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THE CHARACTERISTIC ALGEBRA OF A
POLYNOMIAL COVERING MAP

VAGN LUNDSGAARD HANSEN

Throughout the paper, X denotes a compact (Hausdorff) space, or more
generally, a realcompact space in the sense of Hewitt ([8], Chapter 8). We shall
consider finite covering maps n: E — X onto X. By C(X) and C(E) we denote the
rings of complex-valued continuous functions on X and E. The map . E — X
induces a monomorphism of rings 7*: C(X) — C(E), along which we can consider
C(E) as a commutative C(X)-algebra with identity.

As is well known from Gelfand-Kolmogoroff theory [8], the algebraic proper-
ties of the ring of continuous functions on a compact space determines the
topological type of the space. Using the classical theorem of Gelfand and
Kolmogoroff we prove in Theorem 1, that the C(X)-algebra C(E) of a covering
map n: E — X determines the topological equivalence class of the covering map.
Therefore we call C(E) the characteristic C(X)-algebra of the covering map.
Particular attention will be given to the polynomial covering maps onto X intro-
duced by th author in [9], [10]. The total space E in a polynomial covering map
n. E — X is defined as the zero set for a separable (in earlier papers called simple)
Weierstrass polynomial over X, i.e. a continuous family of complex polynomials

without multiple roots P(x,z): X x C— C of the form P(x,z) = z" + ) ay(x)z""".
i=1

We think of P(x, z) as an element in the polynomial ring C(X)[z] in one complex
variable z over C(X). As our main result, we identify in Theorem 2 the
characteristic algebra of the polynomial covering map n: E — X, defined by the
separable Weierstrass polynomial P(x,z)e C(X)[z], with the quotient algebra
C(X)[z]/(P(x,z)). Here (P(x, z)) denotes the principal ideal in C(X)[z] generated
by P(x, z). In Corollaries 1 and 2 we reword Theorem 1 into statemens about
equivalence of polynomial covering maps using this algebra, and in Propositions
1 and 2 we relate properties of P(x, z) to properties of the algebra C(X)[z]/(P(x, z)).
In a final section we give a simple application of characteristic algebras.
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In the theory of commutative complex Banach algebras, the C(X)-algebra
C(X)[z]/(P(x, z)) is called an extension of the algebra C(X) of algebraic type, or of
Arens-Hoffman type, since such algebras were introduced in [1]. See also [16]
for references to the literature on these algebras. In Magid [13], it is shown that
extensions of commutative regular Banach algebras without radicals, which are
finitely generated, projective and separable in the sense of [5], correspond to
finite coverings of the carrier spaces. Earlier these coverings were described for
the case of extensions of Arens-Hoffman type by Lindberg [12] and Brown [4].
By inspection we see that they are polynomial coverings. This clarifies the role of
extensions of Arens-Hoffman type among all separable extensions of com-
mutative complex Banach algebras from the covering space point of view of
Magid.

1. Function algebras and equivalence of finite covering maps.

In this section we shall prove the following easy generalization of a classical
theorem of Gelfand and Kolmogoroff.

THEOREM 1. Let n;:E; - X, i = 1,2, be finite covering maps onto the compact
space X. Then we have:
An equivalence of covering maps,

E, —L—’Ez

nl\X/“z

induces an isomorphism of C(X)-algebras,
@ = h*. C(E;) - C(E,),
and conversely.

Theorem 1 shows that the C(X)-algebra C(E) for a finite coveringmap m: E — X
determines the topological equivalence class of 7. Hence we call it the characteris-
tic algebra over C(X) of the covering map =.

The first part of the proof of Theorem 1 is immediate. Suppose then conversely,
that we have an isomorphism of C(X)-algebras ¢: C(E,) —» C(E,). By a classical
theorem of Gelfand and Kolmogoroff, see e.g. ([8], 4.9, 8.3), ([15], Theorem 3.2)
or ([7], Theorem 6.5, p. 289), there exists a homeomorphism h: E; — E,, such
that ¢ = h* when considered as ring isomorphisms.

AsSerTION. The homeomorphism h:E, — E, commutes with projections
onto X and hence it is an equivalence of covering maps.

PrOOF. Suppose that h does not preserve fibres, and let e, € E, be a point such
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that m,(h(e,)) # m,(e,). Since X is compact, in particular a normal space, we can
choose a function ge C(X) such that g(n,(e;)) = 1 and g(n,(h(e,))) = 0. Since
h* = ¢ is an isomorphism of C(X)-algebras, we have

go(myoh) =(gom)oh = h*(gomn,)
=h*g-(lom,) = g-h*(1omy)
=(gomn):(lom,oh) =gom,,

where 1 € C(X) denotes the constant function on X with value 1 and the dot is
multiplication in C(X)-algebras. Applying this to e, e E,, we get g(n,(h(e,))) =
g(my(ey)), which is obviously a contradiction. Hence the assertion, and thereby
Theorem 1, is proved.

2. The characteristic algebra of a polynomial covering map.
Assume now that n: E —» X is an n-fold polynomial covering map associated

with the separable Weierstrass polynomial P(x,z) = z" + Y. a;(x)z""‘ over the
i=1

compact space X, ([9], [10]). We shall prove that the characteristic algebra of

n: E - X can be determined directly from P(x, z).

Following Duchamp and Hain ([6], §1), the algebra C(E) has a primitive as
amodule over C(X), i.e. there exists a continuous function f: E — C such that the
set of functions 1, f,..., f" ! is a basis for C(E) as a C(X)-module. In particular,
by examining Remark 1.2 in the paper by Duchamp and Hain, we see that
a primitive f: E — C can be obtained from the Weierstrass polynomial P(x, z) by
the definition f(x,z) = z whenever (x,z)e E,i.e. P(x,z) = 0.

Let (P(x, z)) denote the principal ideal in C(X)[z] defined by P(x, z). Then we
can define a homomorphism of C(X)-algebras, y: C(X)[z]/(Px, z)) = C(E), by
associating to the residue class of the polynomial S(x, z) e C(X)[z], the function
S|E: E — C defined by restriction of S to E.

We note, that by y the polynomial z e C(X)[z] is mapped onto the primitive
fE - C for C(E) as a C(X)-module.

By polynomial division it is easily seen that the C(X)-module C(X)[z]/(P(x, z))
is freely generated by the polynomials 1,z,...,z" .

Collecting facts, it follows that by the C(X)-algebra homomorphism y the
basis 1,z...,,z" ! for the C(X)-module C(X)[z]/(P(x, z)) is mapped onto the basis
L f,..., f" ! for the C(X)-module C(E). As a result we get

THEOREM 2. Let m:E — X be a polynomial covering map associated with
the separable Weierstrass polynomial P(x,z). Then there is an isomorphism of
C(X)-algebras,

¥: C(X)[2]/(P(x, 2)) = C(E),
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defined by mapping the residue class of S(x,z)e C(X)[z] onto the restriction
S|IE:E—->Cof Sto E.

Combining Theorem 1 and Theorem 2 we get the following corollaries.

COROLLARY 1. Let n: E; - X, i = 1,2, be n-fold polynomial covering maps
associated with the separable Weierstrass polynomials P(x,z) over the compact
space X. Then we have:

An equivalence of covering maps,

E, L’Ez

A\,

induces an isomorphism of C(X)-algebras,

@ = h*: C(X)[2]/(Py(x,2)) » C(X)[]/(P,(x, 2)),
and conversely.

COROLLARY 2. A finite covering map n: E — X onto a compact space X is equival-
ent to a polynomial covering map if and only if the characteristic C(X)-algebra C(E)
of m is isomorphic to a C(X)-algebra of the form C(X)[z]/(P(x, z)) for a separable
Weierstrass polynomial P(x, z) over X.

Using Corollary 1 we can give a quick proof of ([11], Theorem 1.2) that the
term of degree n — 1in a separable W eierstrass polynomial P(x, z) of degree n can
always be eliminated without changing the topological equivalence class of the
associated polynomial covering map. The proof goes by observing that the
Tschirnhausen substitution w = z + a,(x)/n transforms P(x, z) into a separable
Weierstrass polynomial P(x, w), whose term of degree n — 1 is zero, and induces
an isomorphism C(X)[z]/(P(x,z)) ~ C(X )[w1/(P(x, w)) of C(X)-algebras. Hence
the associated polynomial covering maps are equivalent.

3. Weierstrass polynomials and characteristic algebras.

For a Weierstrass polynomial P(x, z) over a topological space X, we can form
the quotient algebra C(X)[z]/(P(x, z)), which is a commutative algebra over the
commutative ring C(X). If P(x, z) is separable, this algebra is the characteristic
algebra for the associated polynomial covering map. As the next result shows, the
characteristic algebra of a polynomial covering map is separable in the sense of
[2] and [5].

PROPOSITION 1. A Weierstrass polynomial P(x,z) over a compact space X is
separable if and only if the algebra C(X)[z]/(P(x,2)) is a separable C(X)-algebra.
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Proor. The algebra C(X)[z]/(P(x,z)) over C(X) is clearly finitely generated.
By Gelfand-Kolmogoroff theory we also know that any maximal ideal in
C(X) has the form s, = {feC(X)| f(xo) = 0} for a point x,€ X, and that
C(X)/m,, = C. Thenit follows by ([5], Theorem 7.1, p. 72) that C(X)[z]/(P(x, z))
is a separable C(X)-algebra if and only if (C(X)/»2, ) [2]/(P(x,, z)) is a separable
(C(X)/m,,)-algebra for every x, € X, or equivalently, ifand only if C[z]/(P(x,, z) is
a separable C-algebra for every x, € X. By ([5], Theorem 2.5, p. 50) the latter is
equivalent to that for every x, € X, the polynomial P(x, z) has no multiple roots,
i.e. P(x,z) is a separable Weierstrass polynomial. This proves the proposition.

Irreducibility of a Weierstrass polynomial P(x, z) in the sense of [11] is also
reflected in the characteristic algebra.

PROPOSITION 2. Let P(x, z) be a separable Weierstrass polynomial over the com-
pact, connected topological space X. Then P(x, z) is irreducible over X if and only if
the algebra C(X)[z]/(P(x, z)) has no other idempotents than 0 and 1.

ProoF. Let m: E - X be the polynomial covering map associated with P(x, z).
Then idempotents in the algebra C(X)[z]/(P(x, z)) correspond to idempotents in
the algebra C(E), since these algebras are isomorphic as C(X)-algebras by
Theorem 2. It is easy to prove that the Weierstrass polynomial P(x, z) is irreduc-
ible over X if and only if the space E is connected, ([11], Theorem 5.2). Proposi-
tion 2 now follows, since it is well known — and not difficult to prove directly -
that E is connected if and only if C(E) has no other idempotents than 0 and 1. See
([5], Proposition 4.7, p. 28) or ([3], Chapter II, § 4.3, Corollary 2, p. 104).

If P(x,z) is an irreducible, separable Weierstrass polynomial, Propositions
1 and 2 together with ([ 5], Chapter III) imply that there is a Galois type theory for
its characteristic algebra C(X)[z]/(P(x, z)), since this algebra is free, and hence
projective, as a module over C(X).

4. A simple application of characteristic algebras.

Let S* denote the unit circle considered as the space of complex numbers of
modulus 1. For each n > 1 there is an n-fold covering map p,: S* — S* defined by
pa(z) = z"for ze §'. The covering map p, is equivalent to the polynomial covering
map n,:E,— S' associated with the separable Weierstrass polynomial
P.(x,w) = w" — x, xeS', we C. A specific equivalence h: S* — E, can be defined
by h(z) = (2", z).

LEMMA. Let q: X — C* be an arbitrary continuous map of the topological space
X into the nonzero complex numbers C* = C\ {0}. Then P(x,z) = z" — ¢(x) is
a separable Weierstrass polynomial over X, and the associated polynomial covering
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map m: E — X is equivalent to the pull-back of p,: S' — S* along the normalized map

~o_ q(x)
1) = g0

A specific equivalence h: E — §*(S') as asserted in the lemma can be defined by

h(x,z) = <x, —Z—) for (x,z)e E.
AN

forall xeX.

PROPOSITION 3. Let P(x,z) = z? + a,(x)z + a,(x) be an arbitrary separable
Weierstrass polynomial of degree 2 over the compact space X. Then the associated
polynomial covering map n: E — X is equivalent to the pull-back of p,:S* — S*
along the normalized discriminant map D: X — S' where D(x) = a,(x)* — 4a,(x)

D(x

and D(x) = ID(x;I forall xe X.

Proor. By completion of the square we can rewrite P(x, z) in the form
P(x,z) = (z + a,(x)/2)* — D(x)/4.

The Tschirnhausen substitution w = z + a,(x)/2 induces an isomorphism of
C(X)-algebras

C(X)[2]/(P(x,2)) = C(X)[w]/(w? — D(x)/4).

According to Corollary 1, the polynomial covering map n: E — X associated
with P(x, z) is therefore equivalent to the polynomial covering map associated
with the separable Weierstrass polynomial w? — D(x)/4 over X, which in turn by
the preceding lemma is equivalent to the pull-back of p,:S' — S! along the
normalized discriminant map D: X — S!. Proposition 3 is proved.

Proposition 3 is a sharpening of ([9], Remark 7.5), and the case n = 2in ([14],
Example 3.4), by explicitly constructing a map D: X — S! out of the separable
Weierstrass polynomial P(x,z) = z2 + a,(x)z + a,(x), such that the associated
2-fold polynomial covering map n: E — X is equivalent to the pull-back of
p,:S' - S* along D: X — S*. See also ([11], Theorem 3.1).
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