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ON THE CLASSIFICATION OF G-SPHERES II:
PL AUTOMORPHISM GROUPS

IB MADSEN AND MELVIN ROTHENBERG

This paper studies the homotopy theory of groups of PL automorphisms of
linear representations of finite groups. We calculate the connectivity of the PL
Stiefel spaces PL;(T)/PLg(V)for pairs of R-modules V < T: this is the homotopy
theoretic basis for stable equivariant transversality in the locally linear PL
category, via the results from [26].

As an application we obtain a G-version of the surgery exact sequence in the
PL category for calculating the homotopy manifold structures of a homotopy
type which satifies suitable gap conditions, provided G has odd order. This
allows us to calculate the homotopy groups of F4(T)/PL4(T) in a stable range.

Call a G-CW complex X topological stable if is satisfies the following standard
gap conditions:

dim X¥ > 2dim X¥ > 12
for each pair of isotropy subgroups.

THEOREM A. If V and T are topologically stable RG-modules and G has odd order
then PL4(T)/PLg(V)is(dim VS — 1)-connected, when V and T have the same set of
isotropy groups.

If G has even order, even for G = Z/2, there is no connectivity for the Stiefel
spaces above, and hence G transversality fails completely. It is an outstanding
question to develop an effective obstruction theory for transversality for even
order groups; the obstructions appear to be connected with generalizations of the
Browder-Livesay invariants.

We next describe the equivariant surgery exact sequence in the locally linear
PL category for |G| odd.

Fix a ‘model’ RG-module Z. A locally linear (PL) G-R" bundle & is Z-restricted
if each fiber ¢, is contained in some Z®* an if ¢, and Z have the same isotropy
subgroups of G,. Such bundles are classified by a G-space BPL. Similarly,
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162 IB MADSEN AND MELVIN ROTHENBERG

Z-restricted G — S" Hurewicz fibrations are classified by a G-space BF. Define
F/PL = F/PL(Z*) to be the evident homotopy fiber. It has fixed sets

F/PL(Z*)" = colim Fy(Z®*)/PL,(Z®¥)

with Fy( ) equal to the proper H-equivariant homotopy equivalences.

Let X be a Z-restricted locally linear PL G-manifold in the sense that its
tangent bundle is Z-restricted.

Define (X, #X) to be the equivalence classes of G-simple homotopy equival-
ences h: M — X with dh a PL-homeomorphism, and with TM = T, X as
RG-modules. The equivalence relation is equivariant PL-homeomorphism in the
domain.

Write Iso (X) for the set of isotropy groups which appear in X and (Iso (X)) for
the conjugacy classes. When X is Z-restricted Iso (X) is closed under conjugation
and inersection. Let m: (Iso (X)) — Z be the dimension funtion, m(H) = dim X¥.
Define

Lo(G; X) = ¥ Lo (Z[NH/H))
(H)

to be the sum of the simple, oriented L-groups over (H) € (Iso (X)).

THEOREM B. Suppose |G| is odd and X is a Z-restricted PL G-manifold with
simply connected fixed sets. If X x D¥ is topological stable then there is an exact
sequence

Lysms1(G; X) —%— Z5(X x D¥,0) —1—[X x D*/0,F/PL]® —— L, (G: X).

For this sequence to be useful on needs a description of the normal invariant
term. Let KO4(X) be the reduced equivariant KO-groups, which enumerates
differences of isomorphism classes [¢] — [#] of G-vector bundles with &, = n, as
RG,-modules.

THEOREM C. For G of odd order and any G-space,

[X.F/PL(Z")]°®Z[1/2] = ¥.° KOyy(X") ® Z[1/2]

(H)
with (H) e (Iso(Z)).

At the prime 2, we do not know the equivariant homotopy type in general. The
homotopy types of the fixed sets (F /PL){Q, have recently been worked out by M.
Nagata, [43]. But only if G is abelian does this determine the equivariant
homotopy type. One expects F/PL,,, to classify Bredon cohomology (on 4-con-
nected spaces). For the homotopy groups one has
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THEOREM D. If G is odd, n(F/PL(Z*)%) = %(G; Z).

In order to describe the final two resuls, write

H0GHX) = ¥.° KOyzk(X)
(H)
with (H) e (Iso (SZ)). Using transversality, implied by theorem A, one can define
the structure invariant

§ F(D* x SZ,0) - 4 X O (pt)

THEOREM E. If Z @ R*isstable,k > 0and|G|is odd then §is an isomorphism for

k £ 2 (mod4). It is surjective with kernel an elementary abelian 2-group, if
k = 2 (mod 4).

It would be of considerable interest to generalize this result to k = 0, giving
Fs(SZ). For a free representation and G cyclic this is done in [38]. The problem
in general is that a join M % SX for M € #;(SZ) is not a loally linear manifold.

THEOREM F. Suppose |G| is odd, Z @ R* is topological stable and k > 0. After
inverting 2 there is a commutative ladder of vertical isomorphisms

L+ m(G; D¥x SZ) 5 F5(D* x SZ,0) [ D* x SZ/0, F/PLY® - %, 4 - 1(G, D¥ x SZ)

lsign F la 1sign
HO0GMDZ,8Z) -AH054DZ) - HO0;%SZ) 3 405 Y(DZ,52Z)
The bottom sequence is the exact sequence for the pair (DZ,SZ).

The results above are interrelated, and are proved inductively. Given theorem
A for all proper subgroups of a given group G, we get theorm B and C for
manifolds without stationary points. One uses this to prove that the suspension
of structure sets defines an isomorphism. This in turn implies theorem A for the
group G itself and theorems B and C in general, as well as the rest of the
mentioned results.

The paper is divided into sections as follows:

§1 Stability of homotopy equivalences

§2  Reduction to surgery — block theory

§3 The special case of relatively free representations
§4 Non-transversality for G = Z/2

§5 The equivariant surgery exact sequence

§6 Normal invariants: the Sullivan mapping

§7 The inductive setting

§8  The structure set for spheres, away from 2

§9 The 2-local structure set

§10 The final inductive step



164 IB MADSEN AND MELVIN ROTHENBERG

§1. Stability of homotopy equivalences.

Let V< T be a pair of RG-modules (with inner product) and let SV = ST be
the corresponding inclusion of the unit spheres. The spaces of G homotopy
equivalences of SV and ST are denoted Fg(SV) and Fg(ST). In this section we
study the connectivity of the suspension mapping (which takes join with the
sphere of the complement U of V in T).

Z:Fg(SV) — FG(ST), Z(f) = f*idsy.

It is convenient to view F;(SV') as a subspace of the space Mapg (SV,SV) of all
G self maps of SV. Let Iso (SV) be the set of isotropy subgroups of SVand consider
the map

Deg: n, Mapg (SV,SV) - [ 2
(H)
which to f assigns the set of degrees deg f*, where (H) varies over the conjugacy
classes from Iso (SV).

The image of Deg is contained in the Burnside ring A(G;Iso(V)) of formal
differences of isomorphism classes of finite G-sets with isotropy groups in Iso (V),
[44].

If V¢ £ 0, and V satisfies the following weak gap conditions (or codim 3 gap
conditions):

(1.1) dim V¥ > dim V¥ + 2 2 6 for K § H and H,K elso SV),

then Deg maps onto A(G;Iso(SV)), [14].

It follows from the equivariant Whitehead theorem [16] that F4(SV) < Mapg
(SV,SV) consists of the maps with deg f# = +1 for HelIso(SV). Similarly we
write SF4(SV ) for the component with deg f# = +1 for all H.

The components of F5(SV)is in one to one correspondance with a subset of the
units A(G; Iso (SV))*. In general, this is a complicated group, but if G has odd
. order A(G)* = {+1}. Thus F4(SV)has two components if SV¢ + §, and just one
component if SVE = @.

If X and Y have base points, always assumed to be stationary under the action
of G, then Map¥ (X, Y) denotes the based G-maps. Its homotopy groups can be
calculated as

m, Map%(X,Y) = [S* A X, Y]§

The space Map$ X, Y) is the fixed set of the G-space Map* (X, Y) of all based
maps.
In [16], Hauschild examined the equivariant suspension map

Y - Map*(SY,SY A Y)
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where SY = U, is the one point compactification of the RG-module U. From [16,
Satz (2.4)] we have

PROPOSITION 1.2. Suppose dim SV > 0 and 1so(SV) = Iso(ST). Then
2:Mapg(SV, SV) - Mapg (ST, ST)

is k-connected when k satisfies the following two conditions
(i) k<dimSV¥ —1if Helso(SV)and V" £ TH
(i) k < dimSVX — dimSV# — 1 if K $ H and H,K elso(SV) and V¥ % T,

When dim SV¢ > 0 then all components of Mapg;(SV,SV) are homotopy
equivalent, so (1.2) above gives a similar result for the connetivity of
Fg(SV) — Fg(ST) Unfortunately, in our applications we need to know the
connectivity of £ when SV and ST have no stationary points. In this case
Hauschild’s proof has to be modified slightly, but first we introduce the following
terminology:

DErINITION 1.3. An RG-module V is called topologically stable (or is said to
satisfy the strong gap conditions) if

12 < 2dim V¥ < dim VX for K = H and H,K eIso(SV).

THEOREM 1.4. Let V < T be a pair of RG-modules with Iso (SV) = Iso(ST). If
k satisfies the two conditions of (1.2) then

3:SF4(SV) - SF4(ST)

is k-connected. In particular, if V is topologically stable, X is k-connected with
k = min {dim V¥ — 2| Helso(SV), V# & TH}.

Proor. The argument follows closely the proof of [16, Satz 2.3] so we shall be
relatively brief. We have

n;SFg(SV) = [D' x SV rel 0,5V]S,

the G-homotopy classes of maps from D' x SV into SV which is equal to the
projection on the subspace = §'"1 x SV.

Let X, = X, be G-subspaces of SV. The obvious analogue of the usual Puppe
sequence is the exact sequence

...>[D' x X,1eld,SV]G - [D' x X,rel 4,SV ] -
[D'7! x X rel(6u D! x X,),SV]¢ -

We can use a G-CW decomposition of SV along with the above version of the
Puppe sequence. It becomes sufficient to examine £ on the relative groups
corresponding to situation: X, = X, u G/H x D'. But



166 IB MADSEN AND MELVIN ROTHENBERG

[D' x X, rel(D' x Xou d),SV]% = [D'*/relo,SV]H
=[S, SV = m, SV

where the subscript * indicates based H-homotopy classes. We note that
j £ dimSVH,

Let U be a complement of V in T so ST = SV *SU. We choose a G-CW
decomposition of SV and let {X,} be the associated filtration of SV, X, =
X,-1 v D’ x G/H. Taking join with SU defines a filtration {X, * SU} of ST.

We show that X is an isomorphism step by step, beginning with the set of
G-cells of dimension 0. We have

[D' x G/Hrel S x G/H,SV]® ~ n(SVH) = 0
[D' x (G/H % SU)rel S~ x (G/H » SU),ST]¢ = 0

for i <dim V¥ — 1. The first equation is obvious; the second follows by
equivariant obstruction theory because, for every K < G,

(1.5) dim (D' x (G/H % SU)X) < Hur (STX) = dim TX — 1.

Here Hur (X) denotes the maximal integer k with 7, _,(X) = 0.
For the inductive step, suppose X, = X,_, u D’ x G/H,j > 0. From above,

D' x X,relD' x X, vd,SV]® = m, (SVH)

and we must calculate the corresponding term when X, is replaced by X, * SU.
There is the excision

(D' x (X, *SU), D' x (X,_, *SU) L d)
~ (D' x (e;# SU), D' x (0e;x SU)U S ! x (¢;*SU))

where ¢; = G/H x D’ and j = 0.
We use the model of the join X * Y = X x ¢Y/=,where cY is the (closed) cone
on Yand (x, y) = y. There is a natural mapping

pX X(Y*Z)-> (X x Y)*xZ
which we can apply to the space D’ x (e;* SU) and its two subspaces above:
p: (D' x (e;* SU),D* x (de;x SU)U S'~1 x (e;+SU))
- (D' x G/H,S$'*/ "' x G/H)*SU
Since j > 0, pX is a homotopy equivalence. Hence
[D'x X,*SUrelD' x X,_, *SUU3,ST]® =
[(D'*/ x G/H)xSUrel(S'*/~! x G/H)*SU,ST]® = [S"*/»SU,ST]¥
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We must examine the composition
[, sVv] =5 L [S* % SUH SV« SUMH =, 2L [S'*%SU,SV xSUJA.

The first mapping Z, is an isomorphism for i + j < 2dim SV¥ — 1, hence for
i < dim SWH¥ — 1, by the usual suspension theorem. It is an epimorphism for
i < dim SWH — 1. The second map, which takes the join with the identity map-
ping of SU, (where U, @ U" = U), is always monomorphic. Indeed taking
H-fixed points provides a one-sided inverse. It is onto, if and only if

Fixy: [S™ 7/« SU,SVxSUTY — [« SUY SVH « SUM],
is injective. This is the case provided the Bredon cohomology groups
Hy, (S % SU,S"* » SU", my(ST)) = 0;

(r(ST)G/H) = n(STH); compare with [8])
This gives the condition i + j < dim SWX for K § H, K elso(SU), i.e. i £ dim
SVX — dim SVH# — 1, and completes the proof.

It is illustrative to compare this result with the corresponding result for the
space of orthogonal maps. We restrict for convenience to the case where G has
odd order. Decompose V and T into their irreducible components

V= Z nx, T = Z (n; + 1) x;

i=1 =

Assuming V¢ = T¢ = 0, Schur’s lemma gives

= Z Umn), O04(T)= Z Unn;+ 1)
i=1 i=1
Thus the inclusion
2:04(V) = 04(T)
is min {2n;|l; > 0}-connected.

Suppose G is cyclic of odd order. The maximal connectivity of O4(T)/04(V)
occurs when the eigenvalues for V' of the same order are equal. In this case

(1.6) V=Zn,,x,,, T=ZmHXH

where y, is a faithful complex 1-dimensional representation of G/H. The connect-
ity of O4(T)/04(V)is equal to min {2ny | my > ny}. Using the MObius inversion
formula, one can express the connectivity in terms of the dimensions of the fixed
sets (cf. [25]):

(1.7) dim V¥ =Y 2ng; 2ny= Y w(K:H|)dim V¥

HcK HcK
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One might suspect that the connectivities of Fg(T)/Fg(V) and Og(T)/04(V)
would agree when V and T are as in (1.6) but this is far from being the case, as one
can see by comparing (1.4)and (1.7); F4(T)/F4(V) is far more connected than one
would have any right to believe from the corresponding orthogonal quotient.

Finally consider an RG-module W with W¢ = 0 and let T = W @ R**! with
trivial action on R¥*!. There is a split fibration

F4(ST,S* — Fg(ST) — F(S¥)

so that F4(ST) ~ F(S*) x F4(ST,S*). For orthogonal automorphisms the fibre
can be replaced with the automorphisms of SW. In a range of dimensions the
same is case for homotopy automorphisms:

PROPOSITION 1.8. For an RG-module W with W¢ = 0,
5 F4(SW) — F4(SW * S, S¥)
is k-connected if k < dim W* — 2 for all H.

The proof is quite similar to that of (1.4) and is left for the reader.

§2 Reduction to surgery — block theory.

Let X be a triangulated space with a PL action of a finite group G. There are
4-groups PL4(X) < P~LG(X ) of equivariant automorphisms resp. block auto-
morphisms of X, cf. [34], [29]. Below we often do not distinguish between
a A-space and its topological realization.

A k-simplex of P~LG(X ) consists of an equivariant PL automorphism

gd* x X >4 x X

which preserves the face structure in the sense that ¢ maps 4% x X onto 4¥ x X
where 4¥ = A*in any face. The k-simplex o belongs to PL(X)if it commutes with
the projection onto 4* If A = X is a G subcomplex, PL4(X, A) is the subset of
simplices which is the identity on 4. The identity map is the base point if not
otherwise indicated.

Let V be an orthogonal representation of G. We decomposeitas V = W & R*
where W€ = 0 and suppose that k > 6. Our first objective is to relate PLg(V) to
PL,(SW) where SW denotes the unit sphere. Since 4* = A* x I where A" is the
i’'th horn, the 4-groups above are Kan 4-groups, and we can do homotopy theory
as usual, [34].

Let PL%(V)denote the A-group of germs at 0 of automorphisms. A k-simplex is
an equivalence class of equivariant embeddings

A x D(V) —2— A x V

Ak
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where D,(V) is the open é-ball. Two such ¢ are counted equal if they agree on
some smaller ball.

We can take restriction to the fixed set
PLs(V) - PL(VE).

This is a Kan fibration with fiber PL(V, V%), and since there is an obvious
section,

PL(V) ~ PLg4(V, V%) x PL(VY).
We use the following conventions: S™' =@ and §x X = X.
There are restriction maps
r:PL4(S(V @ R), S(VS ® R)) » PLL(V, V)
r':PLg(V, V) > PLL(V, VE)

LEMMA 2.1. The restrictions r,r’" are homotopy equivalences, so PLg(S(V @ R),
S(V¢ @ R)) =~ PLg(V, V9.

ProoOF. The maps r and r’ have the Kan extension property, and their fibers
are contractible by the Alexander trick. The images of r and r' are full sets of
components in the base space, cf. [41, p. 125], so it suffices to check that each
component is hit. Let

f:(D.V,D,VE) -~ (V, V)

be a G embedding. We show that the complement M = V, — f(D,V)is standard
in V,; then f can be extended to a PL automorphism of V, by coning
(V. = S(V @ R) is the one-point compactification).

Locally linear PL G-disc’s such as M, are classified by their Whitehead torsion
invariant, [30]. Thus, we must calculate t5(M). By definition, this is the
equivariant torsion of the h-cobordism which arises from M by removing a small
linear disc around an interior fixed point. Since f is PL,
16(f(D,V)) = 14(D,V) = 0. Moreover,

16(M) + 16(f(D, V) = 16(DV x 1) =0,
and 14(M) = 0 as claimed.

Let ZPL4(SV) be the (realization of the) 4-set of equivariant pseudo-isotopies.
A k-simplex is a G-automorphism

a:d* x SV x I - 4 x SV x I

which commutes with the projection onto 4*, is the identity on 4* x SV x 0and
maps 4% x SV x 1 into itself.
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LEMMA 2.2. For each orthogonal representation V, the suspension
Z:PLg(SV,SV¥) = PLy(S(V @ R), S(V’ @ R))
has homotopy theoretic fiber PPLg(SV, SV )
Proor. Consider the diagram
PLG(SV,SVY% —E— PL4(S(V @ R),S(V’ @ R))
(2.3) ~ 1 r ~ l r
PL4(DV,DV% —2- PLYL(V, VY

The map r, is a homotopy equivalence (by the Alexander trick) with inverse
¢ (coning). The restriction r, is a Kan fibration (onto) and its fibre is homotopy
equivalent to ZPL4(SV ). This follows from Lemma 2.1. Since
ZPL (R¥) ~ Q(PL(R**!)/PL(R%)), and

(2.4) PL(R**!)/PL(R¥ ~ O (k+ 1)/O (k)* C,

with n(C,) =0 i < k + 2, cf. [11], [18], ZPL(R*) is (k — 2)-connected. The
following is a simple application of the regular neighbourhood theorem cf. [2,
§11] or [27, Remark (5.4)].

LEMMA 2.5. For any representation V, n, PL;(V, V¢) = 0 when k < dim V¢,
Consider the Kan fibration
PLG(SV x I,SV¢ x 1 U d) — PLg(SV,SV U DVS) - PLY(V, V)
Since PL4(DV, SV U DVY) is contractible by the Alexander trick, and since
r:PLg(S(V @ R), S(V¢ @ R)) —» PL(V, V)
is a homotopy equivalence by (2.3), it follows that
QPLG(S(V @ R),S(V° @ R)) ~ PLg(SV x I,SVE x 1L ).

The same argument gives the following loop lemma (cf. [1]):

LEMMA 2.6. There are homotopy equivalences

QPL;(S*«SW x D', §* x D' Ud) ~ PLg(S* '« SW x D'*1,§8* ! x D'*1 L 0),
QPPLG(S** SW x D', §* x D' UJ) ~PLG(S* !« SW x D'*1, 8% ! x D'** U J),
fork = 0.

The next result is analogous to Proposition 1.8, but note the change from
automorphisms to block automorphisms.
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PROPOSITION 2.7. For i < dim V¢
mPLg(SW) = m,PL(V, V)
where W @ Ve = V.
PrOOF. By definitions we have the exact sequence
(2.8) To?PLG(X) > 1o PLG(X) > 1o PL(X) - 0.
Lemma 2.2 and Lemma 2.5 give

n,PLg(V, V%) = n,PLs(W @ R, RY)
for each i. In the exact sequence ,

m#PPLG(RT' @ W,R"" ) > ,PL;(R '@ W,R'"!) s 7,PL;(R'@® W,R’),
the image of Z is equal to noP~LG(SW x D', 0) by (2.8). But X is also onto, so
no PLo(SW x D', 0) = m,PLg(W @ R, RY).

Finally the definition of homotopy groups in a Kan complex gives directly
noPLG(SW x D', 0) = n;PLg(SW). This completes the proof.

The cone map
c: PL4(SV, SV — PL4(DV, DVY)

is defined by an iterated coning process on each simplex: if ¢ is already defined on
k-simplices then for a (k + 1)-simplex o:4**! x SV — 4**! x SV, c(0) is
partially given on d(4**! x DV) and one more coning defines c(c) on all of
A**1 x DV. There is an obvious product

w PLG(DV,, DVE) x PLG(DV,, DVE) - PLG(D(V, ® V,), D(V, @ V)%
We may use the cone map and restriction to the boundary to get a corresponding
(2.9) wPLG(SV,SVE) x PLG(SV,, SVE) » PL4(S(V, @ V), S(V, @ V,))
In particular we get the k fold suspension map, and from the above

PROPOSITION 2.10. % PL(SW) — PLG(SW * S, S) is a homotopy equivalence
for each k = 0.

The propositions (2.1), (2.7) and (2.10) together give.
COROLLARY 2.11. The inclusion map
PL(S* * SW, S) — PL c(S** SW, 8%

is (k + 1)-connected.
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The inverse of
1, PL(S* % SW, S¥) » m, PL(S* * SW, S%), i<k
is given by the Haefliger-Poenaru differential along the fixed set,
d: 1, PL(S* * SW, §*) - m,PL(S* x SW, %)
cf. [17], [33, (5.1)].

The traditional way to study block automorphism spaces is to compare them
with homotopy automorphism, and use the fact that the quotient space can be
studied via surgery theory. This can be done also in the equivariant setting; where
the reduction to surgery theory is based upon the equivariant s-cobordism
theorem, [30].

Recall first that for homotopy automorphisms there is no difference between
the block space and the ordinary space, cf. [31, Theorem 5.8]:

Fo(SW) —= F (sW).

The k’th homotopy group of the quotient Fy(S W)/P~LG(SW) consists of equival-
ence classes of G-homotopy equivalences

fiD* x SW —— D* x SW

such that df is a PL G-homeomorphism. In fact, we can assume, and this will
often be covenient, that the restriction of df to D' x SW is the identity where
D*~! = §¥~ ! is the lower hemisphere.

Two maps f,, f;: D¥ x SW — D* x SW represent the same homotopy class
if there exists an equivariant PL homeomorphism h of D* x SW such that
Jo=gfioh

On the other hand, the object one can evaluate by surgery theory is the
structure set Z(D* x SW, ). An element of this is represented by a pair (M, t)
consisting of a locally linear PL G-manifold M and a G-simple homotopy
equivalence

t:M - DF x SW

with 0t:0M — S*~! x SW a PL-homeomorphism. Two such elements (M,, t,)
and (M,, t,) are equivalent if there exists a PL-homeomorphism h: M, — M, with
t,oh and t; G-homotopy equivalent.

PROPOSITION 2.12. Suppose W satisfies the codim 3 gap conditions. Then

T Fo(SW)/PL4(SW)) = Fs(D* x SW,d), k=1
=0 , k=0
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PROOF. An element of the left hand side is represented by a G-homotopy
equivalence f:D* x SW — D* x SW which is a PL-homeomorphism on the
boundary. Wecan assume f | D* ! x SW = id and must show that f is G-simple
(i.e. has vanishing G Whitehead torsion). Consider

0— C (D" x SW,D" ! x SW)
~C (f,0_f) > Cy_ (D" x SW,D" 1 x SW)—0

Since f_ is a PL G-homeomorphism its torsion t(C,(f_)) = 0 and hence ©(f) =
7(C,(f, f-)). But the exact sequence gives

UC(f.f-) = UC,(D* x SW,D*"1 x SW))
—UCy— (D" x SW,D¥"! x SW)) = 0.

It remains to show that every element of Z5(D* x SW,¢) is represented by an
automorphism. Let

t:(M,0M) — (D* x SW,S*~! x SW)

be a G-simple homotopy equivalence. Let ., M =t " '(D%"! x SW)andd_M =
t~Y(D*~! x SW)and view M as an h-cobordism from ¢ _M to ¢, M, trivial on the
boundary. One has

A(C (M, 0_M)) = o(C(1,0_1) = (C,(t) = 0

It follows from the equivariant s-cobordism theorem in the locally linear PL-cate-
gory that M is PL-homeomorphic with d_M x I, hence that M = ; D* x SW.
This completes the proof.

The restriction of u in (2.9) to ﬁLG(S V,,8VE) x (*) defines a suspension map
Z:PLg(SV,,SVE,) » PL(S(V, ® V,), S(V, @ V,)%)
compatible with
Z:Fg(SV,, SVE) = F(S(V, @ V,), S(V, @ V,)%)
under the identification F; ~ Fj;.

This gives a map from Fg(SV, )/FLG(S V,) to Fg(S(V, & Vz))/P~LG(S( V,®V,)).
We can evaluate on homotopy groups and use Proposition 2.12 to get the
suspension map of the structure set

(2.13) 2 Fo(D* x SV,,0) » Fe(D* x S(V, ® V,),0), k> 0.

The X in (2.13) will play an important role in this work; it has the following
more direct definition. Let

f:D* x SV, - D* x SV,
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represent an element [ f] e F5(D* x SV,,d);supposed_ f = f|D*" ' x SV, = id
and 0, f = f|D%"! x SV, is a PL G-homeomorphism. Write

D* x DV, = Cone(D* x SV, uD*"!

x DV, ucone(éD¥"! x DV, u D" ! x SV,))

Two conings extend f to a G-map
(2.14) Df:D* x DV, —» D* x DV,
which is a PL-homeomorphism on §*~! x DV,. Then X(f) is the restriction of
Df x DV, to D* x S(V, @ V).
§3 The special case of relatively free representations.

This section presents a special case of our main theorem about the connectivity
of the Stiefel spaces PL;(T)/PL4(V).

We suppose that G is cyclic of odd order and that V and T are relatively free
RG-modules, say V = W @ R with G acting freely on W — {0} and similarly for
T. The special case is easier than the general case because it uses only non-
equivariant surgery. In fact, the relevant calculations are very similar to the ones
made in by C. T. C Wall in [38, chapter 14E].

Throughout the section the following gap conditions are assumed

(3.1) dimW 26, | = dim V¢ > 2
From Proposition 2.12, and since SW is G-free
Tl Eg(SW)/PLG(SW)) = F5(D* x SW,Sk™1 x SW)
= P(D* x LW,S*"1 x LW)

where LW is the lens space, LW = SW/G. Wall examined in [38] #(D* x LW,
Sk=1 x LW) for k = 0; we generalize to k > 0.
The main tool is the surgery exact sequence (in the simple category):

(3.2) oo =2 L, J2G) —E— F4(D* x SW,d)
—" , [D* x LW/d,F/PL] —— ...

The term [D* x LW/0, F/PL] has odd torsion depending on W but its 2-torsion
is only a function of k, and often it is convenient to do calculations with (3.2) ‘at 2’
and ‘away from 2’ separately. We use the notation

Fs(D¥ x SW,0),4q = F5(D* x SW,0) ® Z[4].
Fs(D* x SW, )4, = F5(D* x SW,0) ® Z3).



ON THE CLASSIFICATION OF G-SPHERES II: PL AUTOMORPHISM GROUPS 175

Since SK,(ZG) = 0 for cyclic groups the term L(ZG) is equal to the group
L{(ZG) = L,(ZG, a, 1) with o the usual anti-involution, and it is calculated in [39].
We recall the result.

Ifiis odd L{ZG) = 0. If i is even we have the G-signature homomorphism

signg: L,,(ZG) - RG.

Is is injective for k even, has kernel Z/2 (Arf-invariant) when k is odd and has
image

(3.3) Im (signg) = 4(1 + (— 1)~ "RG.

where i ! is complex conjugation. This follows from [39, Corollary 2.4.3] and
[39, Theorem 2.2.1]. Since the right hand side in (3.3) will appear very often in
this paper we give it a special name,

(3.4) RO,(G) = (1 + (—1)*y " HRG,
and note that
RO,,(G) ® Z[4] = KOg **(pt) ® Z[}] = KOg **(pt; Z[4]).

The term [D* x LW/6, F/PL] in (3.2) can also be expressed in terms of
K-theory away from 2 by a theorem of D. Sullivan:
There is an isomorphism

0:[D* x LW/3; F/PL]qa = RO YLW,Z[1)),
and KO ¥(LW,;Z[4]) =@ ROG*SW).
LEMMA 3.5. For k > 0, Z5(D* ™' x SW, ) = 0. There is'an exact sequence
0 — L, (ZG) 2> F5(D* x SW,0) - [D* x LW/3,F/PL] — 0
where m = dimg W and L,(ZG) = cok (L, (Z) - L,(ZG)).

PRroOOF. Since L,;_,(ZG) = 0, the result claimed follows from (3.2) once we
prove that

J:[D***1 x LW/, F/PL] = Lyy 1 ,(ZG)

has image L, . »(Z). The source of A is equal toZ@ T or Z/2 @ T, according to
the parity of k + m/2 with T a torsion group of odd order.

The Z or Z/2 is represented as the Milnor or Kervaire surgery problems, and
their surgery obstructions generate L, ,.(Z) S Ly 1+ o(ZG).

It remains to determine the extension in Lemma 3.5. This uses the p-invariant,
which we redefine below.
By Proposition 2.12, an element of Z(D* x SW, d) is represented as a homo-
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topy equivalence
f:D* x SW - D* x SW

which is a PL-homeomorphism on D! x SW and the identity on D* ! x SW.
By coning, f extends to a map (cf. (2.13))

Df:D* x DW— D* x DW.
We form the PL G-manifolds
X(f) = (D* x SW)ua, (D* x SW),
(3.6) DX(f)=(D* x DW)U¢ ps(D* x DW),0,(Df) = Df |S*~! x DW.

One can view X(f) as an SW-block bundle over S* and DX(f) as its correspond-
ing disc block bundle; DX(f) = X(f).

The action of G on X(f) s free, so it determines a bordism class in Qf% , _,(BG).
Since PL/O is rationally a point, 2}(BG) ® Q =~ 23°(BG) ® Q, and in particular
Q% (BG) is finite. Assuming k is even, a suitable number of the manifold X(f)
bounds a free G-manifold, say oN, = r- X(f).

Let signg(N,) be the G-signature of the cup product form defined on the image
of H*(N,,0N,;R) in H"(N,; R) where 2n = dim N,. It is an element of RG. The
traditional way to define the p-invariant is to take 1/r signg(N,) as an element of
RG = cok (R1 - RG). However, we prefer to work with a slightly different
definition, better related to the problems at hand.

We fix an orientation for W and let e(W)e KOg ™(pt; Z[4]) be the Euler class of
W considered as an oriented G-bundle over a single point. This Euler class
depends on the choice of Thom class. We use the one related to the symbol class
of the index operator, called 4,, in [22].

If W is considered a CG-bundle, compatible with the chosen orientation, then

1 —v.:
e(W):I'[ 1 +i' when W=Z$Xi

with dim¢cy; = 1. We define

1
(3.7) PlS]) = —signg (N,) - e(W)

The multiplication with e(W) in (3.7) guarantees that gg[ f] is a well-defined
element of RG ® Q rather than in the quotient RG ® R. Indeed, the possible
variation in N, is a closed PL G-manifold. Since G is finite,

QHpH ® Q = 2HBG)® Q,
and signg(M x G) = sign(M)-[RG],signg(N,) is determined in RG ® Q up to
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a multiple of the regular representation. But e(W)-[RG] =0, so pg([f]) is
well-defined.
LemMA 3.8. For k + m = 2n, the diagram
L,,(2G) — Fo(D* x SW,0)
!
RG =" RG®Q
is commutative.

PROOF. Let x € L,,(ZG) be represented by the G-free normal cobordism class
(F, F). Then

F:(U;U_,U,,V)—>(D* x SW x I,D* x SW x 0,D* x SW x 1,87 ' x SW x I)

with F{U_ =1id and F|V = f, a PL G-homeomorphism, and F|U, is a G-
simple homotopy equivalence, cf. [38, Theorem 6.5]. By the s-cobordism the-
orem we may assume that U, = D* x SW. The manifold

U=Uu,D*x SW x I
is a cobordism from X(f) to S* x SW, so we can calculate
P(Lf1) = signg(U uy DK™ x SW x {0}) e(W)
= signg(U) - e(W).

We have assumed that (F, F) represents x € L,,(ZG). Hence signg(U) = signg(x).
Since o(x) = (U, , F| U, ) by the definitions, the result follows.

We next study the suspension from (2.13).
LeEMMA 3.9. Let W, be a second free representation of G. The diagram

Fo(D¥ x SW,0) —2— F4(D* x S(W @ W,),d)

\/pG

is commutative.

PrOOF. We start with the block G-homotopy equivalence f:D* x SW —
D** x SW with df a block PL-homeomorphism and form X(f) and X(Z(f)).
From the paragraph following (2.13) it follows that

X(Z(f) = DX(f) x SW; L X(f) x DW,.
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Let ON =r- X (f) and ON, = t- SW,, and define
U=(Nur-DX(f)) x (Nyut-DW,) —rt-int(DX(f) x DW,).

Then 0U = rt- (D&, x DW,) = rt*S&y ), so we can use U to calculate the
p-invariant of X(f). From the additivity theorem [7, (7.1)],

signg(U) = signg(N)-signg(N,)
1
and the result follows because " signg(N,) = e(W,)~ ! by [38, chapter 14C].

We now prove our variant of Wall’s theorem from [38, ch 14E]:

THEOREM 3.10. Let U< W be two relatively free RG-modules with
U = W€ = 0 and dimension at least 6. Then

Z:S4(D* x SU,d) — S4(D* x SW, d)
is an isomorphism.
PrOOF. We have the commutative diagram
0 —> L, ,(ZG) 25 S4(D* x SU,d) "> [D** x LU/, F/PL]® — 0
lz ]
0 — L,.,(26) =5 §,(D* x SW,8) -~ [D** x LW/d,F/PL]® — 0

with i: LU — LW, so to check X is injective, it suffices to see that X o a is injective.
But

pe(Z oa(x)) = pg(a(x)) = e(U)-signg(x)
by (3.8) and (3.9), and
Lze) =&ss R(6) 4“5 RG)®Q

is a composition of injective maps.

We check surjectivity at 2 and away from 2 separately. At 2, i* is an isomor-
phism, so we must show that the image of «” is contained in the image of Z o a’.
Since jg is injective on these images, it suffices to see that the image of jgo £ oo
contains the image of pggoa”. By (3.3), (3.8) and (3.9) this is equivalent to the
inclusion

4e(U) R02k+m(G)(2) 2 4e(W) ROy, (G)2

which holds trivially because e(W) = e(U)e(y) when U @ y = W.
Away from 2, i* has kernel equal to the quotient of the ideals {e(U)) and
{e(W)). This follows from the isomorphisms
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[D* x LU/9,F/PL]%Gq = KOg *(SU;Z[3]) = (1 + (= 1)y~ )Kg *(SU; Z[4])
K (SU;Z[4]) = RG/Ce(U)).

We have Im (2 0 aY), 44 2 Im («%) 44 just as in the 2-local case, so it remains to
be seen that

N (Im (2 00Y)oaq = (Ker i*)gq.
This in turn follows by a counting argument, because
po: Im(Z oaV)/Im (&%) — (e(U)>/{e(W))
is onto by (3.8) and (3.9) on the one hand, and because
n:Im (2 0 a?)/Im (@) — Ce(U))/{e(W))

is injective by (3.5) on the other hand,; coefficients in Z[1] are understood for both
maps.
Finally, S4(D***! x SW,d) = 0 since

A [D***1 x LW/0, F/PL] > Ly 4 m(ZG)

is a monomorphism (check at 2 and away from 2).

ADDENDUM 3.11. For U as in (3.10), S4(D** x SU, 0),4q is torsion free.

Proor. If suffices to show that the kernel of

n: F(D* x SU, )44 = [D** x LU/0, F/PL]o4q = T2x(F/PL)ouq
is torsion free. We have the exact sequence
0 Loy s n(ZG)ygq = Kerdig = Tor KOG 2X(SU) g4 — O,
so we must prove that
pe:Ker fjg = 10,(G)oaa

detects the image of Ker 7 in Tor KOg ?¥(SU),4q. Indeed, if this is true for any
given U, then it will be true for any larger W = U by the argument given at the
end of (3.10). If k = 2 then we can get the argument started with SU = S*. For
k =1, we have the usual low dimensional problems with the surgery exact
sequence, but can use the trick from [38, chapter 14.E] to start the induction.

THEOREM 3.12. Let V < T be relatively free RG-modules which satisfies (3.1).
Then n,_ ,(PL4(T)/PLg(V)) = 0 for k < min(dim V¢ dim V — dim V% — 1),

PROOF. Let T=W @ T¢,V = U @ VE. By (2.7) it suffices to show
- 1(PLG(SW)/PLG(SU)) = 0
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in the stated range. Consider the diagram
.. > PLG(SU) > my_ F4(SU) » Z5(D*! x SU,d) ...
l x, l 3, J p>
.. > M PLG(SW) » my_  Fo(SW) > Ze(D*~ x SW,d) > ...
We have just seen that X' is an isomorphism for all k; X, is an isomorphism for

k < dim SU — 1 and an epimorphism for k = dim SU by Theorem 1.4, hence the
same is true for X,.

If V in (3.12) is topologically stable in the sense of (1.3) then the minimum is
equal to | = dim V¢, and we see that PL;(T)/PLg(V)is (dim V¢ — 1)-connected
(when T€ # V). Indeed, the connectivity is larger than or equal to dim V¢ by
(3.12), and it cannot be larger because PL(TY)/PL(V ©) has the same connectivity
as O(T%)/0(V ).

REMARK 3.13. Given [ f]e %;(D* x SW,d) we can define a class function on
G by

Se(L/ D@ =p6lf19) g+1
=16(LS]) g=1
where yx(g) denotes the character value of y at g. We prove in section 9 that
S6: F6(D** x SW,0) @ Z[4] - RO,(G) @ Z[}]

is an isomorphism.

§4 Non-transversality for G = Z/2.

The main result of the last section, Theorem 3.11, implies stable G-transversal-
ity for G = Z/p when p is an odd prime, cf. [26]. We shall see in this section that
this result cannot be generalized to G = Z/2. Thus the question of transversality
for even order groups is much more subtle. It would be of considerable interest to
understand the failure of stable transversality for even order groups.

In the rest of this section G =Z/2 and U = W will be RG-modules with
U% = W€ = 0. We consider

2. F4(SU)/PLG(SU) - Fy(SW)/PL4(SW)
from (2.13).
LEMMA 4.1. Fori < dimU — 2, n;, (Z) = n(PLg(SW)/PL4(SU)).
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PrOOF. We have the square
Fo(SU) —— Fo(SU)/PLG(SU)
l 5 @ l )
Fo(SW) —— Fo(SW)/PLy(SW)
and corresponding exact homotopy sequences
..o My (@) > mPLG(SU) - mPLG(SW) — ...

o T (D)o Ty () 2 (2) >

From (1.4), 2, is (dim U — 2)-connected, so
i (2) = n(P)fori £dimU — 2
and the first sequence gives n(P) = ni(ﬁLG(S W)/ PNLG(S U))

The quotient P" = SW/G is a real projective space; the classification of homo-
topy manifold structures on P" has been examined by Wall and Lopez de Medrano
in [38] and [21]. We need the corresponding results for F;(D* x SW,d) =
F(D* x P",0). Here are some preliminary facts.

Browder and Livesay defined an invariant

B F(D* x P",0) = BLyy,((— 1)1
the groups BL,(+) have the values:
BLy4i—((+) =2Z,BL4i+ (+) = Z/2,BLy(+) =0

and BLi(+) = BL;, ,(—).

Let f: M — D* x P" represent an element of #(D* x P", ). By transversality
f induces a normal map f,: M§*"~! — D* x P"~! and B(f) is the obstruction to
perform ambient surgery on f, = f | M, to obtain a homotopy equivalence. The
ordinary surgery obstruction of f, is related to f(f) by the formula

Afo) = BN,

where [ is a certain map
= Ini+ 1:BLn+1($) - Ln(G> i)

Here we have written L, (G, + ) for the groups L,(ZG, a*, 1) where o™ is the usual
oriented anti-involution and « ~ the non-oriented one. The values of the groups are

in(G, —) = 2/2, L2i+ 1(G, *) =0,
LG, +)=Z®Z,L4yi+(G, +)=0,
L4i+2(G, +) =2Z/2, L. 3(G, +) = Z/2
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and I is onto where it can be, except in two cases: IJ;,, has image L, (1) <
L,(G,+)and l;;_, =0.

The invariant f is related to the suspension homeomorphism by the Browder-
Livesay exact sequence:

42  PD*x P —=— PD*x P 0)— BLy i (— 1))

For proofs of the cited fracts we refer the reader to [21] and [38].
We shall also need a few facts about the surgery exact sequence,

oo Lyni1(Ge) —— F(DF x P"o) ——
[D* x P"/0,F/PL] -t L,, (G, &) > ...
where ¢ = (—1)". The surgery obstruction 4, , , can be determined by the following
surgery formulae, cf. [9]. There are cohomology classes
K€ H*(F/PL; Ly(1);
(Lai+2(1) = Z/2, L4;(1) = Z) such that
(1) ifn+ k=2mod4),orn+ k=0(mod4)and ¢ = —1, then

Aein(9) = {g*(Kgx-2), [D* x P"])
(i) ifn+ k=0(mod4)and ¢ = +1, then

Aanl@) = (g*(Kay)VA(P™),[D* x P"])
(iii) if n + k = 3(mod 4) and ¢ = + 1, then

An(9) = <g*(Kan-2)V2(PMO,[D* x P"])

where 0 e H'(P",Z/2) is the generator. Moreover,

K,,: F/PL > [] K(Z,4n) x K(Z/2,4n — 2)
nz1
induces an isomorphism on 2-local homotopy groups except on m, where K,
gives multiplication by 2; the bottom 2-stage Postnikov system of F/PL has
k-invariant fSq%(K,), [24].

ProrosITION 4.3. Forn =2

(i) PO x P 1 0) = Fy{Busrli= (1)1 @),12i<2n -3}

(i) F(D* x P 19) = Ly(1) @ {Baxs2n-1) @ Fo{frrili=1(2),3 i =
2n — 3}, where {Borran-1> =Zif k+n=002) and {Pos20-1) =Z/2 if
k+n=1().

(i) The double suspension X* P(D’ x P*"~!0)— LD’ x P**1 9) maps
Bak+2n—1 10 Baks 2n—, and preserves By . ; and L,,(1). It is injective unless
Jj=2kand k + n = 0 (2) where the kernel is 2{B ;1 30— 1 -
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Proor. We give the proof in case (ii), leaving the entirely similar case (i) to the
reader. The composite

F(D* x P~ 1 9) —1 [D* x P 1/9, F/PL] —— m,,(F/PL)

is a surjection. This gives the summand L,,(1) in #(D** x P?"~ ! 9). We now
proceed by introduction over n. Suppose k + mis even and consider the diagram

0 — Lo(Z/2, +) 2% P(D* x P™~19) Moy [§2 A P2~ F/PL] 25 L,(Z/2, +)
120 W Res,
0 — P(D* x P™0) M [S%* A P F/PL] 25 Ly(2/2, -)

|

0 — P(D* x P+1 ) 4 [§% A PI"*1F/PL] -2,
0 — P(D¥* x Pm*29) 12, [S2 A PIm*2 F/PL] 22, [,(2/2, )

l)::, Res,
0 — Ly(Z/2, +) 2 FD* x PP"*3,9) 1o [S* A PI"*% F/PL] 2 Ly(Z/2, +)

™M

1 Res,

™M

2 Res,

We have used the surgery formulae to show that
Ao:[SZ¥*Y A P2m~ 1 F/PL) - Lo(Z/2, +)
Ay [S#*Y A P2m* 1 F/PL] - L,(Z/2, +)

maps onto L, (1) with cokernel E*(Z/2, +); this groupisequal to Zif * = 0(4) and
0 otherwise.

The restriction maps Res; are all surjective. It is an easy consequence of the
sugery formulae (i), (ii) and (iii) above that

Res;:Ker 4; » Ker 4;_,
is surjective for all i; it has kernel Z/2 except for i = 2 where Res, is an isomor-
phism.
From the Browder-Livesay sequence (4.2), X, and 2, are epimorphisms and a,,
is split injective. It follows that
n10Zp00a0: Lo(Z/2, +) = [S** A P2™ F/PL]

has image Z/2 corresponding to the top part, H2**2™(§2k A P2™ Z) of the range.
The surgery formulae and the formula I o B, = 4, _, give a calculation of the
cokernels of X;, ;:
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coker X, =~ BL,(+),

coker 23 = BL;(+).
This completes the inductive step; (i) is similar, and (iii) follows.
By (2.7), (4.1) and (4.3) we have

COROLLARY 4.4. Let V< T be RG-modules with free parts dim U = 2n,
dim W = 2n + 2r. Suppose V and T satisfy the stability conditions, dim V¢ <
dimU — 2,dim T¢ £ dim W — 2. With the conventions of (4.3) and in degrees less
than dim VS we have,

(i) 7 (PLG(T)/PLg(V)) =
2PBrksr2n-1> ® FalBasili= (=11 (4), -1 <i-2n<2r -3}
(i) mo—1(PLG(T)/PLG(V)) =
PBaksznrze-1) ® Folfourili= 11 Si—2n £ 2r - 3}

The non-vanishing of the homotopy groups in Corollary 4.4 prevents stable
equivariant transversality for G =2Z/2 in the locally linear PL-category.
Examples can be constructed as follows:

Let Uc W be free G-representations with spheres $2"~ ! = §(U),
S2"*2r=1 = §(W)and let xe m, PLg (S22~ 1) (i < 2n — 3) be an element which
projects non-trivially to m(PL¢(S2""!)). Let &, be the PL block over Si*!
associated to o, D&, the corresponding block disc bundle. The total space of D¢,
is a compact PL G-manifold M with boundary and M¢ = §'*!, The restriction of
the tangent bundle M to M can be identified with the stabilization of &,

TM|M® =&, @ TS,

Let x be the complement of U in W and consider the constant map f: M — y
with f(M) = 0. We claim that f is not G-homotopic to a G-transversal map. This
follows from [26] where we proved that f is G-homotopic to a G-transversal map
if and only if there is a G-section in the bundle Epi(TM, W). But a G-section
implies a section over the fixed point M¢ = §'*!, that is, a section of

PL4(T)/PLg(V) - Epig(¢, @ TS, W) - §i*!
where T= W@ R*!and V = U @ R**!. The obstruction to a section is
0,([S** '] em; (PLG(T )/PLg(V)).
Moreover,

0,([S"™"1]) = J ()
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where J: PNLG(S( W)) - PLG(T, T®) - PL4(T)/PL4(V). In the commutative dia-
gram

5% 7,

mPLG(SW)  —— n(PL4(SW)/PL(SU))

G
= > s
n; PLG(T, TG) — m(PLg(T)/PLg(V)),

the vertical maps are isomorphisms by Proposition 2.7. Since f*(oc) %+ 0it follows
that 0, ([S**']) # 0. We have proved:

THEOREM 4.5. For G = Z/2, G-transversality does not hold in the locally linear
PL-category, even stably.

§5 The equivariant surgery exact sequence.

As detailed in [13], existence of a good surgery exact sequence is based upon
three requirements. One needs a transversality theorem in order to relate cobor-
dism classes of normal maps to homotopy theory; a stability result for the bundle
theory in question in order to determine the actual normal bundles to the
embedded spheres one wants to surger out, given the stable ones and finally; one
needs a suitable 7 — 7 theorem in order to give faithful obstructions in the
relevant surgery obstruction groups.

In the equivariant setting the 1 — = theorem is due to Dovermann, Petrie and
Rothenberg [13], so is at hand. The transversality theorem is only available in
some stable setting, and the bundle desuspension resuls depend on the precise
connectivity of certain “Stiefel manifolds”. In the smooth G-category, the Stiefel
manifolds are the usual linear ones, in general not sufficiently connected; one
must make unpleasant assumptions on the structure of the normal bundles to the
fixed sets (cf. [13]). In the (locally linear) topological category transversality fails,
even stably. But in the locally linear PL-category we have all three requiremens
available, when |G| is odd and under the strong gap conditions (1.3).

In this section we set up the surgery sequence under the assumption (5.1)

below, which will in turn be proved inductively over the group order |G| when it is
odd.

ASSUMPTION 5.1. Let V < T be topogogical stable RG-modules in the sense of
(1.3). Then PL4(T)/PLg (V) is (dim V¢ — 1)-connected.

We first derive the suitable bundle desuspension results from (5.1). All bundles
considered will be locally linear G — R" bundles in the PL category (abbreviated
G-bundles), cf. [19] and [26] for a discussion. Any such bundle is classified by
a G-map X - BPL,(G). If X% is connected the fibers ¢, for xe X¢ are all
PL-equivalent, hence linearly equivalent to a fixed RG-module W by [12], and
¢ is classified by a G-map X — BPL (W).
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PROPOSITION 5.2. Let & be a G-bundle over a G-CW complex X and V an
RG-module. Supose V and each fibre &, are topological stable and that V < &,.
Then E=n@V for some G-bundle n provided dim X" < dimn¥ for each
Hc G,.

Proor. We want to construct the dotted arrow

BPL,(G)
A
7

n - l@V

7

X"—— BPL,. /(G)

by equivariant obstruction theory. Suppose # givenon 4 = X. Let B be the union
of A and a G-cell D' x G/H with isotropy group H. The obstruction to extend
n over B lies in

n;(BPLy(n,) = BPLy(n, @ V) = mi_y (PLyu(n, @ V)/PLy(n,))
where 7, is the RH-module defined by n| (D' x G/H). Apply (5.1).

There is a similar result for desuspending PL G-bundle isomorphisms which
we now formulate. First we make

DEFINITION 5.3. A PL G-bundle ¢ over the G-complex X is called G-stable if
for each I' = G and xe X" its fibre ¢, is topological stable as RI™-module, and
dim &£ > dim X' for xe X".

PROPOSITION 5.4. Let & and n be stable PL G-bundles over X. Suppose f:
EDL =, n@Lis a PL G-homeomorphhism for some stable G-bundle £. Then
¢ = n via a map g such that g @ id is G-isotopic to f.

ProOF. A G-bundle equivalence & — 5 can be considered as a section of the
G-fibration PL (¢, n) over X with fibre PL(¢,,7,), the space of PL-homeomor-
phisms. There is an obvious inclusion of fibrations.

PL(%n) —— PLE®Ln DY)

AN

X

We check by equivariant obstruction theory that a G-section of PL(¢ @ {,n @ {)
can be compressed into a G-section of PL (£, 7). The obstructions lie in

IG(X’ "i(PLGx(éx @ Cx’ Nx @ Cx)/PLGx(éxa "x)))»
which all vanish by (5.1).

If one sharpens the stability conditions in (5.3) to read dim X' < dim ¢f — 1
then the constructed PL G-homeomorphism g between & and 7 in (5.4) will be
unique up to isotopy, by a similar argument.
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For the rest of the section we fix a representation Z and consider only
G-bundles £ which are subordinate Z in the sense that each fibre &, is an RG,
submodule of Z®*,

DEFINITION 5.5. A G-bundle &is called Z-restricted if it is subordinate to Z and
Iso(Z,G,) = Iso(£,, G,) for all x. A manifold is called Z-restricted of its tangent
bundle is.

It is easy to see that each Z-restricted G-bundle ¢ over a finite G — CW
complex has a Z-restricted complement, ¢ @ ({ =V with V < Z®* being
Z-restricted (and stable).

Let A5(X) denote the equivalence classes of triples (&, t, #) where ¢ and 7 are PL
G-bundles over X and t: ¢, — 7, is a proper G ,-homotopy equivalence for all x.
Two triples (¢, t;,n;) are equivalent if

DB LN ®E) =66 @0, D LN, DE)

for PL G-bundles {, and {,. Here = ; indicates a G-bundle PL homeomorphism
compatible with the two proper homotopy equivalences.

We need a restricted version A;(X) of A5(X). It consists of equivalence classes
of triples (&, t,n) such that

(i) €& and u are Z-restricted
(i) ¢, =n, as RG,-modules.

(5.6)

Each element of .#;(X) can be represented by a triple of the form (£, ¢, V) with
& Z-restricted and V(= X x V) the trivial bundle of a Z-restricted RG-module.

Forgetting t we can consider stable equivalence classes of pairs (¢, V), with
¢ =g, Vi, or what is the same, equivalence classes of virtual bundls of the form
& — V. They are classified by the G-space

BPL(G; Z*) = colim BPL (V)

where V varies over the Z-restricted representations.

We can weaken the equivalence relation and consider the fiber-wise one-point
compactifications & = S(& @ R), V¢ = S(V @ R) up to equivariant fibre homo-
topy equivalence. The corresponding classifying space is BF(G;Z*), and we
define F/PL(G; Z*) to be the homotopy fiber in the G-fibration sequence

(5.7 F/PL(G;Z*) - BPL(G; Z®) - BF (G; Z*).
The fixed point sets are
BPL (G; Z*)% = colim BPL (V)
BF (G;Z%)% = colim BF4(V)
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F/PL(G; Z®)® = colim F4(V)/PLg (V),

where V runs through the Z-restricted representations. Often G and Z will be
clear from the context and we will write BPL, BF instead of BPL (G;Z%),
BF(G; Z*). Similarly the fixed sets will sometimes be abbreviated to BPL;, BF,;
etc.

The spaces BPL; (V), hence BPL; and BFj;, are connected because they are
classifying spaces. Moreover

m,(BF (V) = mo(Fg(V)) < AG)* = {£1}

since |G| is odd. From (5.7) it follows that F;(V)/PLg (V) is connected. Therefore
the spaces F/PL,BPL and BF are G-connected.

The usual argument shows that .#;(X) s classified by F/PL (G; Z*)in the sense
that we have

ProPosITION 5.8. #;(X) = [X, F/PL]%, F/PL = F/PL(G;Z®).

If X has a base point x,e€ X¢ then we can consider also the based homotopy
set, [ X, F/PL]S. The free homotopy set in (5.8) is a quotient of the based set by the
action of m,(F;/PLg), but the action is trivial since F;/PL has a multiplication.
Thus [X, F/PL]§ = [X, F/PL]C.

Under special circumstances there is a more intricate interpretation of A;(X)
than (5.8). Suppose X is a Z-restricted G-manifold, and that it is G-oriented in the
sense that each fixed set is oriented.

DEFINITION 5.9. A Z-reduced G-normal map (f, /) over X is a G-bundle
diagram

TMOU —— TX)®¢

|

M L X,

where M is a Z-restricted G-oriented PL G-manifold, U is an RG-module, f has
degree 1 on each fixed point set and T.M = T, X as RG,-modules for each
xeM. If M, X have boundaries f|0M is assumed to be an equivariant PL
homeomorphism.

REMARK 5.10. If M and X are topological stable then each reduced normal
map is the stabilization of (£, f) with /: TM @ R — ¢ @ R. This follows from (5.2)
and (5.4). Note also, if each component of each fixed set X¥ has non-empty
boundary that the local conditions T M = T, X in (5.9) are automatically
satisfied, since PL-homeomorphic representations are linearly equivalent by
a result of deRham, [30].
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THEOREM 5.11. Let X be a Z-restricted G-oriented PL G-manifold which satis-
fies (5.5) and is topological stable.

Then Ag(X/0X) is in 1 — 1 correspondance with normal cobordism classes of
Z-reduced G-normal maps over X.

ProOF. We refer to [38, page 110] for G = 1. The argument in general is
similar. The map from .#;(X) to [X/dX, F/PL]¢ is induced by collapsing onto
a regular neighbourhood of an embedding of M in {, homotopic to f. The map in
the other direction requires G-transversality which is available from [26, The-
orem 4.4] under the assumption (5.1).

Define % 4(X, 8X) to be the set of equivalence classes of G-simple G-homotopy
equivalences f:(M, M) — (X, 0X) with

(i) of PL-homeomorphism
(i) T.M = T;,,X as RG,-modules.

There is a map as usual
ne: (X, 0X) - Ns(X/0X)

and we are interested in its kernel and cokernel.
Let m: Iso (X) — Z be the dimension function of X, m(H) = dim X¥. Define the
equivariant simple L-groups by

LG X) = Y. Loy @ZINH/H]), (H) € (Is0 (X)),

the direct sum over the conjugacy classes (H) of the usual oriented (simply)
surgery obstruction groups from [38]. In [42], a geometric definition of
Z,.(G; X) is given in the spirit of [38, chapter 9], and the above sum decomposi-
tion is derived (for |G| odd).

THEOREM 5.12. Let X be a Z-restricted, PL G-manifold. If X" is simply connec-
ted for all H and X x I is topologically stable then (under assumption (5.1)) there is
an exact sequence

Pe(D! x X,0) —L— Hg(D' x X)) —2— ZL,.1(GX) ——
—f s Pe(X,0) —1— HG(X/)) ——> Z,(G;X)

The proof of (5.12) is a formal consequence of the geometric definition of
equivariant L-theory, and the n — = theorem [13]. We refer the reader to [42],
Part II, where a more general theorem is proved.

ADDENDUM 5.13. Let G be an odd order group and suppose (5.1) satisfied for all

proper subgroups. Then (5.2), (5.4), (5.11) and (5.12) remains valid provided
X% = ¢.
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ProOF. The first two Propositions are based on obstruction theory and when
X¢ = ¢ the only homotopy groups which appear are n,(PL(T)/PL(V)) with
I'elso(X),hence I + G.The theorems(5.11) and (5.12) are based on transversal-
ity, hence by [26] on obstruction theory. Again it only involves the above
homotopy groups with I" + G.

§6 Normal invariants: The Sullivan mapping.

This section relates the set of Z-restricted normal invariants .#;(X) from (5.8)
with equivariant K-theory under the standing assumption (5.1). We assume for
convenience that 1 € Iso (Z).

Let K~OG(X ) be the reduced equivariant orthogonal K-theory. It is the sub-
group of KO4;(X) consisting of differences [£] — [#] with £, = n, as RG,-mod-

~

ules for all x in the base space. The classifying space for KOg4(X) is denoted
BO(G). It has connected H-fixed point sets for H < G, and is the G-connected
cover of the classifying space for KO4(X).

It is a consequence of the s-cobordism theorem that the structure set
Z (DU, SU) is trivial (for topological stable representations) so (5.12) gives

~ ®
Ae(DU/SU) = ¥ L2 [NH/H])
with H running over the conjugacy classes in Iso(U) = Iso(Z) and
m(H) = dim U".
The G-signature defines a homeomorphism

signg: L(ZG) » 4RO,(G)

with notation as in (3.4), and RO, ,(G) = 0. There is a corresponding equivari-
ant version when we define

20,,(6) = Z® RO, (WH), m:1s0(Z) - Z;(H)e(Iso(2)).
The invariant sign = Ze signy y defines an isomorphism
(6.1) sign: ,,(G) ® Z[4] —=— 440,(G)® Z[}]

With a vew towards the G-trivial case, analysed by D. Sullivan, cf. [24], one
expects an isomorphism

Ty X)®2[3] —=— ¥° KOy u(X™%2Z[1].
Consider
X KOy 4(XH), WH = NH/H

as a functor on G-CW complexes. It is representable by a G-space which we
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denote B(G; H), cf. [20]. Thus
(6.2) KOy u(X") = [X, B(G; H)]°

with B(G; 1) = BO(G).
When G is abelian there is even a simple description of B(G; H) by means of
families of subgroups, based on the following

LEMMA 6.3. Let F be a family of subgroups of G, closed under intersection. Let
X and Y be G-spaces and write

X; =), H¢Z.

XH
Then

[Xg YI° = [X,EF Y],
where EF is the “acyclic classifying space” of F .

ProoF. Since EF = *E(G/K), K e Z it follows that (EZ)" is empty when
I'dé # and contractible if ' € #. Thus (E#); = J and there is a map

¢:[X,EF »Y]® > [X,, Y]C.

This is a bijection by equivariant obstruction theory because the Bredon
cohomology groups

HE(X, X531y (EF % Y))
vanishes identically.

We can apply (6.3) with # = {H < G|H 2 I'}. When G is abelian, X5 = X"
for & = % so we can conclude that

(6.4) B(G, H) = EF; +BO(G/H)

when G is abelian. For general G we don’t know such a description.
Let G be any odd order group. We define an equivariant map

0: F/PL(G; Z®) — BO(G)yq4

where BO(G),4 classifies K~OG(X;Z[%]) = KNOG(X) ® Z[4].
The construction is based upon the epimorphism (from [22])

(6.5) KO¥(X;Z[4]) - Homgg (25(X),RO(G) ® Z[4])
with kernel Extgo(g,(KOS(X),RO(G) ® Z[4])

Here QY(X) denotes the geometric oriented bordism groups of equivalence
classes of G-maps f: M" — X, and all functors are considered Z/4-graded. We
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must construct a homomorphism
06: QS(F/PL(G; Z*)) - RO,(G) ® Z[4].

Let y: M — X represent a cobordism class {M,y}. There exists a G-manifold
P with signg(P) = 1 and M, = M x P topologically stable. Indeed we can take
P to be a suitable projective space, cf. [22]. Consider the composition

VM —— M —1— F/PL(G;Z%).

It determines a normal map
My —L— M, FTMo®V —— TM,®¢
and we let
(6.6) oc({M,7}) = signg (M) — signg(Mp)
= signg(Mp) — signg(M).

This difference of G-signatures is independent of choice of P, since
signg(P) = 1. We choose an element of KO¥(F/PL(G; Z*); Z[4]) which corre-
sponds to the homomorphism o under (6.5) and get the induced

6.7) og: MX) - KOg(X;Z[1]).

For finite G-CW complexes X, o; is determined modulo the group
Extgro)(KO$(X), RO(G) ® Z[}]), which is finite. In the end we will show that
F/PL(G; Z*) can be expressed in terms of classifying spaces for K-theory, and we
will be able to conclude that the Ext-term vanishes, so that o in (6.7) is defined
unambiguously after all. For the time being we shall be content with any choice of

66€ KOG(F/PL(G; Z*), Z[4])

which corresponds to the homomorphism in (6.6).
For each I'e I = Iso(Z) we have the fixed set homomorphism

Fix": Ay(X) = A o(XD).

It maps the triple (&, ¢, ) over X over X to the triple (¢7, ¢", n7) over X”, with the
induced action of WTI'. Then

Hwr(X") = X", F/PL(WT;(Z")*)]""

and (6 7) gives a map oy, from A (X" to KOy (X";Z[4]). Set
a—z owro Fix"

(6.8) 0. Ae(X) » £ KOy (XT3 Z[4]),
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with I' running over the conjugacy classes in Iso (Z). On the classifying space level
we get
6.9) 0: F/PL(G; Z%)oqa = [ | B(G, INoaq, (I €(Is0(2)),
which we want to prove is a homotopy equivalence. Write

Fg(Z*) = colim Fg4(S(Z®%))
Fg(Zg) = colim Fg(S(Uy))

where U, is the complement of the fixed set in Z®*. We use similar notation for the

automorphism groups P~LG( ) and PL;( ), and note from (1.8) and (2.10) the
(split) fibrations

Fo(ZE) - Fo(Z®) === F
PLy(ZZ) » PL4(Z*) «—== PL.

Furthermore, by (1.8)and (2.11), PL4{(Z*®) ~ PIG(ZS") and F4(Z*)/PLg(Z%) ~
F/PL(G; Z*)%, when the homogeneous space on the left is defined as the homotopy
fibre of the the obvious mapping from BPL(Z%) to BF4(Z*).

The space Fgz(Z>) has two components, corresponding to the units in the
Burnside ring, and by [35]

SFe(Z%) =~ [[Q*ST(B(WT),),(Ne(Iso(Z))

where Q*SP(B,) = Q¥S*(B.) is the components of degree one.
With these notations we can reinterpret (2.7) and (2.12) in the following

PROPOSITION 6.10. (i) There is a split fibration
Fo(Z3)/PL(ZF) —— Fg(Z*)/PLg(Z*) —— F/PL

(i) The homotopy groups of the fiber is the stable structure set,
1l FoZZ)/PLAZE)) = colim P4(D* x SU, d).

The colimit in 6.10 (ii) is over the suspension maps
Z: P (D x SU,0) - P ¢(D* x SW,0)

where U ¢ W < Z* and U® = WY = 0. This map was defined in (2.13). It maps
a structure [¢] represented by

t:(D* x SU,d) = (D* x SU, d)
as follows. First extend t to

Dt:(D* x DU,S*"! x DU)—(D* x DU,S*"! x DU)
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If U@ y = W, then Z(f) = Dt x Dy|D* x SW.

We close the section by defining what we call the structure invariant, and relate it
to g above. Consider the PL manifolds related to ¢:

X(t) = D* x SU | D* x SU

Ot
DX(t)= D* x DU ) D* x DU,d,Dt = Dt|S*~* x DU.
¢, Dt
Then we have a G-map
T:DX(t)—» S* x DU, T = Dt uid.
Multiply with a suitable G-manifold P with signg(P) = 1 and make
T,:DX(t) x ? - §* x DU

G-transverse to S* x 0. The transversal preimage is a submanifold
M(t) =« DX(t) x P with normal bundle U. Its signature defines the structure
invariant of [t]e £ 4(D* x SU,d),

(6.11) $6([t]): = signg(M(1)).
LEMMA 6.12. The composition

Fo(D* x SU,0) — m(Fo(ZE)/PLG(ZE) —%— m(Fo(Z®)/PL(Z%)) 22k
KOg“(pt, Z[4])
is equal to §; ® Z[4].

ProOOF. Given []e Z4(D* x SU,d) we form Dt: D¥ x DU — D* x DU. Take
Cartesian product with D* (or D' with [ 2 k) and pass to the interior to get the map

T:D* x (U @ R - D* x (U @ R¥.

This map is a PL-homeomorphism on the boundary, and can be deformed to
commute with the projection onto D, since

m, PLe(U @ RY) = n, PL4(U ® RY

by Corollary 2.11.
Since T is a PL-homeomorphism on the boundary we can add D* x (U @ R¥)
along 0T'to get X(T) and

T: X(T) - S* x (U@ RY

(T = T x id). We multiply the domain with P and make T G-transverse to ¥ x 0.
Let M(T) be a transverse preimage, so

(06).0d,[t] = signg(M(T)).
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On the other hand, we can already make the construction for
int(Dt): D* x U —» D* x U.

This gives a G-manifold
M(t) = P x (D* x U){J(D* x U)
Ct

with normal bundle U. Clearly M(t) and M(T) are G-bordant. Since
$([t]) = signgM(z),
and signg(M(t)) = signg M(T), this proves the claim.
We can compose the structure invariant §; with the fixed point map
Fix": Z4(D* x SU,0) » Py (D* x SU',0),

for each (I') e (Iso (SU)). The resulting invariants $y, - adds up to give

6.13)  §=YC 8 roFix":Z4(D* x SU,d) - ¥ KO, (pt; Z[4]),

(r)

similarly to the definition of ¢ in (6.8). Now (6.12) implies.

PROPOSITION 6.14. The following statements are equivalent
(1) o ® Z is an isomorphism for all G-CW complexes X.
(i) §® Z[4] is an isomorphism for sufficiently large Z-restricted representations
U with US = 0.

§7 The inductive setting.

It is our goal to evaluate the surgery exact sequence (5.12) completely when
X is the sphere of a stable representation. The surgery sequence (5.12) was set up
under the connectivity assumption (5.1) about the Stiefel spaces, and in sect. 6 the
set of normal invariants was analysed under the same assumption. As indicated
already we aim to prove (5.1) by using the surgery exact sequence, generalizing
the relatively free case treated in sect. 3. Thus we must set up an inductive
procedure. This is the purpose of the present section.

The variable we induct over will be the group order. Thus we fix a group G (of
odd order) and make the basic assumption (5.1) for groups of smaller order:

INDUCTIVE AsuMPTION 7.1. Let I' T G. For topological stable RI'-modules
V < T with Iso(V) = Iso(T), PL(T)/PL(V) is (dim V' — 1)-connected.

With this assumption we have G-transversality in the special case of a map
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f*M — Ewhichis already G-transverse on M€, and we have an exact sequence (cf.
(5.13)):
(12 AelD*' x SU) —— T Lo mnZ[WT) ——
1 Fo(D* x SU,0) —— AN;(D* x SU,0) -0
whenever U @ R%* is topologically stable and U¢ = 0. Moreover
(7.3) Ng(D* x SU/O) = [D* x SU/o, F/PL]S

where F/PL = F/PL(G; (U @ R)*). This short-hand notation will be used for the
rest of the section.

We cannot define the mapping o in (6.9) since we lack G-transversality in
general. However, we have the following partial version. Let 2 denote the family
of all proper subgroups of G and EZ its acyclic classifying space. It is a G-space
with

(EP)° = &, (EP) ~ x for Te.
Therefore the map
n:F/PL A EZ, - F/PL

has homotopy fiber Y with Y¢ = Q(F/PL¢) and Y ~ * for I' § G. By obstruc-
tion theory

n:[X,F/PL A E®]° —=_, [X,F/PL]®

is an isomorphism if X ¢ is a single point, e.g. for X = D** x SU/d. The o of (6.6)
extends to give

06:Q(F/PL A EZ,,0)— KO$(pt;Z[1]).
Thus we obtain a G-map
o:F/PL A EZ, > []|B(G;TI), (INe(Iso(U — 0))

We add a second inductive assumption:

INDUCTIVE ASSUMPTION (7.4). For |I'| < |G| and |I'| odd,

o AHX)®Z[] —=— Y7 KOy (X5Z[4]): (K)e(Iso(SU).

is an isomorphism for each I' — CW complex X.

PROPOSITION 7.5. There is a G-homotopy equivalence away from 2
0:F/PLya A EZ2, —= [|B(B;lNoa A EZ., (Ne(Iso(V))

PRrROOF. By the equivariant Whitehead theorem it suffices to show that
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o F/PL(G, U > ] B(G; N"
is a homotopy equivalence for each proper subgroup H of G. But
Res? (F/PL(G;U*)) = F/PL(H;U*)

3 {B(H; r) if (I < (H)
- H

H .
Res! (BG; I)) * if (N ¢ (H)

and
Res” (0): F/PL(H; U~) - [ B(H.,T)
is a Z[4]-local homotopy equivalence by (7.4). The result follows.

With (7.5) we can calculate the normal invariant term in (7.2) away from 2 to be

(7.6) Ao(D* x SU,3) @ Z[4] = ¥.° KOZ(SUT; Z[4)).
The L-term is also given by K-theory, since
(7.7) Lysmn@IWT]) ® Z[4] = KOy ™" (pt; Z[1]).

In the key sect. 8 below we calculate 4, determine (7.2) and show (7.1) for
I' = G. This requires a suitable invariant of #;(D* x SU, ). We would like to
use the structure invariant §; of (6.11) but this would involve us in a circular
argument since its definition requires stable G-transversality, hence (7.1) for
I' = G; and this is what we attempt to prove.

Instead we use an extension of the p-invariant from sect. 3. First we need some
preliminary results.

PROPOSITION 7.8. For odd numbers k, n, (BPL;) ® Q = 0.
PROOF. Since Fg has finite homotopy groups it is enough to show that

We know this to be true in the G-trivial case, so by (6.10 (1)), it suffices to consider
nk(ﬁG/PLG), or what is the same, #(D* x SU, d) for topological stable U with
U = 0. Since L 44(Z[WTI]) = 0, (7.2) gives the exact sequence

(7.9) 0 Z6(D* x SU,0)® Q- Y®KORA(SUT;Q) ——
Y Liwmn@IWI)® Q.
We use (7.9) to show that
Res: Zo(D* x SU,9) ® Q- Y2 Z(D* x SU,9) ® Q,

-into the sum over conjugacy classes of proper subgroups, is injective. The
obvious induction will then complete the argument.
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The group KOg*(SU; Q) is a factor in K 5 * (SU; Q) wich can be calculated from
the exact sequence of the pair (DU, SU),

0-Kg!(SU) —2— K4(DU,SU) —— K4(DU) > ...

When we identify Kg(DU,SU) = RG via the Thom isomorphism, and
Ks(DU) = RG by retracting DU to its center, then r is identified with multiplica-
tion by the Euler class A_(U)€ RG, (when we use the standard Thom class).
Since RG maps injectively into }:e RC, with C running over the cyclic sub-
groups, the same is the case for K '(SU). Hence there is nothing to prove unless
G is cyclic.
If G is cyclic of order m then the kernel of

RessRG®Q->Y RH®Q, HS G

is isomorphic to the field Q({,,), {,, = e2™™. The isomorphism can be specified as
the evaluation of characters at a chosen generator. But e(U) (g) = 0 if and only if
U? £ 0, so

Res:Kg'(SU)® Q- Y K; ' (SU)®Q, HS G

is injective as claimed. The same argument applies to the other summands of 4 in
(7.9).

Let Q%(X)denote the bordism group of G-maps f: M — X where M is a (locally
linear) G-oriented PL G-manifold of dimension k. For every family & of sub-
groups of G, closed under subconjugation, Q¢(E#) is the bordism groups of PL
G-manifolds with isotropy groups in % . We have by (7.1) sufficient transversality
to show

(7.10) Qf(EF) = lim[$" "X, EF, A MSPLy,(V ®R")]

when G ¢ Z (cf. [22], [26]).

COROLLARY 7.11. Under the assumptions of (7.1) and (7.4) the bordism groups
Q5 (EF)®Q=0when G¢ F.

Proor. Use (7.8), induction over subgroups, the Connor-Floyd neighboring
sequences [37] and G-obstruction theory.

Let 4, be the K¢ ( ;Z[4]) Thom class for the oriented G-bundle associated with
the index operator, as above. The associated Euler class is e(&). If £ =y is
a faithful character of a cyclic group G then

e(y) = (1 — /(1 + YeR(G) ® Z[1];
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this determines the character e(U) (g) in general.
We can now generalize (3.7) to get

Pe: F5(D* x SU,d) - ROL(G) ® Q(=KOg*(pt; Q)
For [t] € #5(D** x SU, ) form the closed G-manifold
X(t) = D* x SU () D* x SU.
Ot
It has odd dimension and X(t)° = ¥, so by (7.11) a suitable number of copies of
X(t) bounds, say
r-X(t) = 0Y,.

We can even choose Y, to have the same isotropy groups as X(t). We do so, and
define

« [
(7.12) pelt] = 7518"G(K)‘9(U)-
LeEmMMA 7.13. Theright hand side in(7.12) is independent of choice of Y, as long as
Iso(Y,) = Iso(SU).

PrOOF. The indeterminacy of Y, amounts to the addition of a closed PL
G-manifold M, with Iso(M ) < Iso(SU). Thus we must show that
e(U)-signg(M) = 0.
for each such M.

Let g € G and denote by R(G), the localization of R(G) at the ideal of characters
which vanish at g cf. [4]. If U? = 0 then e(U)(g) + 0 so e(U) becomes a unit in
R(G),, and we must show that sign,(M) = 0. Since R(G), = R({g)),, we can
assume G is cyclic, generated by g.

Both the representation ring and the G-bordism groups are functors over the
Burnside ring A4(G) (via restriction and induction, cf. [28], [37]), and can be
localized at the prime ideals of A(G) ® Q. Let g(G) be the prime ideal of A(G) ® Q
consisting of virtual G-sets X — Y with #(X¢) = #(Y°). We localize R(G) and the
bordism ring of manifolds without stationary points, Q$(EZ), at q(G) and get:

R(G)yq) = R(G), = Qi)
QS(EP) ) = 0.
The first equation follows from [36]; the second is contained in [28].
Compose with

Fix": Z,(D* x SU,0) —» P r(D* x SUT, )
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to get an invariant py, for each I'elso(SU). We set
(7.14) =Y pyroFix": (D" x SU,8)» Y° RO (W ® Q

with summation over the conjugacy classes in Iso (SU).

§8 The structure set for spheres, away from 2.

In this section we work under the inductive assumptions (7.1) and (7.4) about
the connectivity of the PL Stiefel spaces and the structure of normal invariants.
Our main result is that

(D x SU,0) ® Z[4] - F4(D* x SW,0) ® Z[4], k> 0,

is an isomorphism for each pair of RG-modules U < W with U% = W¢ = 0 for
which R* @ U and R* @ W are topological stable. As a corollary we obtain

. (PLg(T)/PLg(V) ® Z[4] = 0 for k < dim V¢

for stable representations V = T with Iso (V) = Iso(T) giving the (odd-local)
inductive step for proving (5.1).
We fist consider the equivariant surgery obstruction

A Ng(D¥*Y x SU,0) = L imlG) = i m(G,D¥* x SU)
with m(I') = dim U", (I e Iso (SU)). Under the identification
(8.1) LG ®Z[H] = ¥ LisminZIWI) @ Z[4]
= Y RO (WD) ® Z[4]
the surgery obstruction becomes
Mfy ] =Y signyr(MT)

for each U-restricted normal map f:(M,dM)— (D**! x SU,J)with k=0
(mod 2).

Here and below all sums are over the conjugacy classes in Iso (SU).

THEOREM 8.2. There is a commutative diagram

FeD*1 x SUID) ®Z[H] —— T LoumnZIWI) ®Z[4]

= |o = |

YOKOR#1(SUTZ[1]) —2— YPKORZDU,SU;Z[})).

where o is the isomorphism from (7.6).
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Proor. The theorem will follow directly from Proposition 8.8 and Lemma 8.9
below.

Assumption (7.1) implies that Thom spaces of oriented PL G-bundles over
spaces Y with Y¢ = ¥ are K g-oriented away from 2 (cf. [26, sect. 6]). Applied to
normal bundles of PL G-manifolds this leads to K§-homology orientations for
oriented G-manifolds.

Let Y be a PL G-manifold, possibly with boundary, but without stationary
points. Choose an embedding of Y in a large RG-module, say

(Y,0Y) = (DV,SV),
with PL G-normal bundle v. The resulting map
DV/SV 2P 1) 228, T A Y/OY

gives equivariant S-duality. Specifically, slant product with the class of
K{,(DV,SV) which corresponds to 1€ K§(pt) under Bott-periodicity, gives an
isomorphism

(8.3) RG™TORZ) —=— K (v,0v;Z[})).

Here m = dimv and n = dim Y. Let [Y]eK&(Y,0Y;Z[4]) be the class which
corresponds to the Thom class 4, Kg(T'v; Z[4]). Then cap product with Yindu-
ces Poincaré duality

(8.4) NIYEKG(Y;Z[4)) —= KS_(Y,0Y;Z[4)).

Indeed, the map in (8.4) is equal to the map in (8.3) composed with Thom
isomorphism.

For maps f:M — Y between G-manifolds (without stationary points), we
define the Gysin homomorphism f,, so that the diagram below commutes

Ki(M;Z[}]) L K Z[4)
lm[M] [nm
KE_ (M, oM;Z[4]) —L— K& (Y;0Y;Z[4])

(r=dimM — dim Y).
When Y = pt, ¢: M — pt gives the topological index homomorphism

0. KoM Z[4]) - RG® Z[4].
With our choice of Thom class 4 the G-signature theorem becomes (cf. [26]):

THEOREM 8.5. For PL G-manifolds (without stationary points) signg(M) =
@(1).
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Of course, (8.5)is also true if M® + (¥, but this requires the connectivity results
for Stiefel spaces we want to prove, or a different argument altogether.
Let (,): Kg(M) @ K§(M) — K$_ (pt) be the Kronecker pairing. Then

¢(x) = {x,[M])

We have formulated the above in K¥( ;Z[4]) but could as well have used
KOgZ( ;Z[4)). In fact, the Thom class 4; lies in KOG(T¢;Z[4]) when m = dim &.
Therefore we also have

[M]1eKO;(M;Z[3]) = K¥(M;Z[4)).

In our calculations below it will be convenient to express the basic surjection of
[22], and used in sect. 6 above,

1: KOE(X; Z[4]) » Homgg(Q5(X), RO4(G)

in terms of the Gysin homomorphism. The formula is

(8.6) HEOUM, ) = . f*(©) = {f*(©).[MD

where {M, f} € Q%(X)and £ e KO¥(X;Z[4]). Thisis a consequence of (8.5),and is
left for the reader. Let

MY, fTMRU-STY®!, (@Y = Q).

be a reduced normal map with Y stable, i.e. 10 < 2dim Y¥# < dim YX, and
Y% = @f. We get an element 5(f, f)e[Y/d, F/PL]® and can apply o, cf. (5.11),
(7.6).

PROPOSITION 8.7. In the situation above
owro Fix" (n(f, 1)) = (fN(1) — 1
where 1€ KOy, (YT, Z[1]) is the trivial line bundle.

ProoFr. It suffices to do the component corresponding to I' = 1. By definition
of ag,

@o(n(f 1)) = signg (M) — signg (Y).
On the other hand, (8.5) gives
@(fi(1) — 1) = signg (M) — signg(Y),

so ag(n(f, /) and f(1) — 1 define the same homomorphism from Q5(Y) to
KO¢ ® Z[4]. Hence the two elements agree in KO%(Y;Z[4]), modulo the
subgroup

Extgoe(KOg(Y), KOS ® Z[4)),
(cf. (6.5)). In the universal case Y = F/PL A (E®), (? = family of all proper
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subgroups) the ext-term vanishes by (7.4), which identifies Y with a suitable
classifying space, and by calculations from [44].

The surgery invariant A(f, f) of a G-normal map f:(M,dM) - (X,d0X) is
a difference of G-signatures because G has odd order:

o . .
A= Z (signwr(M") — signy (X")).
PROPOSITION 8.8. Suppose X is a stable PL G-manifold without stationary
points. There is a commutative diagram
G 14 3]
[X/0X,F/PL]® —— 3" KOwr(X,0X;Z[4])
®
A Y =X

YO (RWI) ® Z[4)).

PrOOF. Let f:(M,0M)—(X,0X) be a normal map and n(f, f)e[X/0X,
F/PL]¢ its normal invarint. Consider the induced normal map (F, F) over the
double X U, X,

FFMu, X - XX, F=fuid.
Then n(F, F) = j*n(f, f) with
j*:[X/0X,F/PL]® - [X u, X, F/PL]C.

induced from collapsing the second summand X. Let ¢: M U;; X — pt, and note
that

@, F(1) = signg (M U, X) = signg (M, M) — signg (X, 0X).

The last equation follows from Novikov’s additivity lemma for signatures, cf. [7].

The top component g, of o:[X Uy X, F/PL]¢ > KOgx(X u; X;Z[4]) maps
J*(n(f, £) = n(F, F)to F(1) — 1 by (8.7). But {1,[ X u; X]) = 0, because X U X
is a boundary. We have left to check commutativity in

KO4(X,X;Z[4]) —L— KO4(X u; X;Z[3])
GIXD / GIX G XD

RG®Z[}]
This follows because
KOS(X u; X;Z[3]) —=— KOS(X,0X:Z[4)
maps [X U, X] to [X].
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LEMMA 8.9. Let Y = D**! x SU. There is an exact diagram
KOG(Y,0%;Z[3) <2 KOGV *(pZ[3]) —“> KOg*(pt;Z[4))
KOg*"!(SU;Z[4]) —— KOg"DU,SU;Z[}]) —— KOGDU;Z[4))

where e(U) is the K-theory Euler class.

ProoF. Consider the commutative diagram:

KOGHDU,SU;Z[}]) «— KOG* ! (SU;Z[}]) —%— KOg(D**! x SU,3;Z[4])

~

(=[DU]) |<{-.[SUD (=YD

KOI((;+IU| (pt;Z[4])

Since { —,[DU]) is equal to the Thom isomorphism KOz*(DU,SU;Z[}]) =
KOg* W(pt; Z[4]), the result follows from the exact sequence in K-theory for
the pair (DU, SU).

Multiplication with (U") € RO, (W) ® Z[4] = KO ™™ (pt; Z[4]) defines
a homomorophism

e(U"): RO 3 4 mr(WT) @ Z[3] » RO,(WT) ® Z[4]
Its image is denoted {e(U")) and its kernel Ker e(U"), so
RO 4 mr(WT)/Kere(UT) = (e(U")).
By ‘8.8) and (8.9) the surgery exact sequence (5.12) applied to D* x SU breaks up
into exact sequences:
0 YUy —2n Po(D* x SU,0) ®Z[4] ——
(n

(8.10) Y KOz (SU",2[4]) - 0

()
(D™ x SU,0) ® Z[4] = 0.

We want to solve the extension in (8.10). To this end we use the g-invariant
from Z,(D* x SU, ) to ZQ RO(WIN ® Q, cf. (7.14), and a second invariant, 7,
which we now define. Let RO, (G, U) be the kernel of the restriction map from
RO, (G) to li}g RO, (I), I eIso(SU). There is an exact sequence

0-RO4(G;U)® Z[}] = RO,(G) ® Z[1] -
Free (RO,(G)/<e(U))) ® Z[4] -0
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where Free A = A/Tor A is the free quotient of the abelian group in question.
Indeed, the restriction

Res: RO,,(G)/<e(U)) — li(r_n RO, (I

defines a rational isomorphism, and hence a monomorphism of the free part.
(Localize at prime ideals, cf. [36]. Since

KOg?(SU;Z[4]) = (RO(G)/<e(U))) ® Z[4]
the torsion free part of the normal invariant defines
(8.11) #: P(D* x SU,8) ® Z[4] — Y. Free (RO, (WI)/e(UT) ® Z[4].
Note that
= Ze nwro Fix".

The p-invariant can be calculted on the subgroup Image () in (8.10). Indeed,
there is the following straightforward generalization of (3.8):

Lemma 8.12. joa(Y° x;) = Y2 x, e(UT).
Consider the suspension
2% (SU x D*,0) » F(SW x D*9)
with W = U @ x and x° = 0. There is an obvious commutative diagram
oD x 8U,0) —— Y KO *SU";Z[4])
(8.13) 1 z W Res
So(D* x SW,0) —— Y KO {SWTZ[1]).
In particular, if Iso (SU) = Iso (SW) then
ok =1,

since Res in (8.13) is then an isomorphism of the free part.
Here is th key result, generalizing Lemma 3.9:

LEMMA 8.14. Let W = U @ y with ® = 0, and let xe RO, . ,(G). For g€G,

() Pe(Zoug(x)(g) = e(U)g) x(g) if e(x)(9) + O
=0 ife(x)(g) =0
(i) 7g(Z oag(x))(g) = e(U)(g)x(g) if e(x)(g) = 0.

PrOOF. For the first equation we use (8.12) and

Pe(Z(ag(x)) = ‘:Tﬁc(ac;(x)) signg(M,)- e(x),
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where M, is a G-manifold with the same isotropy groups as S(y) and
OM, = r-S(x), cf. the proof of Lemma 3.8. Form M, = M, ur-D(y). It has
r stationary points and signg(M,) = signg(M,). The G-signature theorem applies
to show

signg(M,)(g) = r-e(x)(9)~ ' € R(G),.

Now (i) follows.

The proof of (ii) is more involved. Let C be the cyclic group generated by g.
Since e(y)(g) = 0, x° + 0 and SW = SU *Sy has a C-fixed point x,. The normal
invariant takes values in KOg 2*(SW;Z[}]) and we are interested in its image
under the composition

KOg?H(SW:Z[1]) —"— KOG *(SW:Z[}]) —=— KO ™(x0:Z[4))

Since the whole surgery sequence is natural under restrictions to subgroups we
can replace G by C for the rest of the argument. Note C # G since x¢ = 0,50 one
has C-transversality by (7.1) and [26].

Let f:D* x SW — D* x SW represent an element [ f]e £ (D* x SW, ).
Then A([f])e KO¢ ?*(xo;Z[3]) can be calculated geometrically as follows.
Choose a closed C-manifold P with signs(P) = 1 such that

f(P):P x D* x SW - D* x SW —L Dp* x ST

can be made transverse to D** x x,. Let X = P x D?* x SW be a transverse
pre-image of D?* x x,; then

(8.15) ficlf] = signc(X)eRC® Z[4].

The C-cobordism class of X depends on P but its index does not, since we use only
manifolds P with sign.(P) = 1.

Let h:SE—-D* x SU represent [h]e %;(D* x SU,0);  actually
SE = D** x SU, but we choose to write SE to separate the range and domain of
h notationally. Let

Dh:DE - D** x DU, DE = D* x DU

be the construction from (2.14). It restricts to h on SE and to a PL-homeomor-
phism on $2*~! x DU.
Choose a suitable P as above, so that

Dhp:P x DE —2— DE -2 D* x DU

can be made C-transverse to D?* x 0.Let X = P x DE be a transverse preimage.
Then

fic(Z([h])) = signc(X).
On the other hand, suppose the structure [SE, k] is in the image of



ON THE CLASSIFICATION OF G-SPHERES II: PL AUTOMORPHISM GROUPS 207

ac: Loy 4 m(ZC) = P (D* x SU,0), m=dimU.
Each element x of the L-group can be represented by a C-map,
F:(N;0,N,0_N)—(D**! x SU; D% x SU,D?* x SU)

by the equivariant version of Wall’s realization theorem (cf. [38, Ch. 9] and [13]).
Then

(@) (0+N,0.F) = (SE,h),
(b) 0_F is a PL-homeomorphism,
(c) signg(N) = x.
Consider
N, =NuD* x DU, F,=Fuid.

Its boundary is §?* !« SU and F,:N, - D** x DU is a PL-equivalence in
a neighbourhood of D?* x 0. We glue N, to D(E) to obtain

Fy:N, U, D(E) - §%*x SU.

Then take cartesian product with P and make the resulting map (F,), from
P x (N, UyD(E)) to S**xSU transverse to S** x 0. The inverse image is
C-cobordant to X U, D** and it has trivial normal bundle U in N, u; D(E). By
the C-signature theorem,

sign (X U, D*) = e(U)(g) " sign,(N, U, DE).
where g generates C. But
sign, (N) = sign,(N, U, DE)

is the element x(g) in the formula we want to prove, since the identification of
Ly 1 10(ZC)oaq With KOy 271U (pt) 44 is via the signature. Finally, sign,(X) =
sign,(X U DY)

REMARK 8.16. The formula (i) in Lemma 8.14 implies that pg: P (D3 x
ST,d) - R(G) ® Qs not in general Z[4]-integral. Indeed for G = Z/p?, let ¥ be
a faithful character, and take U = n-y and x = y'?, where x(g) = ¥(g").

Suppose 2k + m = 0(mod 4) so in (8.14), xe RO(G) ® Z[4]. For x = 1,(8.14)
(i) gives

Bo(Eag()T) = (€ — 1/ + 1y, { = emir
Be(ZC,)(T?) =0

for a suitable generator T eZ/p?. Let @ be the p’th cyclotomic polynomial;
D(x)=1+x+...+ xP~!. Then
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1
P(Zag(l)) = — 1y + 1)"'(1 - ;‘P(x))

and this expression is not in R(Z/p?) ® Z[4].

THEOREM 8.17. Suppose U = W are RG-modules with US = WS = 0. Let k be
a positive integer and assume V @ R?* and W @ R are both topological stable.
Then

(i) Z:P4(D* x SU,) ® Z[1] » F¢(D* x SW,0) ® Z[4] is injective
(i) #oZ surjects onto ZQ KO, #SW";Z[4]), (Ne(Iso(SU))
(iii) 2 is an isomorphism if Iso (W) = Iso (U).

Proor. It is direct from (8.13) and (8.14) that X is injective: if 2(y) = 0 then
y must be in the image of a by (8.13), say y = a(x), and 2 o a(x) = 0 implies that
e(UT)(g)x"(g) = Oforallge WI'. Thus e(U")- x; = 0 and hence x; = 0in {e(U"))
forall I'.

The surjectivity of X is harder. Suppose 1 € Iso (SU) and consider the compo-
sition
RO, 4 y(G)/Kere(U) —S— Fy(D** x SU,0) @ Z[}]

l z
So(D* x SW,0) ®Z[4] —— KOg*(SW;Z[}])

It maps into {e(U))/{e(W)) by (8.13). We show it maps onto. Consider first the
map into the free quotient. Since

Res: Free RO,(G)/{e(W)) — Z‘B {R(C)| C cyclic, W€ # 0}
is injective it follows from 8.14 (ii) that
ngoZoag(x) =elU) x

in Free (e(U)>/<{e(W)>. Hence Free (n; 0 Z o ag) is onto.

Second, if W =U @ x the subgroup RO,(G; ) = RO,(G) projects onto
the torsion subgroup of RO,(G)/{e(y)), and e(U)RO,(G;x) projects onto
Tor (Ce(U)>/<e(W )).

For xe ROy 4 y)(G; x)/Ker e(U), (8.14(1)) gives

P o0g(x)) = x - e(U).
The subgroup
X = Z0a6(RO 4. /(G x)/Ker e(U))
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contains the image of
#6: ROy 4 i (G/Ker (W) — F5(D* x SW,0) ® Z[3]
by (8.14) and because g is monic on each of these subgroups. Since

0 - Tor (X/Imag) —<— Tor (e(U)>/<{e(W)))

j bo
Tor (e(U)/<e(W)))

|

0

is exact, and since all groups are finite both maps must be isomorphisms. Thus
figo X is surjective. The same works for the other components, proving (ii).
Finally (iii) follows from (8.10) and (8.14). O

COROLLARY 8.18. The structure set F5(D* x SU,3)® Z[}] is torsion free
whenever U @ R is topological stable.

ProoF. Using induction over |G| and (8.10), we may assume that the torsion
subgroup of #;(D** x SU, d) maps trivially under n o Fix" to KO, 2*(SU, Z[4])
forI' + 1. Thus we may assume 1 € [so(SU), and the torsion group injects into the
component KOg 2%(SU; Z[4]).

Choose an RG-module W with W @ R?*stable, U = W, and such that W con-
tains each irreducible representation. By (8.17(i))

5. 2D x SU,8) ® Z[4] —» (D> x SW,0) ® Z[4]

is injective. If G is not cyclic, then W? % 0 for any g€ G, so e(W) = 0. Thus

KOg¢ *(SW, Z[4]) is torsion free, and the same must be the case for the structure
sets.

If G is cyclic, choose W = U @ g with y a(large) free representation. Again X'is
an isomorphism, and by (8.14(ii)) the composition

FD* x Sy, 0) ®Z[4] —Y— Fa(D** x SW,0) ® Z[4]
5, KOg?*(SW;Z[}])

is surjective. Since X is injective and Fu(D** x Sy,0) ® Z[4] is torison free by
(3.11), the result follows.

COROLLARY 8.19. Let V < T be a pair of topological stable RG-modules with
Iso (V) = Iso(T). Under the assumption of (7.1) and (7.4),

1 (PL&(T)/PLg(V) ® Z[] = 0 for k < dim V& — 1.
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Proor. This follows from (1.4), (2.6) and (8.17), just as in the relatively free
case treated in (3.12).

§9 The 2-local structure set.

This section examines F(D* x SU, ) ® Z,, when U® =0, and |G| is odd
under the assumptions (7.1) and (7.4). The main result is that suspension is an
isomorphism in the usual stability range.

The space F/PL is a G-infinite loop space, [45]. This implies there are
homomorphisms

Ind$: [D* x SU/a, F/PL]# — [D* x SU/d, F/PL]®

is surjective. Since Xy, is injective and F,;(D?* x Sy, d) ® Z[4] is torison free by
(3.11), the result follows.

COROLLARY 8.19. Let V = T be a pair of topological stable RG-modules with
Iso (V) = Iso(T). Under the assumption of (7.1) and (7.4),

n(PLG(T)/PLg(V) ® Z[1] = 0 for k < dim V¢ — 1.
Proof. This follows from (1.4), (2.6) and (8.17), just as in the relatively free
case treated in (3.12).
§9 The 2-local structure set.

This section examines F5(D* x SU,0) ® Z,, when U® = 0, and |G| is odd
under the assumptions (7.1) and (7.4). The main result is that suspension is an
isomorphism in the usual stability range.

The space F/PL is a G-infinite loop space, [45]. This implis there are homo-
morphisms

IndS: [D* x SU/d, F/PL]¥ — [D* x SU/8, F/PL]®

which together with the obvious restriction maps Res# and the conjugation maps
C, make H — [D* x SU/0, F/PL] into a Mackey functor. From [28] we then
have:

THEOREM 9.1. There are isomorphisms

(i) Res:[D* x SU/3,F/PL], —=— lim [D* x SU/d,F/PL]{,
H

(i) Ind: lim [D* x SU/o, F/PL]G, —= [D* x SU/d, F/PL]E,
H
where H elIso (SU).

Let V=R*® U. Then SV/S* ! ~;D* x SU/d, and if SU” + & for some
subgroup H,
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SV/SF" 1~y SV v Sk
Consequently
9.2) [D* x SU/o, F/PLI" =~ [SV,F/PL)" @ m,(F/PL").
On the other hand,
LEMMA 9.3. For topological stable representations V with VS £0, #,(SV) = .

PROOF. Let > M" — SV represent an element af Z,(SV). By definition, the local
linear structure of M and SV agrees. We remove disks around two stationary
points x, ye MS. The resulting manifold M, = M" — D"(x) — Dr(y) is G-simple
homotopy equivalent to SV, x I, V, ® R = V. From the equivariant s-cobor-
dism theorem, M, is PL-homeomorphicto SV, x I. Thus M = DV,; u, DV, is the
twisted double along an equivariant PL-homeomorphism of SV,. Since hextends
to DV, via coning, M will be PL-homeomorphic to SV = DV, u, DV,. Finally,
the G-homotopy classes of G-homotopy equivalences of SV are enumerated by
the units 4(G)™ in the Burnside ring. But G has odd order, so A(G)™ = { +1}.
Hence each G-homotopy automorphism of SV is homotopic to a diffeomor-
phism, and represents the trivial structure.

Let H eIso(SU). Consider the commutative diagram
Fy(D* x SU, d) —  F(SV)
I L1
[D* x SU/o, F/PL]* —— [SV,F/PL]#
: /
L +x-1(H).
The lower horizonal map is induced from the projection p: SV — D* x SU/d, the
upper one maps a structure f:(M,d) — (D* x SU, d) into the structure
fuid:M U, S¥71 x DU - SV,

and the maps  and / are from the surgery exact sequence. The previous lemma
asserts the triviality of Z,(SV), so using (9.1) and (9.2) we get:

COROLLARY 9.5. The2-local surgery exact sequence for D* x SU takes the form

0— $‘+m(G)(2)/li_IP L+ mH)2) —— (D x SU, 02
H
LN liLn m(F/PLY) 5, — 0
H

Here m is the function on (Iso (SU)) which maps the conjugacy class (I') to dim U".
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The domain of a in (9.5) is torsion free when (k + m) is even, since the
Arf-element is divided out. Indeed L,,(Z[WH]) = L, (Z[W H])/L,.(2) s torsion
free, detected by the equivariant signature,

sign: Ly, (Z[WH])/L,(Z)— RO (WH)/RO (1)
by results from [36], [39]. Combined with (8.18) we get

THEOREM 9.6. Under the assumptions (7.1) and (7.4), F5(D**! x SU,0) =0
and F5(D** x SU, d) is torsion free.

LEMMA 9.7. The quotient R(G)m/li_ry R(H),y, is torsion free, and e(U) defines
a unit. H

Proor. Since R(G),,, = li_rp R(C)(;, with C running over the cyclic subgroups it
is enough to do the case where G is cyclic. Then

RO = [12)[C1, |Gl
where {, is a primitive r’th root of 1. Therefore,
R(G)a/lim R(H) 5y = [1 25 [C,],

where s runs over the divisors of |G| which do not divide any |H|. The image of
e(U)inthefactor Z,, [{,] is equal to the character value e(U) (g), g € G any element
of order r. But e(U)(g9) =0 if and only if U? £ 0. This happens only when
g belongs to some isotropy group H. Thus the projection of e(U) into Z,,[{,] is
a product of terms of the form ({{ — 1)/} + 1) with {! # 1. Such elements are
units.

PROPOSITION 9.8. With the assumptions of (8.17), the suspension
I: F5(D* x SU, Q) — S5(D* x SW,d),,,
is an isomorphism.

ProOOF. The normal invariants lim ,,(F/PL¥) are the same for the two struc-
tures, and the triangle

P (D™ x SW,3),

12 /. lim 7, (F/PLY),,,
Fo(D* x SU,8) "

is commutative by the 2-local analogue of (8.13). Thus it suffices to see that the
two images of « in (9.5), Im «¥ and Im ", correspond under suspension.
Let W =y @ U. Since W and U have the same isotropy groups; (8.14) gives:

pg(Zo O‘g(xG)) = ¢(U)signg (xg),

with a similar formula for the other components of p.
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V!e show X is surjective. For each ye iz“lw,(ZG)(z, we can find
X € Loy +11(ZG) 3y with signg(y) o e(y) = signg(x). Then
Pe(Zag(x) = fglag (¥)
by (8.12).
Since
Pgoag: sz+|W|(ZG)(2;/“_1}1 L2k+|W|(ZH)(2) — RO,(G),y)

is injective, (9.7), £ ag(x) = ag (y). Hence X is surjective. The proof of injectivity is
similar.

The argument used in (8.19) works equally well for the 2-local case, so
altogether we have

CoROLLARY 9.10. Under the assumptions of (8.19), PL4(T)/PLg(V) is
(dim V¢ — 1)-connected.
§10. The final inductive step.

In the previous two sections we have worked under the two inductive assump-
tions (7.1) and (7.4). In (9.10) we concluded the inductive step for (7.1), giving the
right connectivity for the stable PL Stiefel spaces. In particular we have stable
G-transversality in the PL category, and consequently from sect. 5,

Aa(X) = [X,F/PL]C.

In sect 6 we defined the equivariant Sullivan mapping
o: Ao(X) = X7 KOyy(X"; Z[1]).

Our final inductive step is to prove:
THEOREM 10.1. Away from 2, ¢ is an isomorphism.

The proof of (10.1) follows immediately from (6.14) and the following result,
about the structure invariant form (6.11) and (6.13).

THEOREM 10.2. Let U be an RG-module with U® = 0 and suppose U @ R** is
topological stable. Then the structure invariant

& Z,(D* x SU,8) ® Z[4] » Y.° ROL(WH) ® Z[}],

(H)

(H)e(Iso (SU)), is an isomorphism.
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We first relate § to the invariants g and 7 of sect. 8. Each of the invariants is
a sum of components, one for each conjugacy class in Iso (SU). For convenience
we suppose SU has a free part (i.e. 1€lIso(SU)) and consider only the top
components:

§: F5(D** x SU,d) » RO, (G)
P Fs(D** x SU,0) - RO, (G; U)® Q
fig: P6(D* x SU, ) - Free (RO ,(G)/<e(U))).

LEMMA 10.3. For [t]e £4(D* x SU,d) and g€ G the following character rela-
tions hold:

(1) Se(Lt)(9) = pe(tD9) if U =0
(i) 35([tD)(9) = 7ig((tD9) i U, * 0.

PROOF. Recall (from sect. 2) that each [t] e Z4(D** x SU, d) is represented by
the restriction of a G-map

Dt: D** x DU — D** x DU
with to = Dt|S*~! x DU a PL-homeomorphism. Let
DX(t) = D* x DU u, D* x DU
and extend Dt to G-map
T:DX(t) > $** x DU.
For suitable P (with signg P = 1) we get a transversal diagram

P x DX(f) —2— S%* x DU
V] M (V]
M — S , T, = Toproj.

Then §4([t]) = signg(M), and #4([t])(g) = signg(M)(g) whenever U? = 0, cf. the
proof of 8.14 (ii).

Second, let g € G be an element with U? = 0, and hence e(U)(g) + 0. We have

1
Pa((t])(g) = —signg (Y(1))(9) e(U)(9)
where
oY, (t) =r-0DX(t), Iso(Y,(t)) = Iso(SU).
Form the closed manifold Y(t) = Y,(t) usr- DXt) and note that

signg(¥,(1)) = signg(Y,(1)).
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The left hand side can be calculated from the PL G-signature theorem (8.5) and
the mappings

rM —Y Px %) —% pt.
We localize at g e G and consider Kg(X),, cf. [4]. Since y*i(x) = e(U)- x,

i Kolr- M), - Kg(P x Y1),
maps e(U) ! -1 into 1. Hence
ah(e(U) ™1 1) = py(1) = sign, (P x Y,(0)) = sign,(¥,(1)).
On the other hand, ¢ oy, = (p oY), and
(@oy)(e(U) ™ )(g) = e(U)g) ™" (9 oy)(1)(g) = e(U)(g) ' -sign,(r- M).

This gives the required formula:

r-signy(M)-e(U)(g) " = signy(¥,(1)).

PrOOF OF (10.2). The structure set 5(D?* x SU, d)is torsion free and detected
by the inariants g and 7. Hence § is injective. We have the diagram

0 Y7 e(U™) @ Z[4] - (D™ x SU,0) @ Z[3] - ¥.” KOy 2(SUM Z[4]) — 0

| |s s

0 Y Ce(UH)> ® Z[1] - ¥° ROWH) ® Z[3] - ¥° RO(WH)/{e(U%)) ® Z[4] -

with §induced from §. The range and domain of § are abstractly isomorphic, and
since § is injective, it maps the torsion subgroups isomorphically. The composite

§ F5(D* x SU,8) ® Z[3] ~ Y.° Free (RO, (WH)/{e(U"))) ® Z[4]

is equal to #, so it is onto by (10.3) and sect. 2. Hence § must be surjective.

We end the paper by summarizing our results on the homotopy groups of
FG/PL and F;/PL; when |G| is odd.

Let U be a fixed RG-module with U @ R?* topological stable and U® = 0. Let
m: (Iso (SU)) — Z be the dimension function, m(H) = dim U¥. We have the asso-
ciated (simple) equivariant L-groups

%(G;SU) = Y7 LyZ(WH]), (H)e(Iso (SU))

(H)

£ WG U) = ¥° Lo @IWH]), (H)e(lso(U)).

(H)

With the notation of (6.10) we have
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THEOREM 10.5. (i) nk(FG(Ug")/PIG(U(?)) = P+ mlG; SU).
(i) m(Fg(U™)/PLG(U%)) = L4 m(G; V).

PRrOOF. We prove (i). The space F(UZ)/ PfT,(U(‘;O )is a G-infinite loop space, so the
homotopy groups of its H-fixed sets become a Mackey functor on Iso (SU). In
particular, we have the decomposition (cf. [28]):

T F(US)PLGUE Ny = ¥.° mlFe (U )/ PLG(UE e 20

(H)

= YO mF(US)/PLy(US)A.,

(H)

associated with the maximal ideals in the Burnside ring of G-sets with isotropy
groups in Iso (SU). There is a similar decomposition

& w(G;8U)y = Z Zn(G; SU)yn, 2

Z w(H:; SU)H, 2)

Thus it suffices to consider the ‘top’ component associated with the maximal ideal
q(G,2). This component may alternatively be described as the kernel of the
restriction map to all H € Iso (SU). Our suspension result (9.8) together with (6.10

(i1)) gives
T F(US)/PLG(UE)) = o(D* x SU, )
and by (9.5),
Fo(D* x SU,0)y6.2) = (Li+ m(G; SUN/im Ly m(H; SU)yi6.2)
= Zi+m(G;SU) 46, 2)-

This proves the 2-local part of (i). Localized away from 2, (i) is a consequence of
(10.2). Finally, (ii) follows from (i) and (6.10).

REMARK 10.6. The structure invariant describes the structure set localized
away from 2, and even at 2 in degrees congruent to 0 (mod 4). Indeed,

§ Z:(D* x SU,0) —=— 420,,(G)

where 20,,(G) = ¥.° (1 + (= 1)"®y ~YR(WH).

(H)
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