MATH. SCAND. 64 (1989), 251-284

SIMPLE SINGULARITIES OF FUNCTIONS ON
SUPERMANIFOLDS

V. SERGANOVA and A. WEINTROB

Introduction.

The study of singular points of a smooth function on a manifold is related as is
shown in works by Arnold and his school [A] with objects from different
branches of mathematics: groups generated by reflections, Lie algebras, auto-
morphic forms, etc.

Inspired by remarkable achievements of singularity theory we decided to
consider functions on supermanifolds from this point of view.

In this paper we classify simple (with respect to the group of diffeomorphisms
of the pre-image) germs of functions on a supermanifold. An attempt to find the
relations of our classification with other branches of mathematics failed as yet, cf.
[A] with [S].

However we have decided to publish the results of the classification in the hope
to draw attention to this subject which, we are sure, deserves it.

The paper consists of two parts. The first one introduces the main notions:
stable equivalence, local algebra, etc., and certain general results are proved:
analogues of the Morse Lemma, theorems on finite definiteness, etc. The second
part contains the classification of simple germs itself.

The main differences of the supercase as compared with the conventional one
are perhaps the following. The fact that a singularity is isolated is not equivalent
any more to its finite multiplicity. Moreover, not all the singular points of an even
function in which the corank of the second differential equals p/q, where g > 0,
are isolated. Perhaps that is why we cannot find for our classification relations
similar to the even case (since to define the corresponding geometric objects:
intersection forms, monodromy groups, etc. isolatedness is crucial). The absence
for supermanifolds of adequate analogues of the usual topological notions like
the degree of the map is the reason for our algebraic defition of Milnor’s number
as the dimension of the local superalgebra of the singularity. A certain justifica-
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tion for doing so is that Milnor’s number coincides (as in the even, manifold case)
with the dimension of the base of a versal deformation.

A few words about our future plans. For the time being we consider only the
action of the diffeomorphism group Diff,, on the space of even germs. Elsewhere
we will classify the functions with respect to the supergroup of diffeomorphisms
whose underlying is Diff,. This will enable us to consider not only even functions
and 2) give a correct definition of the modality of a singularity (as a minimal pair
m/n, such that a neighborhood of the orbit of a singular germ may be covered by
a finite number of m/n-parameter families of orbits). One more direction which
might lead to the phenomena reflecting hidden as yet supersymmetry of a sin-
gularity is the study of its bifurcational diagram (an algebraic subsupervariety in
the base of the versal deformation corresponding to the singular germs).

1. Beginning of the classification of germs of functions on supermanifolds.

1.1. Definitions and notations. Let .4 = (M,0,) be a supermanifold. The
functions on M are arbitrary sections of the structural sheaf 0,,. We will study the
normal forms to which a function on M can be locally reduced. The majority of
the classification work is performed for the case when M is complex and the
functions are analytic. Nevertheless, all the results of Chapter 1 which are simple
generalizations of the corresponding facts from the purely even theory [A]) hold
in either of the three categories: analytic (over R or C), smooth (C*) or formal. All
the singularities of finite multiplicity are by Theorem 2.1.2 of a polynomial form
in some coordinate system which effaces the differences between these three
categories but the problem of description of real forms still remains open. We do
not study this problem here.

We will only be interested in the local behaviour of functions and therefore we
will assume that M is a subsuperdomain in the (p, g)-dimensional linear super-
space C” (resp. RP/9) with even coordinates x, x,, . . . ,x,and odd ones ¢,,. .., &,
i.e. M is an open subset of C? (resp. R”) with coordinate system (x,,...,x,) and
04 =0y ® A*V, where O, is a ring of analytic (infinitely differentiable) func-
tionson M and V = <(&,,...,¢,) the g-dimensional vector space over C (resp. R).

We will denote by ¢, ,, the ring of germs of functions at me M. It is a local
supercommutative superalgebra with the maximal ideal I, consisting of the
functions whose restriction to M vanishes at m. A choice of a coordinate system in
a neighborhood of m determines an isomorphism of ¢, ,, and the superalgebra
0,,, of germs of analytic (smooth) functions at the origin of C” (resp. R?).

1.2. Equivalence of germs.

1.2.1. On the space @, the group G = Diff;, of diffeomorphisms of the
supermanifold M preserving m acts; we will identify G with the group G, , of
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automorphisms of ¢,,. Any such diffeomorphism (automorphism) may be
considered as a change of variables

Xi =Y =f0.i + Zflj-lijz éjlél'z + ZfAI"IiJ'ZJ'Sj" éjléfzéhéh +...
& =YL, + DAY GG+

wherei=1,...,p,j=1,...,q, fJ/**€(,, and the matrices

of. ; .
(—I‘i>, =1,...,p and (f{),1=1,....¢g

0x,

are invertible.

The germs belonging to one G-orbit are called equivalent. (In [A] this equiva-
lence is called R-equivalence).

1.2.2. The problem on local normal forms of functions is to describe the orbits
ofthe G, ;-actionin ,,. The group and the space of orbits (however understood)
are infinite dimensional. Therefore the complete solution of this problem is
a rather hopeless task. But on the orbits there is a natural stratification and the
first terms of this stratification are subject to complete investigation.

1.2.3. REMARK. G, is the underlying group of the supergroup G, , of the
diffcomorphisms of M which also acts on ¢/, ,. Therefore, from the supermanifold
theory point of view it would be more correct to study the quotient space
(Op/q/ép,q; this will be done elsewhere. However, it is clear now why we confine
ourselves to homogeneous germs: the G, ,-equivalence for non-homogeneous
elements of O, is too weak and the corresponding classification is the descrip-
tion of pairs consisting of an even and an odd function.

1.3. Non-singular germs.

1.3.1. A point me M is called a singular point of a function f e, if all the
partial derivatives df/0x; and 0f/0¢; vanish at m. A germ f e 0, is called singular
if m is singular for a representative of the germ.

In other words, “fis a singular germ” means that f = const mod M2,

Almost all germs are non-singular and the first classification result refers to
this most general case.

1.3.2. PROPOSITION. Let afunction f be non-singular at me M. Then the germ of
p at m is equivalent to const + x, if f is an even function and &, if f is odd.

Proor. The implicit function theorem, see [L].
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2. Morse’s lemma and stable equivalence.
2.1. Morse’s lemma.

2.1.1. By Proposition 1.3.2 we may now only consider singular germs of even
and odd functions. Any even germ is of the form f = a + f,, where ae C, and
f,em? The G, -action does not affect the constant a, therefore to describe all the
orbits in the space of germs of the functions it suffices to study the orbits in the
space of germs of functions that vanish at the origin together with their differen-
tial. In other words, we will consider the G, ,-action in the space mf,/q then the
2-jet of the germ f is a bilinear form on T,, M called the second differential of f. The
rank of the second differential of a singular germ f (or just the rank of f)is the rank
at m) of the matrix

oof  of
0x;x; 0x;0¢,
orf of

08, 0x; 0%,08

The corank, cork f = p/q — rk f is an important invariant of a singular germ.
Notice that for the non-singular germs the quadratic part of the Taylor series is
not invariantly defined.

2.1.2. For germs homogeneous with respect to parity the following analogue
of MORSE’S LEMMA holds.

Let f be a homogeneous germ of m?* whose second differential is non-degenerate.
Then f is equivalent to its quadratic part.

We will prove this statement in a trifle more general form called the parametric
Morse’s lemma (2.1.4).

2.1.3. Let f,(x, &) be a function on a supermanifold M, and f,(y, n) a function
on a supermanifold M,. The function f(x,¢&) + f5(y,n) on M = M, x M, is
called the direct sum of f, and f,.

2.1.4. THEOREM. Let f emf,/q be homogeneous and rkf = k/l. Then f is equiva-
lent to the direct sum of a non-degenerate quadratic form b(x, £)e m,f/, and a germ

g(y,mem?_,,._, whose 2-jet is zero.

ProoF. First consider the case when f is even. Let n be the ideal of O,
generated by the odd variables. Reducing f modulo n we get a function f in
p even variables. Applying the conventional parametric Morse’s lemma [A]
reduce f to the form

f =x% + ... +Xf +g—(yl""’yp—k)?g_emg—k‘
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Complement the even coordinate functions x;, y; with odd ones &,,...,¢&,
1, - ->Mg-; 50 that the second differential in the resulting coordinate system is of
the form x3 + ... + x? + &, & + Eéy + ... .

Then f takes in these coordinates the form

f=xf+...+x,f+x1f1 +x2f2+.‘.+xkﬁ+51€2+f3f4+...+f1¢2+
+¢,6+...+g

where f;en? ¢;en. Performing the change of variables

Xi > x; — 4f; fj”—"fi—(ﬂi,

we reduce f to the form

f=.xf+x%+...+x1f'1+xZ_f2+...+61€2+C3§4+...+51¢2+(ﬁ1€2+
+83Pa+ P38a+ ... + 4,

where now fien*, ¢;en’.
Repeating this procedure several times we get a representation in which f,
@jen?™ ! But n?*! = 0 therefore this is the desired representation of f.

For an odd germ the proof is still simpler. In fact, expressing f in a coordinate
system in which its second differential is of the form x, &, + x,&, + ... + x,&,,
we get

f=xi&i+ .+ %8+ 80t + .+ 40, +gnn),

where f;en?, gen®. The change x; — x; — f; reduces to a representation where
fien®. At the following step we get f;en®, and in several steps we get f,en?*! =0
as required.

2.2. Stable equivalence.

2.2.1. The parametric Morse’s lemma reduces the classification of singular
germs to the description of germs with zero second differential, i.e. to the study of
G, -orbits in m, . Besides, it shows that it is more reasonable to classify the
germs not by the number of even or odd variables on which it depends but by the
corank of the second differential. More exactly these considerations are for-

mulated in the following definitions.

2.2.2. Thegerms f, € 0,,and f, € 0, are called stably equivalent if there exist
non-degenerate quadratic forms b, and b, in k, /I, and k,/I, variables respec-
tively such thatp + k, = m + k,and g + I, = h + I, and the germs f; @ b, and
f2 @ b, are equivalent.

This definition immediately implies that the corank is an invariant of stable
equivalence. Moreover for homogeneous functions depending on the same
number of even and odd variables stable equivalence is equivalent to the usual
equivalence. Therefore, the following definition is correct.
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2.2.3. A singularity (of parity eeZ,) is a class of stable equivalence of germs.
Before we prove the above statement let us give one more definition and
a useful lemma.

2.2.4. The gradient ideal I, of a germ fe(,, is the ideal generated by the
partial derivatives 0f/0x;, 0f/0¢;.

2.2.4.1. REMARK. The gradient ideal is an invariant of a germ which is the
tangent superspace to the orbit of f under the action of the supergroup of all
diffeomorphisms preserving me 4.

2.2.4.2. ExaMpPLE. The gradient ideal of a non-singular germ coincides with
the whole of ¢, ,. Conversely, if I, = ¢, then f is a non-singular germ.

2.2.4.3. ExaMpLE. If the quadratic differential of a singular homogeneous
germ f is non-degenerate then I, = m. The converse is also true.

2.2.5. PROPOSITION. Let f and ¢ be homogeneous germs of the same parity such
that geml; and I, < mi,. Then f and f + ¢ are equivalent.

ProoF. Is based on the homotopy method whose essence is the following.
Instead of one diffeomorphism F sending f + ¢ into f we will seak a family of
diffeomorphisms F, such that

FX(f +1t9) = [, F,=id, F,(0)=0.
Differentiating the first identity with respect to t we get

(*) VIFi(x, 0, 0(f + t9) + o(F(x,{)) = 0,

where V(F,(x, &), t):= Edt_ F,(x, &) is the vector field corresponding to the family of

diffeomorphisms F,. The map (x,¢&,t) — (F(x,&),t) is a diffcomorphism and
therefore solving (*) reduces to seeking a vector field V(x, &, t)on M x R such that
V-(f + top) = — . If, besides, V(0,0,t) = 0 then a solution of the initial value
problem

4 R 8) = VE(, 9,0, Fol &) = (5.0

exists for sufficiently small x for te[0,1]. The existence is guaranteed by
Shander’s theorem [Sh] and the extendability to the segment follows from the
fact that F(0,0,t) = O is a solution for (x, &) = 0.

Let @ be the superalgebra of germs of functions in (x¢) and m its maximal ideal.
Letd =0® 0.1, be the superalgebra of families of germs that depend smoothly
(analytically) on a parameter te[0,1]. We seek germs ag;e[m- (s and
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aje[m: (13 such that

Za f+t(p +Y o —(f +to) =

J 05,
For t = 0 such germs can be found since ¢ emlI,. Let us show that I, = mI,

implies I, < f,,, 1> Where 1~f+,¢ is the ideal of (@ generated by the Ei—( [+ to),

T ——(f + to). In this case pemT, 1+, and the coefficients a;,«; in the decompo-
i
sition

p=yq (f+t<p)+2a —(f +to)

J 55,
give all that is needed.

The inclusion I, I}Hw is proved by the following trick (a variant of
Nakayama’s lemma). Making use of the fact that (/0x;) ¢ and (0/0¢;) ¢ belong to
ml, we find by, ¢;;,e[m (15 and Bij» yue[m (75 such that

2 d 9 g 2 <
Tt i e =g U e — b S — ) By .
P d d d K <

Transporting to the left-hand side the terms with partial derivatives of f we get
a system of linear equations

(1 + T)grad f = grad (f + to),

(bi) (B;)
(Vﬁ)(Cu)
1 + T is invertible and

where T = ( ) All the matrix elements of T belong to m € therefore

grad f= (1 + T) ' grad (f + to).

Therefore I, f, + tp and we are done.

2.2.5.1. CorROLLARY. If f and ¢ are homogeneous germs of the same parity,
fem? and (peI} then f + @ is equivalent to f.

ProoF. The conditions of the Proposition hold since I; = m? and partial
derivation sends I, into m and 17 into m1,.

2.2.5.2. COROLLARY: Morse’s lemma.
In fact, let f be a non-degenerate quadratic form (either even or odd) then
I, = m and ¢ e m® immediately implies I, = mI,.
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One more corollary of Proposition 2.2.5 is the theorem on finite determinacy
3.2.1.

2.2.6. THEOREM. Let homogeneous functions f, f, €0, be stably equivalent.
Then they are equivalent.

PROOF. Apply to the functions f; and f, the parametric Morse’s lemma and
reduce them to the form f” @ b, and fy @ b,, where b, and b, are non-degene-
rate quadratic forms and f and f; are germs with zero 2-jet. The stable
equivalence of f; and f, means that there exist non-degenerate quadratic forms
b, and b, of the same rank since f; and f, depend on the same number of
variables) for which the germs f? @ b, ® b} and fY @ b, @ b}, are equivalent.
Then the forms b, @ b and b, @ b, are isomorphic and therefore it suffices to
prove the statement for stably equivalent functions with zero 2-jet.

Thus, let now f; and f; be functions of variables (x,,. .., x,, ¢y, ..., ¢,) belong-
ing to m® and b, and b, non-degenerate quadratic forms in variables
(V1s+-+>V2,M1»- - -, 1) such that the germ of f; + b, is equivalent to the germ of
f, + b,. Performing a linear change of variables (y, n), we may assume that the
forms b, and b, are reduced to the canonical forms

by.m=yi+...+Ye+mn+...+0u-11n

for even functions and

b(y,n) = yini + ... + yunx

for odd ones.

Consider a diffeomorphism F(x, &, y,n), € G, sending f; @ binto f, @ b. The
linear part of F preserves b therefore the Jacobi matrix J of F is of the form

(x,8)  (»n)

(x,9) <A B)

»m\O CJ
Therefore, the invertibility of J implies that of the matrix 4 which is the Jacobi
matrix for the map F: CP/4 — CP?/4 which is the composition of an embedding
Crla - CP*rla*s and the projection C?*"4*s  CPla. By the implicit function
theorem F' is a difeomorphism and therefore replacing f; (x, £) by an equivalent

germ f] = f,(F'(x, &)) we get a pair of equivalent germs f] + b, and f, + b, and
the change of variables sending f, + b, into f] + b, is of the form

X; X+ Z,Vkak(x,f) + 2’71 Y, )+...
& &+ Y By, &) + Y mdu(x, 6 + ...
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Y Y+ e(x, &)+ ...

Mm—m+...70x,8+...

where dots stands for the terms that belong to the square of I' = (y, 7). (To make
the linear part of this change of variables the identity in y, 5 this diffeomorphism
should be multiplied by a linear transformation preserving b).

Now let us show that h = f{ — f, belongs to the square of the gradient ideal
I;, < O,,, By Corollary 1.5.4.1 this would mean that f, and f] are equivalent. In
fact, for even functions we get modulo 1'%

fi+yvi4...+b,=f,+yi+...+h=
= folx +ya+nd) + Y (e + ax:O + ..+ X+ + ..
M + 9,8 +..)=

0 0
=fz+yia;a—j;z+Zn,dla—{72+~-- + Y yE + 2pc + Pk +
i l

+ Z('h'hﬂ FMVier — M1Vt oo Ve )

Equating the coefficients of y,, n, and the terms we get

fo Lo R
k 2 k(—}yk9 21+1 21 a’72’+17
ofs

Yu= —au=— h=3ct+Y
ony k [

yielding h € I2f, and by Proposition 2.2.2, the functions f; and f; are equivalent.
But f; and f are also equivalent therefore so are f; and f,. For even functions the
end of the proof is similar.

3. Local algebra and deformations.

3.1. Germs of finite multiplicity. One of the main algebraic invariants of
a singularity is its local algebra.

3.1.1. Thelocal superalgebra of a singular germ fis O, := O/I,. If O, is of finite
dimensions then the singular point is said to be of finite multiplicity and
1= po/uy = dim O, is called its multiplicity (or Milnor’s number).

3.1.2. ReMARK. Clearly, if of two germs f; and f, at least one is of finite
multiplicity then O, @ Oy, = O, ® Oy,. If f, is a non-singular quadratic form
then O, = C (cf. 2.2.4.3) therefore the local algebra does not depend on the
choice of representatives of the class of stable equivalence and is an invariant of
a singularity.
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3.1.3. REMARK. In a purely even situation (on manifolds) the multiplicity of
a singular point equals the number of non-degenerate singular points into which
it splits under a small perturbation. In the supercase the geometric meaning of the
multiplicity is unclear as yet. The finite multiplicity of a germ on a manifold is
equivalent to the isolatedness of a singular point. In general, on a supermanifold
non-isolated singular points can be of finite multiplicity, e.g. the germ of
x3 4+ x?¢&, &, is singular on the hypersurface x = 0 though the dimension of its
local ring is 3/2 and with a basis 1, x, &, &, (even) and &, &, (0odd). A necessary and
sufficient condition for finite multiplicity of an even singularity is isolatedness of
its restriction onto the underlying manifolds.

3.1.4. PROPOSITION. Let f€(0,, 5. Denote by fe O, the restriction of f onto the
underlying manifold singled out by the equations &, = ... = £, = 0. Thenthe origin
is a singular point of f of finite multiplicity if and only if { has an isolated
singularity at the origin.

Proor. Under the reduction @, = 0,,/<&;,...,¢,)> = O, the gradient ideal
Iy and therefore an epimorphism ¢, — ()yis defined and finite dimensionally of O,
implies that of U7 and this implies due to [A] that the singularity of flisisolated.

Conversely, if the origin is an isolated singularity for f then u = dim Oy < o0.
As we will see the finite dimensionality of the local algebra implies the nilpotency
of its maximal ideal. Let the images of x; in ¢} satisfy X =0, then x\e
Ker (O — O5). But this kernel is generated by the images of odd variables ¢; for
0,,, and therefore Ker?*! = 0 implying x®*" = 0 in ¢;. Thus any elements
from ¢, can be presented as a linear combination of monomials in which the
powers of variables x; do not exceed N(q + 1). Therefore dim ¢/, < co.

It remains to verify the following fact.

3.1.5. LEMMA. Let A be a finite dimensional local algebra of dimension u and
m its maximal ideal. Then m* = 0.

PRrOOF. Letay,...,a,em be arbitrary. The elements 1, a,,a,a,,...,a,...q,
are linearly dependent, say, 4o + 4,a; + ... + 4,a,...a, = 0. Select the mini-
malisuchthat 4; # Othena,...a;(4 + 441841 + ... + 4,8;41...a,) = 0. The
element in parenthesis does not belong to m and therefore is invertible implying
a,...a;=0anda,...a,=0.

3.2. Sufficient jets. The germs of finite multiplicity possess the following prop-
erty of finite determinacy.

3.2.1. THEOREM. A germ with the singular point of finite multiplicity is equiva-
lent to a polynomial in x, & (notably, to a segment of its Taylor series).
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PROOF. Let the multiplicity of the singular point of f equal u = po/u,. Then
by Lemma 3.1.5 I, > m*°*#! and denoting byfthejet of f oforder uog + p; + 1
we see that ¢ = f — f belongs tom“*# *2 < m?,. Further, the partial deriva-
tives of ¢ belong tomrot#i*1 < mlI;. Therefore, we may apply Proposition 2.2.5
and deduce that f is equivalent to f.

3.2.2. We say that the k-jet of foe O/m**! is sufficient if any function f with

j*(f) = fo is equivalent to f;,.

In 2.2 we have proved that if the multiplicity of a germ is uo/u, then its jet of
order uo, + p; + 1 is sufficient.

3.2.3. We say that a function f] is adjacent to a function’ f, if the orbit of f,
belongs to the closure of the orbit of f,.

In other words f; is adjacent to f, if in any neighbourhood f; a function
equivalent to f, is contained.

The adjacency is a natural order relation on the equivalence classes of singula-
rities. The local algebra enables us to trace this relation algebraically.

3.2.4. PROPOSITION. The multiplicity is semicontinuous from below on the space
of germs of finite multiplicity (i.e. under a small jiggling of a germ its multiplicity
U = Uo/ 1y may only diminish).

ProOF. Let f be a germ with a singular point of multiplicity u = po/u,. Then
its k-jet is sufficient for k = py + p, + 1 and under a small jiggling of f the image
of the gradient ideal I, , where f; is the perturbed germ, in the finite dimensional
space of k-jets /m**! is the vector subsuperspace spanned by the products of
partial derivatives of f,. Now the proof follows from the obvious lemma:

3.2.5.LEMMA. Let v,(1),...,v,(t),w,(t),. .., w,(t) be a family of p even and q odd
vectors of a linear superspace U continuously depending on a parameter t. Then the
Sfunction

d(t) = (do(t) | d4(1)) = dim v, (1), . . ., v, (O, Wi(D), . .., We(1)>
is semicontinuous from above (d(t) cannot diminish under a small jiggling).
3.3. Deformations.

3.3.1. A deformation of a germ f € €, 5 with base C"* is a germ morphism of
spaces with fixed points F: (CP'? x C",0) - (C,0) whose restriction onto C?/4
coincides with f (where f is considered as a map (C?'%,0) — (C,0)). Two deforma-
tions F and F with base C"* are called equivalent if F reduces to F by an
isomorphism of germs G: CP/? x C"* — C?/% x C"" of the form

(3.3.1) G(x, & t,7) = (9(x, &, 8, 7); £, 7),
where g: CP*"4*s — CP/ is a map such that g(x, & 0,0) = (x, &).
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A deformation F of f is called versal if any deformation F of this germ with base

C"'’is equivalent to a deformation obtained from F by a reparametrization, i.e. if
there exists a map of bases h:(C"”*,0)— (C"%,0) such that F'(x,&t,1) =
F(x, &; h(t, 7)).
(In the deformation theory of complex structures, see e.g. references in [W], such
deformations are usually called full and what is called a versal deformation
should in addition possess the unique differential of the inducing morphism. In
singularity theory the deformations with this additional property are called
miniversal).

As in the manifold case the finite multiplicity of f is equivalent to the existence
of a versal deformation.

3.3.2. VERSALITY THEOREM. Let the multiplicity of a germ f:C?4 — C be finite
andey,...,e, beevenande,,... ¢, beoddelements from O, generating O;. Then
the function

F(Xpyo oo XpyEroen s Egnyyen s @y 0y, 00, )= f 4+ aie; + 2, 06,€ Uiy gty

is a versal deformation of f € 0,,. The dimension of the base of any other versal
deformation of f'is no less than g /u,. Conversely, if f has a versal deformation then
the multiplicity of f is finite.

PrOOF. A deformation of an analytic function f is a particular case of the
notion of a germ of a relative complex superspace f: X — B. Thelatter is the triple
consisting of a germ of a complex superspace S (the base of deformation), a germ
of a relative superspace F: & — B x S flat over S and a morphism i: X - Z over
B identifying X with F~!'(B x {S,}) (for definitions see [W]). The general
deformation theory of complex structures on superspace (see [W]) implies that
the set of equivalence classes of deformations over the germ of D =(*, (), where
Op = C{x, &}/(x*, x&) (such deformation is called infinitesimal) is endowed with
a natural vector superspace structure (intuitively it may be considered as the
tangent superspace at f to any transversal to the orbit of f in the space of all
germs over C). If the dimension a/b of this superspace in finite then the germ
f: X - B has a versal deformation with an (a, b)-dimensional base S which is in
general singular). The base of a versal deformation S is smooth if all the
obstructions to the extension of infinitesimal deformations to deformations with
base C!/° (or C%*) vanish. In our case when X = CP“and B = C any deformation
of a germ of CP is trivial ((W]) and we get the maps: F:CP4 x §—»C, i.e.
a deformation of the function f. Let us calculate the space of infinitesimal
deformations of f. Let F(x, &;t,t) be a deformation depending on 1 even and
1 odd parameter. Its infinitesimality means that we are only interested in the
linear terms of the decomposition in the power series in parameters:

F(x,&t,1) = f(x, &) + ta(x, &) + ta(x, &) + ... .
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Let the change of variables (3.3.1) be given by the map
g:Crrifatl L Crlig =1, +th+1f+...,

Where b (bl’ KR} p+q) B = (ﬁl" . 7Bp+q);b19- R} p’ﬁp+la .
sBp+q€0p5s bpiis o sbyig, By .., B, €y 7, and dots denote the term of
higher degrees in t and 7. Then

Flg(x, & t,1)t,7) = f(g(x, &8, 7)) + ta(g(x, &5 t, 1) + talg(x, &8, 7)) +

s $o e E o L) e Sale L L)s

+ ta(x, &) + ta(x, &) + ... ] l

Therefore the infinitesimal deformations given by the pairs (a',a') and (a,a),
where a,a’€0,,5; o,a'€0,, 1 are equivalent if a' —ael;5 and o« —ael, 7.
Identifying the set of pairs (a,«) with ¢,, we finally see that the space of
infinitesimal deformations is isomorphic to ¢,,/I, = (;. Therefore if u =
dim ¢, < oo the germ of the relative complex superspace f:C”? — C has a p-
dimensional base. For such a germ all the obstruction vanish (cf. [W]) therefore
the base is the germ of the supermanifold C*.

3.3.3.4. REMARK. The above arguments hold if the analytic functions are
replaced by smooth ones since by Theorem 2.1.2 a germ of finite multiplicity is
equivalent to a polynomial.

4. Simple singularities

4.1. Modality. As is shown by V. Arnold the most natural results are obtained
when singularities are classified with respect to the number of parameter (moduli)
on which nearby orbits depend. Let us give an exact definition.

4.1.1. Leta Lie group G act on a manifold M. The modality of a point f e M is
the minimal m such that a neighbourhood of f may be covered by a finite number
of m-parameter families of G-orbits.

The points of modality 0, i.e. such that in their neighbourhoods there is only
a finite number of orbits, are called simple.

The manifold of germs of even functions on (C”%,0) with a singular point with
zero critical value at the origin and the group G, which acts on this manifold are
both infinite dimensional. Nevertheless, all the singularities of finite multiplicity
are of finite modality. Indeed, by 3.2.1 any such germ has a sufficient k-jet
therefore considering the action of k-jets of diffeomorphisms on the space
[O/m** 15 for k = po + uy + 1 we reduce all the considerations to a finite
dimensional situation.
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(The germs close to these considered also have sufficient k-jets since the
multiplicity does not grow under small jiggling thanks to 3.2.4. Therefore, the
modality of a germ as calculated above does not depend on k).

Before we start describing simple germs let us make several remarks.

4.1.2. The above definition of modality is a mere surrogate of a correct
definition (that will be given elsewhere) according to which and the general
principles of supergeometry we should consider not only the manifold of even
germs and jets but the supermanifolds of all germs on which the supergroup of
automorphisms acts. Modality considered this way is not one number but a pair
of numbers since the families of orbits may depend both on even and odd
parameters. In the subsequent paper we will list the (1, 0)-modal singularities and
hope to describe also (0, 1)-modal ones.

4.1.3. Asis often the case when superizing different mathematical notions that
of modality splits into two. The point is that the statement of Gabrielov’s
theorem to the effect that the modality of a (purely even) singularity equals the
dimension of the stratum u = const in the base of the miniversal (even if we
disregard Remark 3.1.3) deformation is false in the supercase. Thus, the dimen-
sion of the stratum p = const is also the legitimate pretender for the role of the
superanalogue of modality. We will call this dimension the inner modality and
denote it by uo. It is not difficult to show that uy < u so that in the list of
singularities with inner modality O all the simple singularities will be found but
not only they. In particular, this list contains the germs &, ¢, ... £,, etc. Perhaps
the classification of germs in terms of their inner modality leads to more final
(algebraic) results.

4.2. Lits of singularities. In what follows (Tables 1-3) we list the normal forms
of all the simple and bordering singularities (i.e. families of singularities that
depend on at least one modulus, but all the other singularities in a neighbour-
hood fall into finitely many equivalence classes) and also the normal forms of
germs of cork 1/4. Proofs of Theorems 4.2.1-4.2.5 follow from the Classifier of
Singularities 4.3 and Lemmas 4.4.

REMARK. Our notations for the types of singularities unlike Arnold’s ones
have no deep meaning. In particular, the notations of Tables 2, 3 are compatible
with those of Table 1, as far as corank is concerned. This explains the appearance
of the types VIII in Table 2 between the types VI and VII of any places: the
singularities of cork 1/8—1/9 do not occur in Table 1.

4.2.1. THEOREM. Any singularity is either equivalent to one of the singularities
from Table 1 or is adjacent to one of the singularities from Table 2.

4.2.2. THEOREM. The modality of any smgulanty from Table 2 is no less than 1,
i.e. they are bordering ones.
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4.2.3. THEOREM. The singularities from Table 1 are not adjacent to any of the
singularities from Table 2.

4.2.3.1. COROLLARY. All the singularities from Table 1 are simple and any simple
singularity is equivalent to one of them.

4.2.4. THEOREM. Any singularity of cork 1/4 is equivalent to one of the singular-
ities from Table 3.

4.2.5. THEOREM. All the singularities from Tables 1 and 2 are pair-wise nonequi-
valent.

TABLE 1.
Simple singularities
Type | Normal form Cork Comments
A, x"*1 1/0-1/1 nx2
D, x4 xy? 2/0-2/1 n=4
E¢ x4 y* 2/0-2/1
E, x3 + xy? 2/0-2/1
Eg x>+ y* 2/0-2/1
I, $182¢3¢84 0/4-0/7
I, $1828384 + &162¢586 0/6-0/7
I, $1828384 + 81828586 + £3848586 0/6-0/7
I $182¢3848586 0/6-0/7
Is $182¢8384 + &18586¢7 0/7
Ig $1828384 + 81628586 + 1638580 0/7
I, $1828380 + 1828586 + 81838567 0/7
Ig £182838a + 81828586 + 8183858, +
+ &28485¢ 0/7
Lo £1828380 + 81828586 + 8183858, +
+ 5848680 0/7
Lio 81828380 + 81808586 + 818388 +
+ &2838687 + 385868 0/7
I, 0 0/1-0/7
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TABLE 1 (continued)

II
II1,(n,m)
I1,(n)
II1,

II1,

11

IV, (n,m)
IV,(n,m)
IV;(n)
1V ,(n,m)
IV,

IVg

V(n)

VI, (n)
VI;(n)

Vis(n)
VLi(n)
Vis(n)

Vis(n)

VI,
VI,
VI,
VI
VI, (n)
VII,

VI,
VII,

X"+ x"E &,

X"+ x$162 + x"E3¢8s

X"+ x$,¢;

x>+ &1E85E,

x* + x&,&,83¢8,

)

X"+ x818y + xME3Ca + £18384 L5

x"+ x81 &y + x"E38,

X"+ x¢, &,

X"+ x2E &y 4+ X"EE, + E1E3EqEs

x* 4+ x&,1E,85¢,

e

x"+ %818, + x8384 + X586

X"+ x81 85 + x8384 + x¢s 86

X" 4+ x818, + x8384 + xEs86 +
+&781838s

X"+ x81 8y + x8384 + xCs&6 +
+ 1818385 + E4le)

X"+ x81&; + x8384 + xC5&6 +
+ ¢$7(818385 + €28486)

X" 4+ x8i &y + xE38, + xEs&e +
+ $1(E1&83¢s + $18ale + £28485)

X" 4 xE &y + xE38y + xPEsEs +
+$7858681 + £7858285 +
+&786¢284

X+ xE &y + xE38q + Eq&6EsEy +
+ ¢7868283 + 8185838,

x* 4 xE &y + xE3Ey + E86EsEy +
+ §7868283 + 81858284

X+ x& &y + xE38, +
+ $786(8s81 + €384)

x>+ x&1 &y + xE38 +
+ &786(Es&y + &3¢5)

x>+ xEy&y + xE3&q + E186EsE,

Xy +y" 4+ x€:8 + yE2s

x>+ y* + xE & + yEyEs

x* + xy® + xE, &y + yEr &y

x* 4+ Y%+ xE, &, + yEyEs

1/2-1/3
1/4
1/4
1/4
1/4
1/4
1/5
1/5
1/5
1/5
1/5
1/5
1/6
1/7

1/7
17
1/7

1/7

1/7
1/7
1/7
1/7

1/7
1/7
2/3
2/3
2/3
2/3

1<m
1<m
nx3

1Em
n=3
2<m

IA TIA

n—1
n—1
n—1
n—1
n—1
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TABLE 2.
Bordering unimodal singularities
Type | Singularity Cork Modality
I} generic Ve A* (&, ., &) 0/8 =6
I, generic Y e A4 (&y,..., E9D 0/9 >45
r Xt x2E 8, + xPEE + al &y a® 1/4 1
v x4+ X288, + XPE 8+ al &yl ak B2] 1/4 1
\4 x* 4 xE &y + xE3 84 + XPEsEe +

+ a¢s&6(8182 — €3¢4) 1/6 1
VI x>+ xE1 &y + xE3Ey + E383Es5E, +

Fadkd tat(taaraa) | 1
VI, X+ x8 &y 4 al &8l + E 888 +

+ 1828687 + &18a8s87 + E38586¢0 1/7 21
VI | x® + x(&18, + &8s + Esle + E785) + W5

Wed* (&, .. 1/8 >6
VI, | X% 4 x(8,8; + E3és + Es&6 + E180) + 5

WeA*(E,,. .. 0D 1/9 >45
VII; | x*+ y°® + ax?y? 2/0-2/1 1
VII, | x* + y* + ax?y? 2/0-2/1 1
VI, | x° 4 xy? + xE, &5 + ayé &, 2/2-2/3 1
VII, | x*+y*+2° + axyz 3/0-3/1 1
TABLE 3.

Singularities of cork 1/4

Type Normal form Comments

I (n,my,my, )| X"+ n™E &y + x™2E3E, + min(n —m; —2,m, —2 =)
+a§1§263§4'(1+01x+ k= form—ml—mz#lora#mz/n
+ ...+ ax*),£0 m, — | — 1 otherwise

n—1>my,>my>1+1

HLy(n, my,my) | X"+ x™E& ¢ + x™E38, n—1>m;>m

1. (n,m,]) X" x"EE, + XIE 8838 | n—>m2]

I1,(n, m) x" 4+ x"EE, n—1>m

I, (n, m) X"+ x"¢18,83¢84 n—12z2m

4.3. Classifier of singularities. Like the classifiers of plants, minerals, etc., the
classifier of singularities is a device that helps one to assign a singularity its place
in the accepted classification system.

Its other aim is to help organizing the proof of the right classification.
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NOTATIONS:
m  the maximal ideal of the ring of germs 0,,,;
n the ideal of ¢,,, generated by the odd elements;
(M) the ideal of ¢, generated by a set M; in particular
(x)  theideal generated by the even generators of ¢, (it is not G-invariant);
{M) the linear span of a set M (over C);
ord f = min {k| f em*} the degree of f in the grading
adjoined to the filtration O cm o m? .. .;
ord, f the degree of f in the grading adjoined to the filtration
0> (x) >(x)? ... (this degree is not G-invariant);
f=fO+ P+ @4 fPPeA®[¢,,... ], the decomposition of an
even function in the power series in odd variables;
rk r the minimal number of summands in the representations of
re A*[¢,,. .., ¢,] as the sum of decomposible polyvectors
— is adjacent to
= implies, yields
= see
= only one of the following possibilities may occur
In parenthesis we indicate the numbers of the lemmas in which the statements
of Classifier are proved; the number at the end of a subsection is the number of
a subsection that refers to this one (unless the one that refers is the immediately
preceding one).
Let cork f = p/q

1. If u(f) < oo then m»
1)g=0o0r1=f=f9and f does not depend on odd variables and
belongs to one of the types A4,, D,, E,, VII}, VII,, VII;, VII; ([A]);
2) p23=f- VI ([A]);
3) p=2,q=2o0rq=4=VII; (519-5.20),
)p=2,9q=3=24
) p=1,q = 8= f — VIII| or VIII, depending on the parity of g

N n b

) p=125q=T—2
) p=0,q9=8= f -1 or I, depending on the parity of g
8) p=0,2=5g=<7=26.

~3

2. Ifp=1,2<q < 7then m»>
1) g=20rq=3= f~(n,m)(51.1)
2) q=4~3;
3g=5=1.
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3. Ifp=1,qg =4 then = (5.1)
D f~x"+x™E & + x"E8+ [ my,my Sn—2=4
D f~x"+xME G+ [ m Sn— 25
) f~x"+ fP=6.

4 I f ~ X"+ X™EE, + X™EE + [P my <m, < n— 2, then =
1) ord, f® 2 m; — 1 = f ~ lll,(n,m,,m,) (5.2a);
2) ord, [ <my — 2= f ~ Il (n,m;,m,,1) (5.2a).

53). If f ~ x" + x™E &, + [ then ms
1) ord, f® =2 m; — 1= f ~ ll,(n,m,) (5.2b);
2) ord, fP =1<m; — 2= f ~ 1l (n,m,,]) (5.2b).

6(3). If f ~ x" + f“ then =
Dord, fY=2n—1=f~1l,(n,n— 1) (52c);
2) ord, f® = I <n—2=f~TMLnl) (520)

72). If p=1,5<q £ 7 then =
1) g=5=8;
2) g=6=1T,
3) q=7=18.

8. If p=1, g=35 then f~x"+x™& & + x™EE,+ Y, m; <m, (5.1)
and =
1) m 23=09;
2) my = 2 10;
3)m =1=13.

9. If f ~x"+ x™& &y + x™EE, + [W, 3 < my £ m, then =
1) n=3e16;
2y n=d4=f IV (5.4.1)

108). If f ~ x" + x2E, &, + x™E3E4 + £, m = 2 then w»
1) n=3=16;
2)n=2d4,m=2=11;
Y n2dm2312,

1L I f ~ x" + X2(E &y + E3E4) + f@, n = 4 then =
1) fPe(€182838s) + (x) = f — 1V (5.4.3);
2) fPe(€1&2838a) + ()= ~ IV,(n,2) (5.5).

1210). If f ~ x" + X2, &, + x"E38 + @, n 2 4, m 2 3 then m»
) fPe(€,&y) + (x)=f =1V (5.4.2)
2) fP¢(EE)+(x)andmSn— 1= f ~1IVy(n,m) (5.5)
3) fP¢¢¢) + (x)andmzn=f ~ Vs (n,n — 1) (5.5).
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13(8). If f ~ x" + x&, & + x™E3¢, + [ then =
)m=1= f ~1V,(n. 1) (5.6a)
2)2<m=<n-—2= 14
I mzn—1=15.

14. If f ~ X" + xE & + x"E3E, + [P, 2 <m < n—2then =
1) f®e(€ &) + (x) = f ~ 1V, (n,m) (5.6a);
2) fW ¢ L) + (x) = f ~ 1V, (n,m) (5.6b);

1513). If f ~ x" + x& &y + x"E3E4 + @ + then
f~x"+xE &+ f@(5.1) and =
1) fPe(x) = f ~1Vs(n) (5.7a)
2) f@¢(x)and fe(x) + ((1&5) = f ~ IVy(n,n— 1) (5.7b);
3) fPE(X) + (1&2) = f ~ TV, (n,n— 1) (5.70).

16(9 and 10). If f ~ x> + x™ & &, + x™E3¢E, + 9, my, m, = 2 then
f~x>+ f®(5.1)and =

1) fPex?®) = f ~ 1V, (5.8a);
2) fPe(x)and fP¢(x?) = f ~ IV (5.8b);
3) f@e(x) > [ ~ 1V, (3.2) (5.8).
17(7). Ifp =1, q = 6 then
[~ x4+ x™ME L + XMl + XMl + [+ 9,
my S my, < my (5.1)
and =
)my=my=my=1=f~V(n) (59)
2) my=22=f -V (510).

18(7). If p=1,9 = Tthen f ~ x" + x™&, &, + X238, + x™EsLe + D + ©,
m; <m, <my. (5.1)and =
)m =my=my=1=19;
2y my=m,; =1,my=2=20;
3y my22= f—- VI, (515)

19. If f ~ X" + x(E, &, + &84 + Es&6) + 1 + f© then

[~ X"+ x(E &, + &3¢, + Es&e) + Eqr, where reA(Ey,.. ., &) (5.13).
and = (5.11);

1) r=0= f ~ VI, (n) (512 and 5.14),

2) tkr=1= f ~ VI, (n) (5.12 and 5.14);

3) rkr = 2 and r is divisible by a vector ve{{,,..., &> =
= f ~ VI3 (n) (5.12 and 5.14);

4) rkr = 2and ris not divisible by a vector v = f ~ VI, (n) (5.12 and 5.14);
5) tk =3 = f ~ VI5(n) (5.12 and 5.14).
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20(18). If f ~ x" + x&, &y + xE3E4 + x"EsEg + [ 4+ £ m = 2 then =
Dn=3=f~x>+x(&&+EE)+ [P+ f® (5.1)= 22
2)n=4d4,m=2=21;

I nz2d4m=3=f->1V (5.16.1)

21 I f = x" + x(&1 & + &3&a) + x%Esée + @ + [ and

SO =& rmod((x) + (A*CEy,. .., E6)) + (€& + E3E4)), where re A3 (¢,
., &> then =

1) tkr = 3= f~ Vlg(n) (5.16a);
2) tkr £2 = f->1V' (5.16Db).

22(2 ) Iff~x +x(&1& + &38) + @ + f© then =
D) fBe(A?(E,....E) + (x)==»f—>VI’ (5.17a)
)f(4)¢( 2o E) + () = f ~ X0 4 X(E &y + E38s) + al3EaEels +
+ 583848587 + 052535556 (5.17b) = 23.

23 0f f~ x4 x(E1 8y + E38a) 4 a838aL68q + bEELESES + €&y E5E5Eg then
= (5.18):
1) a,b,c#0= f ~ VI, (3)
2)a,c#0o0ra,b#0,c=0= f ~ VI
3) a=0,b,c#0= f ~ VIg;
4) a#0,b=c=0= f~ Vg,
5) a
6) a

=b=0,c#00ra=c=0,b#0= f ~ VI
_C—'0=>f~VIll.

24(1). If p=2,q = 3 then f = f, + rmod m*, where
redx,y) ® A%<¢y, &5, &;) then =
1) ris decomposible = f — VII; (5.21a);
2) ris not decomposible and f; is a simple even singularity = 25;
3) ris not decomposible and f; is not simple = f — VII| or VII; (5.21b).

25. If f = fo + r mod m*, where re{x,y) ® A*{¢,&,,E3), cork k f =2 then
- (5.21¢).
1) f%is of type D, = f ~ VII, (n — 1);
2) fOis of type E¢ = f ~ VII,;
3) f%is of type E, = f ~ VII;;
4) f%is of type Eg = f ~ VII,.

26(1). Ifp=02<qg<T7then f=f“+ fO®and = (522
f 0 - 11 l’
2) f@=0;f®=0,g=60r7and f ~ I,
3) f@ £ 0= f ~ f“ which belongs to one of the types I, = I, Is — I,,.
The classification in this case is the description of the orbits of GL(V) in
A*(V)in A*(V) where dim V < 7. The most difficult part of this classifi-
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cation is the case of 3-vectors in 7-dimensional space solved by Schouten,
see [VE].
S. Proof of lemmas of the classifier

5.1. LEMMA. Let cork f = (1/r),s = [r/2], h = ord, O, m; = ord, f®, m, =
ord, (f?)* —my,...,m;=ord (f®¥ —... —=m,_,. Thenm, <m, < ... <m,
Letibesuchthatm; <n—1,m;,, =n— 1. Then

f~x” + x""fléz + ... +xmi€2,‘_1625 + o
for some @ e n*.

PrOOF. Since ord, a' 2 ord,a' ! + ord,a, thenm, <m, <... < m,. As fol-
lows from [A], @ ~ x". Therefore f reduces to the form:

fox [Py

Let f® = w-x™ + 1,wherewe A%(¢,,...,&;)and tem™ *'. Reduce w to the
form

Cila+ &8+ ...+ &1 80,
Thenm; = m, = ... = m,. By Morse’s lemma
SO ~xm@E il + &8+ o+ Gy il + 1 Eopars 5 E)
and f; em™+1~™», Similarly we may show that
SO~ XMl 4+ Loy 1y + XM (Copu18apan o

oot 62q+l}2q+2 + fZ(x,€2q+3’- . "67)a

where f,em™+'"™, and m, =... = m,,,. Repeating this procedure several
times we finally reduce f*? to the form

f(2)=x"'lél§2+--- +xm‘éz—-s~1£23‘
We have only used the changes of coordinates preserving x. Therefore
fax"+xmEE +. ..+ x™Ey_ 1 &y + @, where pen®,

Now applying the change of coordinates
1 _ me—n
X""x“;'(xm‘ﬂ " airilaira o+ XTI 6o),

we reduce f to the form indicated in the lemma.

5.1.1. CorOLLARY. Let cork f = 1/2 (or 1/3). Then f ~ Il(n,m), where n =
ord, /@ m = min(ord, f®,n — 1)
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5.2. LEMMA. Let cork f = 1/4.

a) If f ~x" + x™ & &5 + x™E38 + o,
where m;, m, < n — 1, and

¢ = ax’5152§3§4(1 + x¥(x)),

then f~ 111, forl<m, — land f ~ III, forl 2 m, — 1.
b) If f~x"+x"& ¢ + ¢ and degop =1, then f ~ I, for | <m, and
f ~ 111, forl > m,.

) If f~x"+ ¢ and deg ¢ = |, then f~ III, (n,]) for | <n— 1, and f~ 1],
(non—1)forl=zn—1.
PrOOF. Let

f=x"+xME &+ x™ 88 + ax'8 8,881+ xP(x) (a + 0).

Notice that f~ f+ ¥(x)&,&,E5¢E,, if ordi(x) = m,, since f turns into f +
B(x)€,E,E5¢, under the change &, — &,&;&,8(x)/x™ + &,. Consecutively, if
I = my, then f~ III,.

Let | = m; — 1. Then the composition of the changes x+» x — a&;&,/m, and
&3 E3(1 — nx""'a)™! reduces f to the same form but with a = 0, implying
f ~ 111,

Let I < m; — 1. Consider the change of coordinates

x> x + 0(x)E;E, and E3 E5(1 — nB(x)nx*) 2,
where f, = f + @(x)&,&,E,¢,. Then f] turns into f for
0(x) = @(x)/(mx™ ' — ax'(1 + x¥(x)).

Notice that for [ + k & m; — 1 or a  m, /n the power of the numerator does
not exceed min(m, — 1,/ + k). Therefore

f~f+ox)&8 8,838, if dego 2 min(my — 1,1 + k).
Letl+ k=m; — 1 and a =m /n. Then f ~ f + @(x) &, &, &3¢, if degp = m,.

This makes it clear that f reduces to the form III,,.

b) Let f = x" + x™ &, &, + W(x)E,E,E5¢E,, whereord W(x) = . The change of
variables &, &, P(x)/x' reduces fto theform f= x" + x™ &, &, + x'& &, E,5¢,.
If I > m, then f ~ x" + x™&, &, and therefore f ~ Il (n,m,). If | < m,, then
f ~ IIId.

¢) Let f = x" + ¥(x)¢1¢2¢5¢s-
This case is similar to the preceding one.
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5.2.1. COROLLARY. Let cork f = (1/4) and f em®. Then f is adjacent to III'.

PrOOF. Let g be a singularity of the form III' and hi = f + Ag. For all i/y
except perhaps three values the germ h; falls into the case a) of Lemma 5.2 with
n=4,m, =m, =2 Then by Lemma 5.2 we get h; ~ III' for almost all 1 suffi-
ciently close to 0.

5.2.2. COROLLARY. Let f =x"+ x&,&, + x"E3E, + @, where m<n — 1,
@en*. Then f ~ 111, (n, m).

5.2.3. COROLLARY. Let f= x" + x&,&, + @, where o en® forord, ¢ = 0, then
S~ 1I(mn—1)and iford(p > 0 then f ~ I11,(n).

5.2.4. COROLLARY. Letf = x> + @,wherepen*. Then f ~ Il15,ifdego = 2,
f~1l,,iforde =1, f ~ 1l if ord ¢ = 0.

5.3. LEMMA. All the singularities listed in Table 3 are pairwise inequivalent.

Proor. Since the ideals m and n are invariant with respect to automorphism
of ¢, then the singularities from different lines of the table and different n,m, m,,
l are pairwise inequivalent. Let us show that two singularities f and g of type 111,
(n,my,m,,l) with different sets of parameters a,a,,...,q,, and b,b,,...,b, are
inequivalent.

On the contrary, let f ~ g. Any change of variables sending f into g preserves
fO 4 f@ = 4@ 4 4@ Any such change is of the form x+— x + 1, where te n?,
E &+ Y a(x)E), where dega(x) 2 n — my — 1.

Under this change £ turns into

(S + (my& Eprx™ ™t 4 my & Etx™ 1) & 888, + tr(a;;) = Y+,

where ord, ¢ = min(n — m; — 1,m, — 1).
Therfore a = b, a; = b; for i <min (n — my — 2, m, — 2 — b).
It remains to consider the case n — m; — m, =1, a = m,/n. To preserve

fO + £ we need that a;(x)(w) = —1,x"" ', where w = x™ &, &, + x™2 ¢3¢y,
and a;;(x) act on o as the derivative Y a;;(x) &,(9/0&)).
This implies that tra; = —nx""™~! + 0(x"~™), and therefore ord, ¢ = m,

for a = my/n,n — m; = m, — | as required.

5.4. LEMMA. Let cork f = (1/5)and f = x* + x2&,&, + x2E3E4 + [, where
@ = q& E,E,E, mod(x). Then f ~ IV’ fora #+ 2, 1/2.

Proor. Consider the change
xx +d8i¢s + BEy¢s + 7838s + 084Es,
i 8y —A4BxEs, L8, —daxEs, Lyl — 40 x s, Ly 8y — 4y x s
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Then f turns into
g =1 +2x2—a)a& 5838 + BEsCr8380 + 78182838 +
+ 0&,E,E5E,) + x%p, where pen®,
If a + 2 we may select a, f, y and J so that
g=x*+x2,8 + x*E38a + (a + px) &1 8838, + X

Now with the help of Morse’s lemma we get rid of the term ¢ and the term
uxé &,E5¢, for a + 1/2 may be killed thanks to Lemma 5.2.

5.4.1. COROLLARY. Let cork f =1/5 and f= x" + ax™ &, &, + bx™ &8, +
f@®, where n > 3,m,,m, > 2. Then f is adjacent to IV'.

5.4.2. COROLLARY. Letcork f = 1/5and f = x" + x*&,&, + bx"E3E, + [,
wheren > 3,m > 2, f®e(£,&,)n? + (x). Then f is adjacent to IV

5.4.3. COROLLARY. Let cork f = 1/5 and
[=x"+x2E& + xP 838+ ak &858, + o,
where n > 3, o en*. Then f is adjacent to IV".

5.5. LEMMA. Let cork f =1/5, f = x"+ x2&,&, + x"E38, + fY, where
n>3m<n—1, fPé¢(x)+ & Ent

Then f ~ 1V, (n,m). If m =2 and fP ¢ (£, E,E5E,) + (X), then [ ~ 1V, (n,2),
[~ IVy(n,m)

Proor. Making a linear change of variables &,,¢, and multiplying &5 by
a constant we may reduce f¥ to the form ¥ = &, &,¢5¢, + @, where ¢ € n*(x).
Let us show that f ~ f — ¢. Let for yen*

@ =ax818,8384 + bx8185838s + cx81 858485 +dxE1838als +
+ ex8;83848s + 7.
With the change &5 +— &5 — a&, equate a to zero and with the change x+— x —

1 1 i
(b83&s + c&4ls)/2, &3>85 + Hfsx"_lhm, a8+ ;;ésx" '7m equate b

d . .
to c. After that with the change &, —» &, — - ¢, let us equate d to 0. Finally, with

the change £, —» &, — x&, we equate e to 0, i.e. reduce f = ¢ to the form f— ¥,
with fe(x?)n*. Further with Morse’s lemma we get f ~ f — .
The case m = 2 is similar.

5.6. LEMMA. Let cork f=1/5 and f = x" + x&, &, 4+ x™E3E, + [, where
m<n-—1.
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a) If fWe(E &)+ (x)orm=1then f ~ IV, (n,m)
b) If f fails to satisfy a) then f ~ IV; (n,m).

Proor. a) If m £ 1 then the change x+— x — v, where v is found from the
condition &, &0 = f® mod(x), reduces f to the form f = x"+ x¢, ¢, +
x"E 8, + @, with gen?(x)? + n*(x)and if m = 1 then f@ = v, &, &, + v,&4 +
@,, with ¢, en*(x). The change x+ x — v, v, also reduces f to the same form.

Letm> land f = x" + x¢,&, + x"E3&, + @,. Thengp = ¢, ¥, + &, ¥, and
the change ¢,— &, + ¥,, &,— &, + W, establishes the equivalence of f and
f — ¢. This yields f ~ IV,(n,m). The case m = 1 follows from Morse’s lemma.

b) If f fails to satisfy the condition a) then f = a&, E;E,E5 + bEE3ELEs +
E &V + w, where veA?(f), wen*(x). The linear change ¢, — af; — b&,,
&, - a ' &, reduces the germ of f to the form where b = 0, a = 1. Applying the
same changes of coordinates as in the case a) we can reduce f to the form
IV,(n,m).

5.7. LEMMA. Let cork f = 1/5and f = x" + x&, &, + f@
a) If f®e(x)then f ~ IVs(n)

b) If £ ¢(x) but f@e(&1&;) + (x), then f ~ IV, (n,n — 1).
o) If fPE(x) + (£1&2), then [ ~ 1V (n,n — 1).

PrOOF. a) follows from Morse’s lemma and b) and c) are proved as Lemma
5.6.

58. LEMMA. Let cork f=1/5and f = x> + f“.
a) If ord, f = 2, then f ~ IV,

b) If ord, f* =1, then f ~ IV

c) If ord, f® =0, then f ~ 1V,(3,2)

PrOOF. a) The change x+— x — f*#/3x? turns f into x>.

b) Let ord, f¥ = 1. A linear change of variables ¢,,..., &5 reduces f to the
form f = x> 4 x&, ¢34 + @, where @ €(x?)n*. Further apply the change of
variables x — x — ¢/3x?

c¢) Let ord, f = 0. A linear change in <{¢,,...,¢&s) reduces f to the form
f=x3+ &85 + ¢ with ge(x)n?; then kill ¢ by a change of the form
Ci'”"zaij(x)fj-

It is not difficult to verify that under the change

x> x +&£185/3 + 8384/3, 8585 — &2/3
x> + £,E3¢E,E5 turns into 1V, (3, 2).
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5.9. LEMMA. Let cork f = 1/6 and
f=x"4x88 + x88a + x8sle + [+ 1.
Then f ~ V(n).
PROOF. Let f + f© =y 4+ w + tx, where
veA*(Ey,.. ., &) weA® (Ey,. .., &)
It is easy to see that
v=1(8182 + {384 + &s86)vo, W= (8182 + &3¢0 + E586) Wo.
The change x+— x + v + wq reduces f to the form
J=x"+x(&182 4 &38a + &586) + W
for some ¥ e(x?)n* + (x)n*, which thanks to Morse’s lemma yields f ~ V (n).
5.10. LeMMA. Let cork f = 1/6 and
f=x"+ax™ + bx™ + f@ + O,
where m; > 1 for at least one i. Then f is adjacent to V'
PROOF. Let m; < m, < mj,
g=x>+x8& + x83&s + xPEs&e + alsl (6,8 — &84,
and h;, = f + Ag. Then
i~ x* + X818 + xE38a + X 8s8s + 1o + 0,
where ¢ e(x)n* + n®. Express v, in the form
vo = &{sCewy + &swa + Cews + £18283¢84.

The changes of the form x + x + a reduce h; to the form withv, = £5¢qw, and
wi(E1&, + E3E,) = 0. Notice that w} + 0for almost all A and therefore the linear
changes in £, £, ¢3¢, send wy into u(, &, — £3&,). Thus,

hy= x>+ (xE, & + E384) + xPEs&e + alsl(E18, — E38s) + 0,
where @ e(x)n* + n®. Killing ¢ as usual (Morse’s lemma) we get h; ~ V",

5.11. LEMMA. Let V = (&,,...,¢6).

Then in A*(V) there is exactly five orbits of GL(V) and any element we AV
reduces to one of the following:

a) 0,

b) &;¢sés,

©) &1(&3&s + Eale)s



278 V. SERGANOVA AND A. WEINTROB

d) £:1¢3¢s + &28486,
e) &8585+ &8, 8e + E84¢Es.

5.12. LEMMA. Let we A*(V), withtkw = 6 and we A3 (V) such that o A w = 0.
Then by linear transformations of V we may reduce w to one of the forms a) — €)
and w to the form: £,&, + E3&4 + Esée.

Proor. Consider all the cases. For a 3-dimensional subspace L = V, L = (¢,
& boosetdy = EEEand L = {feV* f|, =0} and for f € V* denote by f“an
element of A° V such that if f(v) = O then f¢ A v = 0(f¢is defined up to a factor).
It is not difficult to see that w4, = 0 if L* is Lagrangean with respect to @ and
wA eKerw|L* and nonzero otherwise. Let f,,...,T; be the dual basis of

51, LR 66'

a) Trivially.

b) L' = (&,,&,, Es)t is Lagrangean with respect to w and therefore w reduces
to the indicated form.

c) Let L, = <&,,&5,85), Ly = (&1,84,E6).

Since (4., + 4,,)o = 0, then Kerw| L+ = Kero| LLOf, in other words, L+ and
L; are Langrangean. In any case f,eKerw| Lt+s This makes it clear that

£, L (f;,8,, 85,6 and therefore w is expressed in the form a¢, ¢, + o', where

' € A%(&3, 84,85, E6), ' (8385 + E4&6) = 0. But the changes in (&3,&4,¢5, &6
preserving &5 &5 + £, &g send w' to theform A(E; &€, + E5&g). After that the change

E3 = 83/A L6 Le/h &y = AL, E > &y al

reduces w to the form: w = &, &, + &3&4 + Es&s.

d) LetL; = <&;,&3,¢50, Ly = <&2,84,E6>. Since Ly () L, = Oand (4, + 4,)-
w = 0,then L} and L3 are Lagrangean with respect to w. And therefore w reduc-
es to the form &, &, + £3&, + E5&g by the changes of variables in {(&,, &,,&6).

e) Let v =¢,838s + &18a86 + &3848s, Ly =<81,85,850, Ly = {&1,84, 860,
Ly =& ¢4,E5), Then dim L, (\L;=1if i+ jand L, ()L, ()L =0. Since
(4, + 4., + 4, )w = 0 then at least one L} is Langrean with respect to w.
Without loss of generality we may assume i = 1. Then since (4,, + 4, ,)o =0
the by ¢) L} and L3 are also Lagrangean. But then (&, &,, £5)>* is Lagrangean
and o is of the form

w=al &+ bEsE, + s,

The change of variables

& bedy, & éyfa/be
54'—’\/:1254, 53’—"53/1)\/(—1; .
ésH\/Efs, ée""é‘;/c\/a—l;

reduces w to the form: w = &, &, + €3&, + E5&.
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5.13. LEMMA. Let cork f = 1/7 and
f=x" 4 xE &y + xE38, + xEs g + [+ fO
Then
X+ x818s 4 x¢38s + xEs86 + &,
where
we Ay, 8e), W(E s + &8s + Es8e) = 0.

PROOF. Let ™ = £,w, + w, mod (x) n*. The change of variables of the form
x> x + E,0, + v, + v + vy, where v,€ A&y, . .., &), reduces f to the form

f=x"4x(E & + &8, + Es6) + Ew + @, where g e(x?)n® + (x)n?,
WeAs(éxv s 8 W& + &3¢, + E586) = 0.
Morse’s lemma implies that f ~ f— ¢.

5.14. LEeMMA. If cork f = 1/7 and
f=x"+x(&, 8, + &8+ Esle) + [P + [©

then f is equivalent to one of the singularities VI, (n) — VIs(n).
PRrOOF follows from Lemmas 5.11-5.13.
5.15. LEMMA. Let cork f = 1/7 and
f=x"4xE & + XMEE, + x™EEe + [P+ [©, my,m, > 1.
Then f is adjacent to VI,.

PrROOF. Set f + AVI, =g,. Then g, ~ x> + x&,&, + [ + @ for a suffi-
ciently small A. Let g = £ mod n*(x) + n®. Present g in the form

q="vo+ & vy + &0, + & &0,

Where UOEA4(§7’ 56’65’64,53), Ul, v2€A3(€7’€6’65,é4’ 63) and USEAZ(CW 66’
s, &4, E5). For a sufficiently small A the vector g is generic in A*(&,,...,¢&,).
Without loss of generality we may set v, = &,&¢Es¢E,.
The changes of the form &;— &; + a&, + b¢,,i = 4,enable us toreduce g to the
form
q=2C7868s80 + &1 83wy + 283wy + & 6w,

without affecting g'2. The changes

Ei—ady + b8y 8-l —al, i 8 +dié +dyg,
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reduce g to the form
q=2¢7,86:C5:Ca + 81,835,879, 86 + 2,85, 85, 8 + £1828520 +
+ &162(185C6 + 728587 + 738486 + ¥a8aly) +

+ £18283(0,87 + 0,86 + 0385 + 04&4).

The composition of the changes from the group SL(¢s, &,) x SL(&5, &) with
&3 A5 reduces g to the form

$1€6€58a + 83816786 + 83828584 + £182878s + &,8,8486 + a1 85858,

Therefore, g; ~ VI, + ¢, where @ en*(x) + n®. Let us show that g, ~ gVI,.
First, by Morse’s lemma

gi~ X2+ 8786858y + &1 8388 + EE3EsEy +
+ag182838s +&182878s + £1828486 + XWX, 837847857 86, &)

Since &, ¢4 &5 &, belongs to the open orbit of GL(5) in A*(&,,. .., ¢;) then there
exists g € gl(5)- x such that

9(&71¢6¢5¢4) = x ¥(0,83,84,¢5, 865 E9):
Therefore g; ~ VI, - Y(&5,. .., Es, x)- x%, but then g, ~ VI}.
5.16. LeMMA. Let cork f = 1/7 and
f=x" 4 x81 8 + x838a + X786 + [+

wheren > 3,t = f®mod(&,&; + &384) + (%) + (A%, . ., &)
a) If rkt = 3, then f ~ Vlg(n),
b) If rkt < 3, then f is adjacent to 1V".

PRrROOF. Let us express ¢ in the form
t=E78586t0 + E78swy + &qC6 W2,

where to(&,, ..., D, w,wa€ A% (Ey,. .., Es)
and wy(&; &, + E384) = o818y + £380) = 0.

Let t, # 0. Then by the changes of variablesin (&,,. .. £,)> we may reduce t, to
&, without affecting f.

Thechange &> &5+ Y, a;éy, Eg &+ ), by, reduces ¢ to the form

15is4 1sis4

t=C8785868; + Eqls(aly 8 + by Es) + Eq&e(cérls + dEy84)

Then the composition of the changes from SL(s, &6) and the transformation

&y ALy, & ATy, G AL,
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reduces ¢ to the form t = £,85E6 &, + 188,83 + E,E6E, L.

Let f® =t + t;mod (x). Since t, (&, &, + E3&4) + AYEL, &5, .., E6), then ¢,
splits into the sum t; = (&, &, + E3E4)vg + &5y, Where v, € AX(&y,. .., &), and
vyrw=0.

The first summand may be put to zero with the change x+ x = v,, and the

second one with the change &,¢&, + Y a;&, EsEs + Y, by, Eg Ee +

is4 ic4
Z ciéi.

is4

Now making use of Morse’s lemma let us kill all terms that belong to
n?(x?) 4+ n*(x) + n® and get f ~ VIg(n).

Letrkt < 3. Then t reduces to the formt = £,&5E6&, + k&, E5E,E5. Consider

the singularity h;, = f + A¢,&5. For A & 0 it satisfies the conditions of Corollary
5.2.4 and therefore it is adjacent to IV,

Let to = 0. Then the composition of the changes from SL,(¢s, &) with
&> A&, reduces to the form ¢t = £,E5E, &5 + &,E6E,E,, therefore rkt = 0. Let

h, = f + A&, &,. Then, by the reasons similar to the preceding case h; is adjacent
to IV".

5.16.1. COROLLARY. Let
f=x"+xE& + xE38 + x"EEe + [+ [
If m > 2, then f is adjacent to IV".

PROOF. Let t be the same as in Lemma. It suffices to prove Corollary for the
case rk t = 3. As had been proved in the proof of Lemma in this case

Sex"+x8 8, + x838y + xMEsle + E785868y + £7858283 + 87868284
Let g, = f + A&, &5, where 4 £ 0. Then
gi~ X"+ X2E 8 + xMEsle + E8e Er L.

Since m > 2, then g, falls into the conditions of Corollary 5.2.2 and therefore is
adjacent to IV'.

5.17. LEeMMA. Let cork f = 1/7 and
f=x>+x& & + x&8+ O+ f©

with f® = tomod (A%(y,. .., &) + (x).
a) If to =0, then f is adjacent to VI'.
b) If ty * 0, then
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x4 xE& + xE38 4+ E86EsEy +
+a87868,83 + b&78sE284 + c&6&sEse,y.

PRrROOF. Let

f=x>+xE &+ xE38+ @+ [

Similarly to the case of Lemma 4.4.16, f ~ f + @, if pe(A3(&y,..., &) + (x).
Therefore without affecting /', 2, we may reduce f to the form with

fM) + f(G)GL = <51,' B é4> ® Aa(é% 65’ 66) @ Az(il’- .. 354) ® Az(é%éia 66)

On the other hand, the two reduced singularities f; and f, are equivalent only
(4) (4)

if so are f;* and f]* with respect to the subgroup G of linear transformations in
{€y,.--,&7) preversing §; & + 38, Let
SO =&7868500 + Erlewy + E18sw + EgEswy

where W.'EAZ(él,- s 8a) Vo€, -5 Ea).
a) Let v, = 0. Then a generic element £ reduces with the help of transfor-
mations from G to the form

EW = ESEE 8y + EqE6E & + E186(E1 Exfa + alaéy).

implying that f is adjacent to VI,.
b) Let vy #+ 0. Then v, reduces to £; with the help of transformations from
SP(¢,,...,¢,) and wy, w,, wy could be forced to belong to A2(&,, &5, &,) with the

help of transitions &;— &; + Z a;éifori=35,6,7.

1sjs4

Therefore

SO~ E 8685y + Eqe(arEals + biEyEa + 01838 +
+ $785(az8285 + b,8,84 + ¢38384) + E6&s(aséa8s + b3y 84 + ¢38380).
The linear changes from GL(¢5, &6, £4) enable us to kill by, ¢y, a5,c,; a; and b;.

5.18. LEMMA. If f corresponds to case 23 of Classifier and a, b, ¢ % 0, then
f ~VI,Q3). If a# 0 and either b or c are nonzero then f ~ VI,. If a=0, b,
c$0,then f~VIg. If a+0,b=c=0,thenf ~ Vl. If a =0, and either b or
c are nonzero, then f ~ Vlo. If a=b=c =0,then f ~ VI,,.

PROOF is straightforward.
5.19. LEMMA. Let cork f = (2/2 k). Then f is adjacent to VII;.

Proor. Consider

9a=Ax> + xy? + xE & +apéi &y + Eala + oo+ Eq i Ei) + -
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Then g, is a singularity of corank(2,2). The change of coordinates (x, y)
reduces g, for a sufficiently small 4 to the form

gi= x>+ xy* + (bx + dy)&, &5 + @(x, )&, &,

where ¢(x,y)em? (see [A]) Let @(x,y) = (bx + dy) ¥(x,y) + xyf(x,y). The
change

Car &a/b, &= &1 + W(x,y), yr y + Hx, )¢ 8,y

reduces g, to the form VIIj.

5.20. LEMMA. Let cork f = (2/2k + 1). If k > 1, then f is adjacent to VII,.
Proor. It suffices to prove the case k = 2. Let

f® = px + Yymod m*, where ¢, ¥ e A%(&4,. .., Es).
Reduce ¢ to theform ¢ = &, &5 + a, &, by linear changesin (&,,...,&5). Let

gr = A 4+ xp? + ayéi&, + E38) + f.
Then

g~ x>+ xy* + x&, &, + @, where p en*m?.

The term ¢ is killed in the same way as in Lemma 5.19. Adding uy&,&, tog; we
see that g, is adjacent to VIIj.

5.21. LEMMA. Let cork f = (2/3), and t = f* mod m*.

a) If tkt = 1, then f is adjacent to VII’;.

b) If tkt = 2, then {9 is nonsimple, and f is adjacent to either VII| or VII.

c) If tkt =2 and f'© is simple then f is equivalent to one of VII, — VII,
depending on the equivalence class of f'.

Proor. Ifrkt = 1,thentreduces by a linear change of coordinates &,, &,, 5 to
the form t = (ax + by)¢,&,. By the reasons similar to those from Lemma 5.20,
f is adjacent to VII;.

Ifrkt = 2, then t reduces to the form ¢ = x&, &, + y&, &5 by alinear change of
coordinates ¢&;,&,,&5. Let f = f©O 4+ x& &, + yE,E3 + @, where pen’m?,
Morse’s lemma implies that we may kill ¢ without affecting f©. Therefore
adjacency and equivalence for singularities of the form f are equivalent to
adjacency and equivalence for the singularities of the form f®. Now the state-
ments b) and c) follow from the classificational results for the germs in even
variables (see [A]).
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5.22. LEeMMA. Let cork f = 0/q,q < 7. Then
a) if /= 0then f = [ ~ L if {40 (or Iy if /= 0)
b) if f % 0then f ~ f@.

PrOOF. a) If ¢ = 6 the statement is obvious. If g = 7 then in A® (& ,...,&;)
there is only one nonzero GL(7)-orbit: that of £,&,&3&,&E5&.

b) If £® = 0 we have nothing to prove. Let f® % 0. Then reduce f*® to the
form I, = &,&,E;,E,E5E and represent ™ in the form f*) = &,¢ + r, where
e A*{ey,. .. 660, reA*{ey,...,E¢). If @ % 0 then there exists Y e A° (¢4, ...,
&6) such that gy = f*® and the change of variables &,+— &, + y kills £,

If ¢ = O then for at least one of &,,..., &g (say for &,) we have the decompo-
sition f® = &, + r for re A*(&,,¢5,. .., &> with a nonzero ¢. Taking now
¥ such that gy = © we reduce f to £ by the change &, &, + .
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