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CONTINUITY AND LINEAR EXTENSIONS OF
QUANTUM MEASURES ON JORDAN OPERATOR
ALGEBRAS

L. J. BUNCE AND J. D. MAITLAND WRIGHT

Introduction.

Let M be a W*-algebra on a JBW-algebra. A (finitely additive) quantum
measure on M is a non-negative real valued function y on the projections on
M which satisfies the property

wpy +...py) = wpy) + ... + ulp,), u(l)=1

whenever p,,...,p, are orthogonal projections of M.

The work of Christensen [3], for Type I, and properly infinite W*-algebras,
combined with that of Yeadon [15] for arbitrary finite W*-algebras proves the
conjecture of Mackey that every quantum measure on a W*-algebra without
Type I, part is the restriction of a linear state. We showed how to extend these
results to JBW-algebras without Type I, part in [2]. However, somewhat
unreasonably, for the general Type I finite case, countable additivity of the
quantum measure was assumed.

The proof of ‘linearity’ of a quantum measure in the properly infinite case in
[3], and accordingly in [2] which draws heavily upon [3], makes essential use of
the continuity of the measure. This latter property was regarded as established by
the methods pioneered in [4]. However, S. Maeda subsequently pointed out
a difficulty with the argument given by Gunson in [4].

Nevertheless, in a personal communication to S. Maeda, Christensen showed
how to obtain a proof of continuity (thereby settling the linearity question
beyond doubt) by modifying the crucial argument of [4] with the aid of a (6-finite)
diagonalisation theorem of Kadison [7 Theorem 3.18]. The interested reader
will find these matters documented in Maeda’s scholarly article [8].

We show here that it is not necessary to call upon the full power of Kadison’s
recent Theorem [7] nor is it necessary to require the underlying algebra to be
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o-finite. For our purposes, it suffices to use a twenty year old result of Fillmore
[5] to obtain the required diagonalisation result, see 1.4. Fillmore’s theorem was
obtained without any cardinality restrictions.

We will prove that every finitely additive quantum measure on a JBW-algebra
without Type I, part is the restriction of a linear state. In view of the remarks
above and the results of [2], only the unbounded Type I finite algebras and the
properly infinite algebras still need to be considered. In the former case there is
very little for us to do because Yeadon’s methods transfer readily to the
non-associative situation. A proof of continuity will settle the latter case. This is
obtained with the aid of a Jordan algebra generalization of Fillmore’s theorem.

Instead of an ‘ab initio’ proof of this generalization we are able to deduce it
from Fillmore’s theorem by first developing some results on equivalence of
projections and enveloping W*-algebras which may have some independent
interest.

§1. Equivalence of Projections

Let M be a JW-algebra and let @ be the canonical involutory x-antiautomor-
phism of W*(M), the universal enveloping W*-algebra of M. We may suppose
that M = W*(M), so that & restricts to the identity on M. The real W*-algebra

R*(M) = {xe WX(M); &(x) = x*} satisfies
R*(M) ni R¥(M) = {0}
and gives
W*(M) = R¥(M) + iR¥(M), P(x + iy) = x* +iy* (x,yeR¥M)).
Moreover, if M has no type I, part, then
M = R¥M),, = {xe W*M),,; P(x) = x}.

sa’

This notation will be retained throughout. The relevant reference is [6, chapter
71.

We want to consider the behaviour of projections of M relative to their
behaviour in W*(M). The following is useful for this. Afterwards it will be used
without comment.

1.1. LEMMA Let e be a projectionin a JW-algebra M without Type I, part. Then
(a) e is finite in M if and only if e is finite in W*(M).
(b) e is properly infinite in M and only if e is properly infinite in W*(M).

Proor. (a) This is [1, corollary 3.2].

(b) If e is proprly infinite in M then it is properly infinite in W*(M) by [2,
Proposition 4.5] and [11, V. 1.36]. The converse is immediate from (a) and the
fact that the centre of M is contained in the centre of W*(M), [6, 4.3.8].
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1.2. PROPOSITION. Let M be a JW-algebra without Type 1, part and let e, f be
projections of M such that e ~ f in W*(M). Then e ~ f in R¥(M).

ProoF. Thereis a central projection z in M (and hence central in W*(M)) such
that ez is finite and e(1-z) is properly infinite or zero. So we can suppose either
that e is finite or that e is properly infinite.

Suppose that e is finite. Then so is p = e v f. Let T be the faithful normal
centre valued trace of pW*(M)p. By [6, 5.2.17] the centre of pMp is contained in
the centre of pW*(M)p and so T restricts to the faithful normal centre valued
trace of pMp for the same reasons as those given in [2,§5]. Obviously
T(e) = T(f) and so ses = f for some symmetry s of M, by [2, Lemma 5.1]. In
particular, e ~ f in R*(M).

Suppose now that e is properly infinite and consider the real x-algebra
homomorphism

W*(M) — M,(R*(M)) given by x + iy —»< ’y‘ )yc >,x, yeR¥(M).

Clearly (8 S) ~ ({; 3) in My(R*(M)). By [2, Proposition 4.5], there are pro-

jections e,, e, in M such that e =¢, + e, ~ ¢; ~ ¢, in R¥(M). Since also
0 00 01
¢z ~ in M,(R*(M)) being exchanged by the symmetry , We see
00 0 e, 10
that

(o) (6 0) (0 0)~ () (02)-(60)+(2)-(62)

where all the equivalences are implemented in M,(R*(M)). Similarly,

((f) g) ~ (g 2) in M,(R*(M)).

. 0
Hence there is an element v = (ul u3> in M,(R*(M) such that (e ) = v*,
Uy Uy 00

0 .
(g 0) = pv*. Calculation given u, = uy = u, = 0 so that e = u¥u,, f = u,uf.
Hence e ~ f in R*(M), thereby completing the proof.

In passing, we observe the following:

1.3 COROLLARY. Let M be a JW-algebra without Type I, part and let e, f be
projections of M which are unitarily equivalent in W*(M). Then there are sym-
metries S,,...,S, in M such that s,...sqes,...s; = f (i.e. e and f are Jordan
equivalent in M).
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PROOF. Let zM be the finite part of M, z being a central projection of M. By 1.2
together with [13, Corollary 22] there is a symmetry s in M such that sezs = fz.
Notice that if t,,...,t, are symmetries of (1 — z)M such that ¢,...t,e(1 — 2)
t,...t; = f(1 — z) then the elements of M, s, =sz + t,,s, =z + t;,i=2,...,n,
are symmetries of M satisfying the requirements. In order to complete the proof
we may therefore suppose that M is properly infinite.

By assumption we must have e ~ f, 1 —e ~ 1 — f in W*(M), and hence in
R*(M) by 1.2. In turn, this implies that ueu* = f for some unitary u in R*(M).
But then [ 14, Theorem —.6] implies that it equals a finite product of symmetries in
R*(M),, = M. This completes the proof.

The following result of Fillmore can be deduced directly from Kadison’s
theorem [7, Theorem 3.18] in the o-finite case and from K. Sait6’s version [8] of
Kadison’s theorem in the general case. Kadison’s theorem gives much more
information than Fillmore’s theorem. However, Fillmore’s article predates
Kadison’s by several years and his results are powerful enough for our purposes.

1.4. THEOREM (Fillmore [S]). Let W be a properly infinite W*-algebra and let
u be a normal element in W. Then there is a projection e in W commuting with u such
thte~1—e.

We will deduce the corresponding theorem for Jordan algebras as a direct
corollary. To facilitate the ease of reading (and writing) the proof some prior
comments are appropriate.

1.5. (@) Let W be a properly infinite W*-algebra with 1 = p + q where p
is a finite projection and q a properly infinite projection in W. If, in W,
q=e+ f~e~ f,thene + p ~ 1 — (e + p). Indeed, q has central suport 1 and
sop < qby[IL, V 1.3.9,29].

So,p+esf+e=gq~e<p+eandl —(p+te)=q—e=f~q.

(b) Let M be a JW-algebra without Type I, part, so that M = R*(M),,, and let
x be an element of M. Put

B = W*M)n{x}, N=R¥M)n{x},A=Mn{x}
Itiseasy tosee that B= N + i N,sothat ¢(B) = B,and that A = N,. Also, if pis
a projection in B then
pBp = pW*M)p n {pxp}' = pW*M)p n {x}
with the corresponding equalities holding for 4 and N for p in 4. Note that Bis

abelian if and only if N is abelian.

1.6. PROPOSITON Let M be a properly infinite JW-algebra and let x be an

element of M. Then there is in M a projection e and a symmetry s with ex = xe,
ses=1—e.
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PRrOOF. It is enough to find a projection e in M commuting with x such that
e~ 1—ein W¥M). For then e = u*u, 1 — e = uu*, for some u in R*(M), so
s =u + u*isasummetry inM and ses=1 —e.

Since there is nothing to prove if M is isomorphic to the self-adjoint part of
a W*-algebra we may suppose that M and W*(M),, have the same centre, by
virtue of [6,7.3.4, 7.3.5]. Let A4, N and B be as in 1.5 (b).

Suppose first that A, is abelian. Then, by [10, Proposition 2], there are
projections p, g in A which are central in N with p + ¢ = 1 and pN ~ C(X, R),
gN =~ C(Y,C) + C(Z, H) for certain compact Hausdorff spaces X, Y, Z. It follows
that pA = pN = pB,, and that there is an element v in gN with v* = —u,
v = —q.

Let zp, tq be the largest finite projection in pM p, g M g, respectively, where z,
t are central projections of M. It is immediate from 1.4 and the above that if
p = (1 — z)p % 0 (which obviously lies in pA with p =g, + g, ~ g, ~ g5.

On the other hand suppose that § = (1 — t)q % 0. Note that f = 1(q + iv) is
a projection in B and that f + &(f) = q. Since M and W*(M),, have the same
centre, [11, Lemma 3.3] implies that g f ~ &(Gf) = q P(f). In particular, §f must
be properly infinite (in W*(M)). So passing to §f B f, 1.4 implies that there are
projections h,, h, in B with §f = h; + h, ~ h; ~ h,. Using [11, Lemma 3.3.]
again we get @(h,) ~ hy ~ h, ~ ®(h,). It follows that, for i = 1, 2, the projections
ri=h;+ ®&h;)arein Awithg=r, +r,andr, ~r,.

Since p # 0 or § + 0 we see that the previous two paragraphs combined with
1.5. (b) show the existence of a projection ein 4 withe ~ 1 —e.

Now suppose that A is non-abelian. Let {f,,g,} be a maximal family of
orthogonal projections in A with f, ~ g, foreacha. Then f = v f,,g = v g, are
orthogonal equivalent projections in 4. If h = 1 — (f + g) is finite (in M) then
f + g is properly infinite and the desired result follows from 1.5. (a). Otherwise
there is a central projection z of M such that zh is properly infinite. But this leads
to a contradiction. Indeed if zh Az h is non-abelian then the maximality of { £, g,}
must be contradicted, as indeed it must be if zh Az h is abelian, by the first part of
the proof. This completes the proof.

§2 Quantum Measures

The proof of continuity (and hence linearity) for a quantum measure on
a properly infinite JW-algebra can now be obtained along the lines of Christen-
sen’s argument for properly infinite W*-algebras. But since the latter has not
been published we will outline a version of the proof.

Let u be a (finitely additive) quantum measure on a properly infinite
JW-algebra M and It f, g be projections in M with || f — g| < 4. The aim is to
show that |u(f) — w(g)l < k|| f — g|| for some constant k independent of f and g.
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It is enough to suppose that f (and hence g) is properly infinite. This is because
there is a central projection z of M for which zf'is finite and (1 — z)f is properly
infinite (or zero) and so it is surely sufficient to consider the cases f finite and
S properly infinite separately. But f finite implies 1 — f properly infinite and, as
always, u(f) — pulg) = p(1 — g) — u(1 — f).

The polar decomposition (1 — f)gf =v|(1 — f)gf] (in R¥M)) gives fv =0
of =v, f = w*w, g = ww* where w = x* + (1 — x)* and x = fgf. Application
of 1.6 gives rise to projections f; - f, in M satisfying

f=h+h~fi~f,fix=xfi (i=12).

Now with g; = wfiw*, calculation gives (for i = 1,2)
Ifi — gl <1land fig, = f,9, = 0,s0that f; (1 — f) A (1 — gy).

The proof can now be seen to be completed upon application of the Jordan
analogue of [3, Proposition 2.3] which is readily obtained with the aid of [2,
Lemma 3.6] which is itself the Jordan analogue of [3, Lemma 2.3].

Turning to the question of the linearity of a measure on a general JBW-algebra
without Type I, part it remains only to consider the unbounded Type I finite case,
which was unreasonably omitted from [2]. By the structure of such
a JBW-algebra M (e.g., [6, §6.4]) together with [2, Theorem 3.8] and Yeadon’s
theorem [15], M can be regarded as a JW-algebra of the form M + M,, where,
for F =R and H respectively, M; is a direct sum of algebras of the form
C(X, M,(F)),, where X is a compact hyperstonean space. Obviously it is enough
to consider the real and quaternionic parts separately. Now the fact is that
Yeadon’s methods [15] transfer with virtually no change. We might remark that
the non-abelian part of a JW-subalgebra generated by two projections (in any
JBW-algebra) is isomorphic to C(X, M,(R)),, for some compact hyperstonean
space X and the splitting argument in [ 15, Proposition I] is independent of the
underlying division ring. The rest is transparent from an inspection of Yeadon’s
article. We therefore have:

2.1. THEOREM Let M be a JBW-algebra without Type I, part and let u be
a finitely quantum measure on M. Then u extends to a linear functional on M.
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