Then an easy calculation gives that

o)

11 . I . .
use the element A = 0 0 in the elementwise description of when A is a projec-

. Using that char k = 2, one easily sees that

a,be k}. To prove that A is a projective A[ G]-module, we just

. . 1 1 1 0 1 0\ .. .
tive A[ G]-module, since we have that ( 0 0) + ¢ ( 0 0) = ( 0 1). Similarly

11
to prove that A is a A[G]-generator, we use the elements 4, = u; = < 0 0) and
01 . .
Ay =, = ( 0 1) in the elementwise description of when A is a A[ G]-generator,

since A2 + A3 = ((1) ?) and 4,¢(4,) + 4,¢(4,) = 0. Therefore (4,G) is
pregalois, however the simple A-module is not semisimple as a A°-module.

In order to prove that the results from Section 2 hold for subgroups H of
G when we replace pregalois by galois, we need some intermediate results.

PROPOSITION 4.4. Assume that (A, G) is pregalois and that A/ann S is a simple
ring for all simple left (right) A-modules S. Then the following hold.

a) If T is simple left (right) A[G]-module, then T is semisimple as a left (right)
A-module.

b) If T is a simple left (right) AS-module, then A ® 46 T (T ® o A) is
a semisimple left (right) A-module.

¢) A[G)/ann 4, T is a simple ring for each simple A[G]-module T.

d) A%/ann ¢ T is a simple ring for each simple A%-module T.

PrOOF. The proof of b) follows from that of a) by the equivalence A ® 46 —:
Mod A9 - Mod A[G], hence in order to establish the two first statements it
suffices to prove a). Therefore let T be a simple A[G]-module. Since A is
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a A[G]-generator, T ~ A/I where I is a maximal left G-ideal of A. But then there

exists a maximal left A-ideal J of A containing I. Consider () gJ, which is a left
geG

G-ideal of A. Therefore I = (") gJ by the maximality of I since obviously I is
geG

containedin (") gJ. Hence T is a semisimple A-module since each gJ is a maximal
geG

left A-ideal.

That the statements d) and c) are equivalent follows since A and A[G] are
Morita equivalent rings. Therefore it is enough to prove c). Let T be a simple
A[G]-module. Then from a) we know that T is semisimple as a A-module. Hence,
A/ann, T is a semisimple ring by the assumption. From this it follows that
(A/ann , T)[G] is a module of finite length over A, hence also of finite length over
A[G]. But this implies that A[ G]/ann 4, T is a simple ring since it is a quotient of
(A/ann, T)[G].

LEMMA 4.5. If (A,G) is left (right) galois, then A/ann S is a simple ring for each
simple left (right) A-module S.

PROOF. To prove this let S be a simple left A-module. Then we know by the
assumption that A%/ann ¢ S is a semisimple ring. Obviously, A -(ann e S)- A4 is
contained in the annihilator of S as a A-module. So there exists a A-epimorphism
from A/A-(ann s S)- A to A/ann,S. But A/A-(ann,cS)- A is an artinian A°-
module and therefore also artinian as a A-module. Hence A/ann S is a simple
ring.

We next want to give some other characterizations of (A, G) being left (right)
galois.

PROPOSITION 4.6. Assume that (A, G) is pregalois. Then the following statements

are equivalent:

i) (A, G) is left (right) galois.

ii) A/ann, S is a simple ring for each simple left (right) A-module S, and
(A/ann, T)[G] is a semisimple ring for each simple left (right) A[G]-module
T.

iii) A/ann, S is a simple ring for each simple left (right) A-module S, and A[G] ® 4 S
is a semisimple A[ G]-module for each simple left (right) A-module S.

iv) A/ann S is a simple ring for each simple left (right) A-module S, and each simple
A-module S is semisimple as a A®-module.

PrOOF. We prove this by proving that i) implies ii), that ii) implies iii), that
iii) implies iv) and that iv) implies i). Assume therefore that i) holds. Lemma 4.5
then states that A/ann,S is a simple ring for each simple left A-module S.
Therefore it only remains to prove the other half of ii). Let T be a simple left
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A[G]-module. Then T is semisimple as a A-module by Proposition 4.4. By i)
A%/ann 6 T is therefore a semisimple ring. But from Proposition 3.2 we know
that (A/ann, T, G) is pregalois since ann, T is a G-ideal in A. Therefore
(A/ann, T)¢ and (A/ann, T)[G] are Morita equivalent rings. But since the
fixpoint functor is exact when (4, G) is pregalois, it follows that (4/ann , T)¢ ~
A%/ann 4c T. This proves that ii) follows from i).

The first parts of ii) and iii) are identical, so we prove that the second part of iii)

follows from ii). Let S be a simple A-module. Since () g(ann 4 S) is a G-ideal of 4,
geG
we know that S is a A-submodule of a A[G]-module of finite length, hence that

S is a A-submodule of a simple A[G]-module T. Now A[G] ® 4 S is annihilated
by ann, T and is therefore a (A/ann, T)[G]-module. But from ii) this is
a semisimple ring, so A[G] ® , S is a semisimple A[ G]-module.

To prove that iii) implies iv) let S be a simple A-module. Then A[G] ® ,S
is semisimple as a A[G]-module. Consider (A[G] ® 4S)¢ which is equal to

(Z g) *(A[G] ® 4, S) by Corollary 1.12. But this is equal to ( Y g) A ® 4 S which

geG geG
is isomorphic to S as a A%-module. Hence, S is semisimple as a A%-module.

That iv) implies i) is a direct consequence of Proposition 4.4d). This finishes the
proof of the proposition.

Before we go on to consider the induced action of subgroups and factor groups
of G, we include a result about when galois and pregalois coincide, based on the
above characterization of galois.

PROPOSITION 4.7. Assume A/ann 4 S is a division ring for each simple left or right
A-module S. Then (A, G) is pregalois if and only if (A, G) is galois.

PRrROOF. In the proof of this we use the characterization of (4, G) being galois
given in part iii) of the last proposition. Assume that (A4, G) is pregalois and let
T be a simple A[G]-module. Since A/ann , T is a semisimple ring by Proposition
4.4, it follows from the hypothesis of the proposition that the sets of maximal left-,
maximal right- and maximal twosided A-ideals coincide. Therefore A/ann, T is
isomorphic to T as a A[G]-module. Now (A/ann 4 T, G) is pregalois by Proposi-
tion 3.2 because ann, T is a G-ideal of A. Therefore (4/ann, T)[G] is a simple
ring since it has a simple generator. This obviously implies that iii) of the previous
proposition is satisfied, hence (4, G) is galois.

We are now in a position where we can prove that the notion of left (right)
galois behaves nicely with respect to subgroups and quotient groups.

THEOREM 4.8. Let H be a subgroup of G. If (A, G)is left (right) galois, then (A, H)
is left (right) galois.



22 MAURICE AUSLANDER, IDUN REITEN AND SVERRE SMAL@

Proor. From earlier results we know that (A, H) is pregalois. (See Proposition
2.3). Therefore by Proposition 4.6 it is enough to prove that (4/ann, T)[H] is
a semisimple ring for each simple A[H]-module T. Let T be a simple A[H]-
module. Then T is a simple A[H]-submodule of a simple A[G]-module M.
Further ann, M < ann, T so (4/ann, T)[H] is a quotient of (A/ann, M)[H].
Therefore it is enough to prove that (A/ann, M)[H] is semisimple. Now
(A/ann , M)[G] contains (A/ann, M)[H] as a twosided (A/ann, M)[H]-sum-
mand. From this it follows that any (A/ann, M)[H]-module N is a direct
summand of (A/ann, M)[G] ® (4/ann, M1 N. Since (A/ann, M)[G] is
a semisimple ring by assumption, (4/ann, M)[G] ® , jann i) N is a projective
(A/ann 4 M)[G]-module. But (4/ann, M)[G] is also free as a (A4/ann, M)[H]-
module, which then gives that all (4/ann , M)[ H]-modules are projective, show-
ing that (4/ann, M)[H] is a semisimple ring. This completes the proof of the
theorem.

THEOREM 4.9. Let H be a normal subgroup of G. If (A, G) is left (right) galois,
then (AY, G/H) is left (right) galois.

PROOF. Let S be a simple A¥-module. Then A ® 4« S is a simple A[H]-module
since (A4, H) is pregalois. But then A ® ,» S is semisimple as a A-module by
Proposition 4.4. By assumption A%/ann (A ® 4« S) is therefore a semisimple
ring. However S is a submodule of A ® 4« S as a A¥-module, hence also as
a A%-module. Therefore S is semisimple as a 4°-module which completes the
proof of the theorem.

5. Free actions.

The main aim of this section is to relate the notion of galois to the induced
action of G on the isomorphism classes of simple A-modules.

We first prove that if A/rad A is a semisimple ring and the induced action of
G on the isomorphism classes of the simple A-modules is free, then (A4, G) is galois.
After this we consider the situation where A is an R-algebra where R is a com-
mutative ring such that A,/rad 4, is a finite dimensional R/m-algebra for each
maximal ideal m of R, and where G acts a group of R-automorphisms. Then using
the above local result, we prove that if the induced action of G on the isomor-
phism classes of simple A-modules is free, then (A, G) is galois.

We next consider the situation where R/m is an algebraically closed field and
that A, /rad A, is a product of a finite number of copies of the field R/m, for each
maximal ideal m of R. In this situation we prove that (A4, G) being galois implies
that the induced action of G on the isomorphism classes of simple A-modules is
free. If Ris a finitely generated algebra over an algebraically closed field k and A/
is a one dimensional vectorspace over k for each maximal ideal I of A, then
A satisfies the conditions above. Hence for this class of rings the notions of
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pregalois and galois are equivalent to that the induced action of G on the
isomorphism classes of simple A-modules is free.

PROPOSITION 5.1. Assume that A/rad A is a semisimple ring. If the induced
action of G on the isomorphism classes of simple A-modules is free, then (A, G) is
galois.

PrOOF. We first prove that A/rad A is a projective (A/rad A)[G]-module
by using the elementwise description of this. Let e,,e,,...,e, be the central
primitive idempotents of A/rad A. From the assumptions it follows that the
induced action of G on the central primitive idempotents e; of A/rad A is free.
Now choose one idempotent €;;j =1,...,mfrom each of these orbits. It is then

clear that ) g( Y e,~j> = Y e; =1 which shows that A/rad A4 is a projective

geG j=1 i=1

(A/rad A)[G]-module.
Next we ue the elementwise description of A/rad A being a (A/rad A)[G]-
generator from Corollary 1.5 to complete the proof that (4/rad A, G) is pregalois.

Let 4; = y; = e;. Then we have that ) i,--(Z g |u; = 1. Hence (A/rad A, G) is
i=1 geG

pregalois. But then (A, G) is pregalois by Theorem 3.3.
In order to complete the proof that (A, G) is galois, let S be a simple A-module.
Foreachgin G, let S? denote the A-module obtained from S by using the opration

of A on S defined by 4-s = g(A)s. Then [ ] $¢ is a A[G]-module by the action

geG

Axh(s,) = ((9(An)sh-1,),)- It is easy to see that this A[G]-module is simple. Hence,
G

1158¢) is a simple AS-module. However, the fixpoint set is easily seen to be
geG

G
{(s,)|s, = 5,Yg€G, where seS}. Now (]_I S") is a A%-submodule of (]_] S”)

geG 9eG

G
and the projection from (]_] S") onto § is a A%-morphism mapping [ [ |
geG geG
onto S. Hence S is a simple A°-module and therefore A%/ann 4c S is a simple ring

according to Proposition 4.4.

Now let R be a commutative ring, 4 an R-algebra such the A,/rad A4, is a finite
dimensional R/m-algebra for each maximal ideal m in R, and assume that the
induced action of G on the isomorphism classes of simple A-modules is free. Then
we have a global version of the previous result.

PROPOSITION 5.2. Let R, A and G be as above. If the induced action of G on the
isomorphism classes of simple A-modules is free, then (A, G) is galois.

ProOOF. We first show that (4, G)is pregalois by showing that 1 , A[G] = A[G]
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and that the map o:4 — A% given by a(4) = ), g(4) is surjective. The first of
geG
these claims follows by the previous proposition since it implies that

(A[G]/r 4, A[G]), = Ofor each maximal ideal m of R. The second claim follows in
the same way since the previous proposition implies that o,, is an epimorphism
for each maximal ideal m of R. Therefore ¢ is an epimorphism, which implies that
A is a projective A[G]-module.

Next let S be a simple A-module. Then S, is nonzero for some maximal ideal
m of R. Hence S, is a A,/rad A,-module. But then § is a simple A,/rad A4,-
module, which by the local version in the previous proposition implies that S is
semisimple as a (4,/rad A4,)%-module. Hence, S is semisimple as a A%-module.

We next consider the situation where A/rad A is a finite dimensional basic
k-algebra, where k is algebraically closed and where G operates as a group of
k-automorphisms. Under these assumptions we have the following,

PROPOSITION 5.3. Let A and G be as above. Then (A, G) is galois if and only if the
induced action of G on the isomorphism classes of simple A-modules is free.

PRrOOF. From the previous proposition we only have to prove that if (4, G) is
galois, then the induced action of G on the isomorphism classes of simple
A-modules is free. This will be done by using a dimension argument. From the
hypothesis A/rad A is isomorphic to a product of copies of k with the induced
action of G as a group of k-automorphisms. By dividing the algebra summands of
A/rad A into orbits, one can treat one orbit at a time. Then we have that
(A/rad A)% is equal to a product of copies of k, one for each orbit. Now using the
isomorphism (A/rad A)[G] ~ End, 4,4 4c(4/rad A) and counting dimensions,
we get that the dimension on the right hand side of the isomorphism sign is equal
to the sum of the squares of the size of the orbits. However, this is strictly less than
|G| - dim,(A/rad A) unless all the orbits have |G| elements. This completes the
proof of the proposition.

We will now use this result to prove the main result of this section.

Let k be an algebraically closed field and let A be an R-algebra with R a com-
mutative k-algebra. Assume further that G operates as a group of R-algebra
automorphisms and that A,/rad 4, is a basic finite dimensional k-algebra for
each maximal ideal m of R.

THEOREM 5.4. Let A and G be as above. Then (A, G) is galois if and only if the
induced action of G on the isomorphism classes of the simple A-modules is free.

ProoF. The proof of this follows by standard localization techniques using the
maximal ideals of R.
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6. Galois actions and galois coverings.

In this section we want to compare the notion of galois action developed in this
paper with the notion of galois covering for finite dimensional algebras introduc-
ed by K. Bongartz, P. Gabriel and C. Riedtmann. (See [BG, G, R].) The main
aim of this section is to show that finite galois coverings for finite dimensional
algebras correspond to galois extensions developed in this paper.

Before doing this, we recall the notion of a k-category for a field k and the
definition of a covering functor.

Let k be an algebraically closed field. A k-category I is a preadditive category
in which the morphism sets are k-vectorspaces, and the compositions are
k-bilinear. We will let Hom (x, y) and End (x) denote the space of morphisms
between two objects x and y and the ring of endomorphisms of an object
x respectively when it is clear to which category these belong. The k-categories
mostly studied in the representation theory of finite dimensional algebras satisfy
the following additional properties; a) for each object x in I', End (x) is a local
ring, b) for each pair of objects x and y in I', dim, (Hom (x, y)) < oo, ¢) distinct
objects of I' are nonisomorphic, and d) for each x in I" there are only a finite
number of objects y in I" such that Hom (x, y) + 0 or Hom (y, x) % 0. A k-category
satisfying a), b), c) and d) above, is called a locally bounded k-category.

If [ and A are locally bounded k-categories, then a k-linear functor F: ' — A is
called a covering functor if, a) F is surjective on objects, b) for each xin ' and a in
A, F induces isomorphisms

I Hom(y,x) » Hom(a, F(x))
yeF ~ 1(a)
and

[1 Hom(x,y) - Hom (F(x), a).
yeE ~1(a)
We now consider covering functors where I” has only a finite number of objects,
and hence 4 also has only a finite number of objects. Then we associate to I" and
A the following rings

r = 1] Hom(x,y)
x'ye[
and

A= ]] Hom(x,y),
x,yed

where the addition is componentwise and the multiplication is usual
matrix multiplication using composition in I’ and A4 respectively, i.e.

(fx,y)x.yE[ : (fx’.y)x,ys[ = (f:::y)x,ye,[" Where fx’:y = Z fx,z o fz,,y' Then “ iS WC" known
zel[[
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that I" and A are basic finite dimensional k-algebras. F induces a k-linear map
F:I' - A. Further, the two isomorphisms above will in general induce two maps
o A>T and ¢, p:A—>T defined by (¢, (fis)x,y = gx,» Where

z E(gx.y) = f;x.E(y) and (¢w,f(f;l.b))x,y = hx,y’ Where Z f(hx,y) = ff(x),b‘
xeF ~ 1(a) yeF ~1(b)
Obviously, ¢,  and @,, p are k-linear and they coincide if and only if for each

a,be A,x,e F~'(a)and y, € F~!(b), the diagram below commutes, where Px,and
py, are the natural projections.

E—l

Hom(a,)) @~——— ][] Hom(x,,y)
f"l }'EE"(”) ll’
II Hom(x,yo) —=—  Hom(xo,Y,)

xeF ~ '(a)

PROPOSITION 6.1. The morphisms ¢, g and ¢, g are both k-algebra morphisms
and the induced A-bimodule structure on I' by ¢,, p on the left and by ¢, ¢ on the
right, makes F a A-bimodule map.

Proor. We first prove that ¢, ; and ¢, ; are k-algebra inclusions. Clearly,
both ¢,  and ¢, p are k-linear inclusions and take the identity to the identity.
Therefore it suffices to prove that they respect the multiplication. We carry out
the calculation for ¢, . Let (f,s) and (f,,) be elements of A. Then

(for) (o) = (fiy), wheref), = 3 fo .~ £, Now consider ¢, p(fas)* P, (fas)

ced
= (9x.,) (gL, = (g%,), where g& , = Y g, .4, ,. The formulas connecting these
zel
expressions are given by Y F(g.,) = furpmyand Y F(gy,) = fi ry) for
xeF ~ (a) xeF ~1(a)

allain A4 and y in I'. We have to prove that the same relation holds between g”
and f”. Letain A4 and y in I be fixed. Then

Y F@gi)= Y E(Z(gx.zgz,y)>= Y Y F@..)F4.,

xeF ~1(a) xeF - 1(a) zell xeF = 1(a) zel'
Z ( Z F(gx z)) F(gz y) - Z fa F(z)F(gz y) - Z Z f;,F(z)E(q’z,y)(’z,y)
zel' \xeF -~ '(a)

ceA zeF~1(c)

=Y foe X F(g,y)—}:f..,,.fpm JaFiy-

ced zeF~1(0)
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Hence ¢, f is a ring morphism.

Let (h,,) be in I', and (f,,) and (f;,) be in A. Then a straightforward
calculation shows that

F(¢o,p(fa,0) 1)) ba, (fa0)) = (fa,) Flhs, ) )(fa5)-

Therefore F is a A-bimodule map when ¢, r is used to define the left A-structure
on I, and ¢, p is used to define the right A-structure on I'. This completes the
proof of the proposition.

In the rest of this section we will only consider finite galois coverings.

Let I" be a finite locally bounded k-category and assume that G is a finite group
of k-automorphisms on I" such that the induced action on the objects is free.
Then by [G, Prop. 3.1], the quotient category I'/G exists and the canonical
projection I' — I'/G is a covering functor. The objects of I'/G are the orbits of the
objects of I' under the group action, and a morphism f:a — bin I'/G is a family

GSf)e [l I(x,y)such that 9. fx) = 400 Sao for all g in G. Because the action of

xea, yeb
G on the objects is assumed to be free, the induced covering functor makes the
following diagram commute for each y, in b and x, in a.

Hom a, b) LN L1 Hom (xo, 9(yo))

geG
E_ ll lpyo

L1 Hom (g(xo).yo) —=—  Hom xo.yo)

Hence for finite galois coverings ¢, r and ¢,, f coincide. Further the action of
G on [ induces an action of G on the associated ring I' of I' by g((f,.,)) =
(9" fy00.95))x.,)- The fixpoint ring of I' under this action is the set of morphisms
(f.,) such that f, , = g7 ! f, ) This may be reformulated as the set of mor-
phisms (f; ,)suchthat g(f, ,) = f;x4)- But thisis also the image of 4, the ring of
I'/G by the map ¢.

From this discussion it follows that a finite galois cover F: I — A with galois
group G gives rise to an action of the finite group G on the ring I', and that the ring
of fixpoints, I'%, corresponds to the ring A.

We will now show that (I', G) is galois in the sense of this paper.

THEOREM 6.2. Let I be a finite locally bounded k-category, and let F: ' — A be
a galois covering with galois group G. Then,

a) (I, G) is galois, where I' and the action of G on I is as described above,

b) theinduced action of G on the isomorphism classes of simple I'-modules is free,

¢) thering A of A is identified with I'® by means of the ring injection ¢: A — T
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ProoF. Obviously I'/rad I' is a semisimple basic k-algebra and the induced
action of G on the isomorphism classes of simple I"-modules corresponds to the
action of G on the objects of I', which by assumption is free. Therefore we can
conclude that (I', G) is galois by Proposition 5.3.

To verify statement c) is straightforward by elementary calculations and the
discussion before the theorem.

We will now show a converse of this theorem.

Let k be an algebraically closed field, let I' be a basic finite dimensional
k-algebra, and let G be a group of k-automorphisms of I" such that the induced
action of G on the isomorphism classes of simple I'-modules is free.

THEOREM 6.3. Let I and G be as above. Then there exists a finite locally bounded
k-category I' and an action of G on I as a group of k-automorphisms such that the
action of G onthe objects of I is free. Further, the ring of I is identified with I" and
the action of G on I induced from the action of G on I is the same as the original
action.

ProOOF. Since by assumption the induced action of G on the isomorphism
classes of simple I'-modules is free, G acts as a group of permutations on the
central primitive idempotents {e,, e,,...,e,} of I'/rad I with the action being free.
In the next lemma we will prove that the idempotents {e,, e,,...,e,} can be lifted
to a complete set of orthogonal idempotents {E,, E,,..., E,} of I" such that the
action of G permutes this set of idempotents. We can then form the k-category
I’ with objects E |, E,, . .., E, and with morphism set (E;, E;) = E;,I'E;. Thereis an
obvious action of G on this k-category and it is easy to see that I is the ring
associated to I" and that the action of G is not altered by going back and forth.

LEMMA 6.4. Let (A, G) be as before and let I be a G-ideal of A with I*> = 0. If
{ey,e,,...,e,} is a set of orthogonal idempotents in A/l which are permuted by the
induced action of G on A/I with the action being free, then {e,e,,...,e,} can be
lifted to a set of orthogonal idempotents {E,,E,,...,E,} in A such that G acts as
a group of permutations on {E,E,,..., E,} with the action being free.

PrOOF. Let {e,,e,,...,e,} be the idempotents of A/I and assume they are
divided into orbits {e;,e;,.. .16} €/6|+1>--€21G3- - -> En—|G| + 1>+ - -»€n)- Lift €5 tO

an idempotent E and consider the element E, = E} — Y E|g(E}). Then
geG\{1}
elementary calculations show that E, is an idempotent and that {g(E,)|ge G}

is in fact a set of orthogonal idempotents mapped onto the orbit of e; in
{ey,e,,...,¢,} by the natural map from A to A/I. Now consider e, + , . Lift this to

an idempotent Ejg , , and let Ejg,; = Ejg+, — 3. Ejgj+19(E1) — Y. 9(E1)Ejg +1-
9eG geG
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Then Ejg ., is an idempotent orthogonal to the set {g(E,)|ge G}. Hence
9g(E|g|+,) is orthogonal to {g(E,)| g € G} for each ge G. Now produce the idem-

potents E g, ., in the same way as E, by letting E\g+, = E{gj+; — Y. Ejg+1
geG\(1}
g(E|g +1)- By continuing this process, one obtains a complete set of orthogonal

idempotents in A which are permuted by G.

COROLLARY 6.5. Let A and G be as before and assume that A be a basic artinian
algebra such that the induced action of G on the isomorphism classes of simple
A-modules is free. Then there exists a complete set of orthogonal idempotents in

A permuted by G. In particular, this happens if A is a finite dimensional algebra over
a field.

Proor. The proof goes by induction on the Loewy-length of A.

7. Split epimorphisms and derivations.

We have seen in section 1 that if A is a A[ G]-generator, then the natural map
A ® 46 A = A induced by multiplication is a split epimorphism as A-bimodules.
Even when (A, G) is pregalois, the natural map A[G] ® , A[G] — A[G] is not
necessarily a split epimorphism as A[G]-bimodules, and we give necessary and
sufficient conditions for this to be the case. The interest in these questions has its
origin in the fact that the following three properties are equivalent for a pair of
rings R € §;

i) the map S ®z S — S induced by the multiplication splits as a S-bimodule
map,

ii) there is a functorial splitting of the natural map S ® x M — M for each left
S-module M,

iii) for each S-bimodule A, every derivation d:S — A4 vanishing on R is inner.

Using this we may conclude that if A is a A[ G]-generator, then every A-module
M is a summand of a module induced from A€, and if A is a A-bimodule, then
every derivation d: A — A vanishing on A€ is an inner derivation.

We now turn to the map from A[G] ® ,A[G] to A[G] induced by the
multiplication and give necessary and sufficient conditions for this map to split as
a A[G]-bimodule map, when (A, G) is pregalois.

PrOPOSITION 7.1. a) The following are equivalent, if (A, G) is pregalois:
i) The map m: A[G] ® 4, A[G] = A[G] induced by the multiplication is a split
surjection as a A[G]-bimodule map.

il) The left augmentation map ¢,: ALG] — A given by 8,(2 A,g) =Y Agisasplit
geG geG
surjection as a A[G]-A%-bimodule map.
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ili) The right augmentation map ¢,: ALG] — A given by ¢, ( Y A, g) =Yg '@4)
geG geG
is a split surjection as a A%-A[G]-bimodule map.

iv) There exists a A in the centralizer of A® in A such that Y g(3) = 1.
geG

V) The AS-bimodule map a: A — A® givenby a(A) = Y. g(4) is a split surjection as
9eG
a A%-bimodule map.

b) It the above equivalent conditions are statisfied, then A® has a twosided
AS-complement in A.

Before giving the proof of this proposition, we make some remarks.

In Section 1 we gave an example where (A, G) was pregalois, but where A€ had
no twosided A%-complement in A (see Example 1.11). Hence this is an example
where the equivalent conditions of a) are not satisfied. A closer study of this
example shows that each A[G]-module is a summand of some induced module
from A, but that the splitting is not done in a functorial way. An example of a ring
A with a galois action of a group G such that not every A[G]-module is
a summand of an induced module can be constructed.

ExaMPLE 7.2. Letk bea field of characteristic 2 and let A be the subring of the
4 by 4 matrix ring over k described by

a 0 0
0 b
c
e

8 OO

d 8 |a,b,c,d,e, fek
f 0 b
Let G = {1, ¢}, where ¢ is conjugation by the matrix

0100
1 000
0001
0010

Then some elementary calculations on the natural four dimensional represen-
tation M of A[G] shows that it is indecomposable as a A%-module, hence
A[G] ® 4 M is indecomposable. This shows that M can not be a summand of the
induced module and therefore not a summand of any induced module.

Before returning to the proof of the proposition, we also point out that if the
order |G| of the group G is invertible in A, one may use the map h: A[G] =

A[G] ® 4, A[G] defined by h(1) = Aé Y (9 ® g~ ') to define a right inverse of m,
geG
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the map induced by the multiplication.
We will now give the proof of the proposition.

ProOF. Part b) is just a restatement of the last part of Proposition 1.9, so it
remains to prove part a). This will be done by establishing the equivalences
may be done by copying the proof of the equivalence of iii) and iv). We prove
the equivalence of i) and iii) by using that the functors ,eA 46, ® 46; — and
Hom 46(46 46),—) are inverse equivalences between Mod A[G] and Mod A€.
Let m be the map induced by the multiplication. Then the composed map

A[G] 22, A @, A[G] L2224, 4 ® 461 ALG] 225 A ® 46y ALG] — A

is easily seen to be the right augmentation map. If f: A[G] - A[G] ® , A[G]
is a A[G]-bimodule map, then A ® f: A ® 467 A[G] = 4 ® 46, 1[G] ® 4 A[G]
is a A%A[G]-bimodule map. Conversely, if h:A® 46 4[C] = A ® 44
A[G] ® 4 A[G] is a A%-A[G]-bimodule map, then Hom 4c (A4, h) is a A[G]-bi-
module map. Hence there is a A[ G]-bimodule map f: A[G] - A[G] ® , A[G]
with mo f = id if and only if there is a A%-A[G]-bimodule map h: A — A[G]
such that ¢, 0 h = id, where ¢, is the right augmentation map. This proves that i)
and iii) are equivalent.

In order to prove the equivalence of iii) and iv) we first prove that iv) follows
from iii). Assume therefore that ¢,: A[G] — A splits as a A°-A[G]-bimodule map

and let f be such a splitting. Then f(1) = A Z g for a Ain A (see Proposition 1.3).

geG

Now1 = (g0 f)(1) = Y g~ '(4) = Y g(4). Further, since f is assumed to be a left

geG geG

AS-morphism, we have that f(x) = x- f(1) = x4 Y, g. On the other hand since

geG

f is a right A[G]-morphism f(x) = (A y g)x = Ax Y g using that xeAS.

g9eG geG
Hence, xA = Ax for all x e A% which shows that A is in the centralizer of A€ in A.

So iv) follows form iii). To prove that iii) follows from iv), let 4 be an element of the

centralizer of A% in A such that Y g(1) = 1. Define f: 4 — A[G] by f(x) =

geG

A ( Yy g) x. Then it is easily checked that f is a A°-A[G]-bomidule map and that

geG
¢,0 f = id. Hence we have established the equivalence of iii) and iv).

To prove that iv) and v) are equivalent we first observe that the A%-bimodule
map from A€ to A corresponds to the elements of the centralizer of A% in A. So
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one immediately sees that o:4 — A% given by a(4) = ), g(4) split as a A°-

geG

bimodule map if and only if there exists a 4 in the centralizer of A% in A such that

Y g(4) = 1. This ends the proof of the proposition.

geG

[AF]
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