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AN F. AND M. RIESZ THEOREM FOR
COMPACT LIE GROUPS

R. G. M. BRUMMELHUIS*

1. Introduction.

This note is a sequel to [B1], where the author proved an F. and M. Riesz-type
theorem for compact groups whose center contains a circle group
T={e®0e(—n,n]}.

Here we will use the techniques of [B1] to prove an F. and M. Riesz theorem
for compact Lie groups G. The main idea is to let the role of the circle group in
[B1] be taken by an abelian connected subgroup of G, for example a Cartan
subgroup.

The main difference between the resulting F. and M. Riesz theorem, theorem
I below, and the one of [B1] is the following. In the present situation it no longer
suffices to impose conditions only on the support of the Fourier transform of
ameasure u to be able to conclude that p is absolutely continuous with respect to
the Haar measure on G. If we denote the Fourier transform by /i then one also
needs a condition on the orthogonal complement of Ker ji(7) for t in supp fi.
Something similar occurs in an F. and M. Riesz theorem for the Heisenberg
group proved by the author in [B2]. Nevertheless, the F. and M. Riesz theorem
of [B1] can be considered as a special case of the one proved here.

An interesting corollary of theorem I is the following. If G is semisimple and if
u is a measure on G such that for all irreducible unitary representations t of G,
f(t) = 0 on the orthogonal complement of the highest weight subspace of 7, then
uis absolutely continuous with respect to Haar measure. See theorem II below.

Let G be a compact Lie group with Lie algebra g. Let h be an abelian
subalgebra of g and let T be the analytic subgroup of G associated with ). For
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example, b could be the center of g or iy could be a Cartan subalgebra of g in which
case T is a maximal torus in G.

Let G, the dual of G, be a maximal set of pairwise inequivalent irreducible
unitary representations of G. If t € G we let V(1) denote the representation space
of 7; N(1):= dim¢ V(z).

Let 7€ G and let di: g — End(V/(7)) be the differential of t at e. Write V = V(1)
and let
(1 V=2 VW

Ae(®Cy
be the weight space decomposition of T with respect to h. Here h¢ = b ® ; C, the
complexified algebra and (h°) = complex dual of h°. Recall that (1) means that if
ve V, then for all H by

) dt(H)v = A(H)v.

Let W(z):= {Ae(H°): V, + 0}, V = V(1), be the set of weights of t with respect
to b. The weight space V;, Ae W(t), are pairwise orthogonal. Since 7 is unitary
each A(H) is imaginary for all Heb, Ae W(z). It follows from (2) that 7 (exp H)
v = e*™yp, In particular, each A€ W(t) is analytically integral: exp H = 1 implies
that A(H) e 2niZ.

Let A, < ily, h’ = real dual of b, denote the lattice of analytically integral
functionals. T, the dual of T, can be identified with A, via the map

Aje -y, eT, yi(expH):= eMP.

Denote by M(G) the space of finite Borel measures on G; dg and dt will be the
normalized Haar measures on G and T, respectively. If ue M(G), f will denote
the Fourier transform of u:

) = J'T(g‘ Ydg, t€G;
G

the upper index t means taking the transpose. If feL'(G,dg) = L'(G),
f:=(fdg)". Let I(G) denote the space of trigonometric polynomials on
G:I(G) = {fe LY{G): f(z) =0 for all but finitely many 7€ G}. We use similar
notions and notations for T.

3.

We will consider subsets E of A, which satisfy the following condition:
For some p < 1 the linear functionals

*) =70 = jf(t)x,m(t_‘)dt, A€E,

T
are IP-continuous on T(T):= {fe UT): f(1) = 0 if A¢ E}.
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ExaMpPLE. Choose a basis of A, over Z so that A, is identified with Z',
r = dimgh, and T with T". Let n;: Z" — Z denote the projection onto the j-th
coordinate. Suppose that E = A, = Z’ satisfies the following condition:

Yk,0 <k <r: Y(m,,...,m)eZ:
(**) vty x ... x )~ Ymy,...,m)NE)=Z
is bounded from above or from below.

Then E satisfies condition (*). For r = 2 this was noted by Aleksandrov [A,
appendix, theorem 2]. It is a matter of routine to extend Aleksandrov’s argument
to larger r; cf. [B2, section 3] where this is done for R".

Let P, , denote the orthogonal projection of V = V(1) onto V,, 1€ W(1). Our F.
and M. Riesz theorem for G is the following result:

THEOREM L. Let E < A, satisfy condition (*) in section 3 for some p < 1. Let
A < G and suppose that to each 1 € A there is associated a subset I'(t) < W(t) such
that

(1) VA€ E: the set {t€A:Xel(z)} is finite,

(i1) Vted: I'(t) < E.

Let p in M(G) be such that ji(t) = O for t¢ A and such that for 1€ 4,
(iii) Mr)o P, , =0 if A¢ (7).

Then p is absolutely continuous with respect to the Haar measure dg.

REMARKS. (1) Condition (iii) may be reformulated in the following way: for all

T€e4,
Y V,<Kerj(t) (V= V() again)
A¢l(1)
or equivalently, if W+ denotes the orthogonal complement of a subspace W of V,
Kerga) < ¥ Vs
Ael(1)

(2) Theorem 3.2 of [B1] is contained in theorem I: take bh equal to

a one-dimensional subalgebra of the center Z(g) of g. Then T = T < Z(G) and by

Schur’s lemma there exists for each 7€ G an n(t)e Z such that W(t) = {in(7)}.
Now take for E a subset of Z which is bounded from below or from above.

PROOF OF THEOREM . Let X, := { f * u: f € T(G)} and let X? denote the closure
of X, in I”(G) = L*(G,dg), p < 1 as in theorem I. To prove that y is absolutely
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continuous with respect to dg it suffices, by [B1, theorem 2.7] to show that
X? n I(G) has sufficiently many LP-continuous linear functionals to separate its
points.

Introduce the auxiliary spaces

3) T(G) = span {(z(-)v, w):v,we V(1)},
T,..(G) = span {(z(-)v,w):ve V,,we V = V(1)}, teG,ieW().

The spaces T, ;(G), 1€ W(z), are pairwise orthogonal in L*(G,dg) and together
they span T (G). It is easily seen that

4) T, 4(G) = {feT(G): f(gt) = 1:(1) f(9), Vg€ G, te T}.
We claim that the hypotheses on u in theorem I imply that
%) X, <Y Y .G
ted iel(1)

To prove (5), let ¢:= f*pe X,. Then ¢(r) =0 if 1¢ 4 and P(z)° P, ; = 0 if
t1ed, A¢I'(r). For each te4 let {e},... e}, } be an orthonormal basis of
V = V(7) such that each ¢j is in some V;. Denote by 7,(g) and (f)(r)j,( the matrix
elements of 7(g) and ¢(t) with respect to this basis. Then

og) = Z N(7)- Z d;(r)))jkrjk(g)
ok

ted

and ¢(1) i = (P(v)et, e’) = Ounless e; € V; with 4 e I'(7). This implies (5), by defini-
tion of T, ,(G).

Denote the space on the right hand side of (5) by Y. It now suffices to show that
the following two statements hold:

(6) Y? N I(G) = Y, where Y? = closure of Y in L*(G, dg);
(7) Y has sufficiently many L*-continuous linear functionals to separate it points.

Let Q. ; denote the orthogonal projection of L*(G) onto T, ;(G). For ie A,
define I7,: I(G) —» I(G) by

8) I,f(9):= J‘f(gt)XA(t_ Ydt.
T

Note that for f in I(G):
) mf= 3 Quaf
tc—é:).eW(t)

If fis in Y the sum in (9) is over {te 4: 1€ I'(7)}.
Let f e Y. Since I'(t) = E for all t€ 4, the functions t — f(gt), g € G fixed, are in
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T (T). Since E satisfies condition (*) in section 3 for p < 1,

/(@I = C(4, p)jlf(gt)l" dt, VgeG.

Integration over G yields the inequality
T, f1, = CAPIS N, A€E, feY.

Furthermore, IT, projects Y onto the subspace

Z It. ).(G)

ted: Ael (1)

of I(G), which is finite dimensional by condition (i).
As in [B1] one now easily shows that (6) holds and that the linear functionals

f_-)Qt.l.f(g)’ TEA,XGF(T),QEG’

are all L-continuous on Y, which proves (7) and thereby the theorem.

5. Example.

We take a new look at the example of the unit sphere S = C? which was also
considered in [B1]. In [B1] S was identified with #%(2)/%(1), %(n) being the
unitary group and the F. and M. Riesz theorem of [B1], applied to #(2), gave an
F. and M. Riesz theorem for S; cf. [B1, theorem 1.1].

Here we identify S with #%(2) via

(a,ﬂ)eS—-»(Z ‘g)ey%(z)

One can take S%(2)" = {':1=0,1/2,1,3/2,...}, where the representation t'
acts on the space V(l {F(X Y): F homogeneous polynomial in X, Y of degree
21} by

(:’(Z —£>F>(X, Y) = F@X + gy, — X + aY).

Take T = {t, = diag(e™ ", €"®): 0e(—mn,n]}. A basis of V(I) is given by
X, Y) = XY j= — —l+1,..,0— 1,1
Since t'(ty)e} = e}, we can identify W(z) with {-2,-2l+2,..,,
21 — 2,21}. One can now apply theorem I with 4 = SU(2)*, E = T = Z a subset

which is bounded from above or from below and I'(t') = W(z') such that Yke Z:
{I: ke I'(z")} is finite. The reader may check that such an application of theorem
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I again yields theorem 1.1 of [B1], in view of the equality
H(l — kI + k) =T, (FUQ2))
(see [B1] or [R] for the definition of the spaces H(p, q)).

6.

Note that in the above example the special choice E = N, I(z) = {2l} is
allowed. This is a special instance of a more general theorem.

Let G be a semisimple compact connected linear Lie group. Let [) be a Cartan
subalgebra of g. Introduce a lexicographic ordering on ily’ with respect to some
arbitrary but fixed basis of iy’ (cf. [K, chapter IV, section 3]). Let 4* denote the
set of positive roots with respect to this ordering. Finally, let {,> denote the real
inner product on i)’ induced by the trace form.

THEOREM I1. Let ue M(G) be such that for all t € G, ji(t)v = 0 if vis orthogonal to
the highest weight subspace of t. Then y is absolutely continuous with respect to the
Haar measure.

PRrROOF. Recall the theorem of the highest weight (cf. [K, theorem 4.287): The
map which sends 7 € G to the highest weight in W(z) is a bijection from G onto the
set of dominant analytically integral linear functionals. Here Ae€ily is called
dominant if (A,a) > Oforallae A4*. Actually, we will only need to know that this
map is into the set of dominant functionals in A4, and injective.

First suppose that G is simply connected. Then A, is equal to the lattice L, of
algebraically integral forms ([ K, theorem 4.28]; see [K, chapter IV, section 5] for
the definition of L,). We now apply theorem I with 4 = G, I'(1) = {heighest
weight in W(t)} and E = {Ae A,: A dominant}. Then (i) and (ii) of theorem I are
satisfied. We now show that E satisfies condition (*) in section 3.

Let {a,,...,04}, ] = dim b, be the set of simple rootsin 4*. Let {4,,...,4,} be
the dual basis defined by 2 < 4;,o; > /|oj|* = 8;;. Then {4,,..., 4} is a Z-basis of
L,andif A = m;A;€ L, is dominant, thenm; = 2 < 4, ; > /|o;|* > 0. This shows
that A, = L, has a Z-basis {4,,...,4,} such that E satisfies condition (**) of the
example in section 3 and we are done.

The general case can be reduced to the previous one: the universal covering
group of a semisimple compact Lie group is again compact and semisimple by
Weyl’s theorem, cf. [K, theorem 4.26].
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