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INVARIANCE PRINCIPLES FOR BROWNIAN
INTERSECTION LOCAL TIME AND POLYMER
MEASURES

ANDREAS STOLL
Abstract.

The goal of this article is to give a nonstandard representation of the two-dimensional Varadhan-
Edwards-Symanzik polymer measure by a hyperfinite Domb-Joyce model. From the standard point
of view, our representation contains a new invariance principle for weakly self-avoiding or self-
repellent random walks. An important step towards this result is to give a nonstandard construction
of Brownian intersection local time ind < 4 and of its renormalization in d = 2. Again we obtain new
invariance principles similar to that in the one-dimensional case which Perkins deduced from his
nonstandard approach to Brownian local time. Besides the new invariance principles, our nonstan-
dard aproach recovers the already known existence results for the limiting objects.

0. Introduction.

The statistical description of polymers requires a probability measure v which
takes into account the ‘excluded volume effect’, i.e. the repulsive self-interaction
of a polymer chain, which is caused by the fact that a polymer cannot loop back
and cross itself. Thus Edwards [8] proposed the following polymer model: Equip
the Wiener measure u on the path space C([0, w], RY) with the formal density

dv 1
(1 E;(w)=—Z~CXP[—gJ(w)],
where the funtional
() J(w) = j i ds JW dt 8(w(t) — w(s))
0 0

is intended to measure the time which a Wiener path w spends at its double
points, the constant g e R, gives the strength of the self-repulsion, w is a positive
real, and Z = [exp(—gJ)du is the normalization contant. In dimensions d = 2
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and d = 3, Varadhan [23] respectively Westwater [25], [26] could rigorously
establish the polymer measure v as weak limit of polymer measures v, where the
J-function is replaced by a continuous approximation f,. Then the functionals J,,
tend to infinity, but in dimension d = 2, the [*-limit of J, — E[J,] still exists and
can be used for constructing the appropriate density dv/du (see Varadhan [23]),
whereas indimensiond = 3 the Westwater measure vis orthogonal to the Wiener
measure u (see Westwater [26]).

By nonstandard analysis, we can give a precise meaning to Edwards’
heuristic approch. Choose a hyperfinite time line T = {n4t:ne *N,) with infini-
tesimal spacing At > 0 and a hyperfinite lattice I = (n,4x,...,n,4x):n,€ *Z
(1 =1,...,d)} with spacing 4x = \/I The Brownian motion is represented by
a hyperfinite random walk on I', as it was first done by Anderson [2]. Therefore
we choose an internal probability space (22, 4, P) on which there exists a *inde-
pendent internal sequence (,),.; of random vectors &: Q — *Z¢ with identical
distribution Po ¢, ! = *Q. Define the internal process B: T x Q — I by

t—Aat

A3) Bt w) = Y AxE(w),
s=0

where Y means ) ; in particular we have (0, w) = 0. Let (2, A, P) be the Loeb

s seT
space induced by (2,4, P), i.e. A = L(4), P = L(P). We impose the following
restrictions on Q:
(Q0) Q is aperiodic in the sense that Z? is generated (as a group) by

@) Y.(Q): = {xeZ" Q{x} > 0}.

(Q1) There exists a positive real ¢, such that Q{xeZ%|x| 2 ¢,} = 0,i.e.
Q charges only a finite number of points.

02) E(Q) = Y. [xQ{x}[xeZ] =0.

Then it is well known that the hyperfinite random walk f§ has a projection
W: [0, oo[ x 2 = R? which is a d-dimensional Brownian motion on the Loeb
space (€2, A, P) with covariance matrix

) Cov (W) = Cov(Q);, = Z [x;xi Q{x} | xeZ%,
(6) i.e. °f(t,w) = W(t,w) (tens(T))

for P-a.a. w e Q, where °t = st (t) denotes the standard part of t and ns(t) is the set
of nearstandard points in T,

Furthermore, in order to interprete formula (2), we need a discrete version of
the d-function. If we choose
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{497 ifx=0
@ Ox):= {0 , otherwise (xeD),

the functional J turns into an expression, which simply counts the number of
double points of a given path, up to an infinitesimal constant (4t)>~%2. Thus,
according to (1), we define a new internal probability measure v on (2, 4) by the
internal density

®) di_;);(w) - —é—exp(—z [Gls.te T, fit,) = fis,w)])

where G € *R, is an internal coupling constant such that °[G/(4t)?~4?] = g, Z is
the internal normalization constant, and T,, = {te T :t < w}. Then, under the
probability distribution v, the internal process f§ is a hyperfinite self-repellent
random walk, i.e. the probability of a path f(-,w) decreases with the number
of its self-intersections. If § is a simple random walk, i.e. Q{x} = 1/(2d) for
xe{+e,, —ey,..., +e, —e,}, where e,,...,e, is the standard basis of Z¢, then
(B,v) is nothing else than a hyperfinite Domb-Joyce model (see [6]).

Our main theorem states that in dimension d = 2 the hyperfinite selfrepellent
random walk (f,v) has a projection whose distribution is Varadhan’s polymer
measure v, i.e.

) L) oW ™! =y,

where L(v) is the Loeb measure on (€2, 4) induced by vand W:Q — C([0, w), R?)is
deduced from the Brownian motion W by W(w):= W(:,w). This nonstandard
construction of the polymer measure contains more informtion than Varadhan’s
standard results in [23]. In the same manner as Anderson’s nonstandard repre-
sentation of Brownian motion implies Donsker’s invariance principle, we obtain
as a corollary that suitably scaled self-repellent random walks converge in
distribution to Varadhan’s polymer measure.

The crucial point in order to obtain (9) is to give a nonstandard representation
of the intersection local time

(10) I(B; x,w) = des fwdt x8(s, )0 (W (t,w) — W(s, w))
0 0

of Brownian motion, where y denotes the indicator function of a Borel set B and
0,(y) = 6(x — y). It will be convenient to have local times with paths in the
Banach space

Co(RLR) = {f:R? > R: f continuous, bounded, and f(x) - 0 as |x| - 0},
equipped with the sup-norm.

In general, if A is any finite measure on any compact, separable time set D,
we call a Cy-process : R? x Q —» R (i.e. with paths in Cy(R% R)) the C,-local
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time (respectively the renormalized C,-local time) of a continuous process
Y:D x Q — R? with respect to 4, iff for P-a.a. w e Q we have:

(11) Jl(x, w) f(x)dx = Jf (Y(t, w)) Adr)
respectively
(12) jl(x,w)f (x)dx = f L/(Y(t,w) — Ef(Y)] Adr)

e.g. for all continuous functions f: R —» R with compact support, where dx
denotes the Lebesgue measure on R%. Note that the (renormalized) Cy-local time
I of Y is unique up to indistinguishability, if it exists at all, and the existence
and distribution of I only depends on the distribution of Y. Moreover, every
he Co(R% R)induces a linear map ¥ — R, mo—»fhdm on ¥:= {m: m measure on
R4 with m(R% < 1} which is continuous with respect to the topology of vague
convergence on ¥. Therefore, if Y has e.g. a Cy-local time [, then the random
variable

(13) fZ—T(Y(t, w)Adt): = fl(x, w)dm(x)

. ..dm . . .
makes sense for every me V. In particular, if T d,,1.e. mis the Dirac measure
X

at x, then

Ix,w) = jé,‘( Y(t, w))A(dt).

In our case, we have D = [0,w]?> N B, 4 is the Lebesgue measure on D, and
Y((s,t),w) = W, — W,. Therefore [ is then called intersection local time of W.
Recently, various proofs (see e.g. Geman and Horowitz [10], Rosen [14]-[17],
Yor [27], [28], Le Gall [11], Weinryb [24], Dynkin [7], Shieh [18], have been
found for the following two facts:

(i) If d < 4 and W,, W, are independent Brownian motions, i.e.
B =[a,a] x [b,p] with0 <a<a<b=<b=<w,thenY hasa C,-local time.
(i1) If d = 2, then Y has a renormalized C,-local time.

However, by proving that these local times can be obtained by taking the
projection (i.e. pathwise standard part) of the obvious nonstandard objects
corresponding to formula (10) (as used in (8)), we show even more, namely as



INVARIANCE PRINCIPLES FOR BROWNIAN INTERSECTION . . . 137

classical corollaries we obtain invariance principles for these local times. In the
one-dimensional case, an invariance principle of this type was obtained for the
local time of Brownian motion independently by Borodin [3] and Perkins [13],
the latter using nonstandard analysis. Such a nonstandard proof mainly consists
in showing that the internal local time is S-continuous. To this end, we shall use
a nonstandard version of Kolmogorov’s continuity theorem. In order to obtain
the required estimates for the moments, the key idea is to use a discrete version of
the Fourier inversion formula, which is based on a simple algebraic fact about the
sum of unit roots.

The main estimates are contained in Section 1, where we finally arrive at the
nonstandard representation of the intersection local time of independent
Brownian motions in dimension in d < 4. Then, in Section 2, it is comparably
easy to derive analogous resuls for the renormalized intersection local time in
dimension d = 2 by splitting the square [0, w]? in Westwater’s manner (see [25]).
Finally, in Section 3, we only need an integrability argument in order to show
that (8) actually leads to (9). We shall solve this problem by using a nonstandard
version of Nelson’s trick (see [12]).

For a survey on polymer models, we refer the reader to Freed [9] and Domb
[5]. As an introduction to the nonstandard techniques in probability theory, we
recommend the books by Albeverio et. al. [1] and Stroyan and Bayod [22].
More references can be found in the survey article by Cutland [4]. Nevertheless it
is hoped that this presentation is accessible, at least on an intuitive level, to
a reader with little or no knowledge of nonstandard analysis. Instead of hyper-
finite models one may think of very fine discrete models and derive the same
estimates for them. In our opinion, nonstandard analysis helps to understand the
limiting procedures.

1. The Intersection Local Time for Independent Brownian Motions.

In this section, we work in dimension d < 4. We fix an internal @: T x T —»
*[0, 1] which will be used as ‘time weight’. Assuming the same setting as in the
Introduction, we pick a, d, b, be Tsuch that 0 £ a £ a £ b < b < w and define
for xel' and we Q:

(14) p(x,w):= pa(g,d,l_),l;;x,w):=

a b

Z' a4t Z, at @(S, t)(Ax)_dX(ﬂ(t,w)*ﬂ(s.m)=x)'
s=a t=b

Note that the internal process p:I' x Q — *R, simply counts (up to a con-

stant) how often the difference f(t, w) — B(s, w) has the value x. Our goal is to

show that p is S-continuous, i.e. that the paths of p are infinitesimally close (in the
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sup-norm) to continuous paths. Then we can easily identify the resulting stan-
dard C,-process as the intersection local time of W. We want to apply the
nonstandard version of Kolmogorov’s continuity theorem (see e.g. Albeverio et.
al. [1]), and therefore we need estimates on the moments E(p, — p,)*. Our main
technical trick is to use a discrete version of the Fourier inversion formula. This
requires the following ‘tuning parameters”

1.1. NotaTiON. (i) Let x be the smallest even *integer such that
kdt/2 > 1 v c;w, where c, is the constant in condition (Q1). Obviously « is
infinite.

(i) Let y = 2n/(k4t). Note that

y=m/(1 v cyw) > 7.
(iii) For ke N, put
e ={(n, 4x,...,n,4x): —kk/2 £ n, < kx/2,n,€*Z (1= 1,...,d)}.
Note that |f(t, w)| < (t/4t)c, Ax < kdx/2,1.e.
pt,w)el, forall we Q,teT,,.

1.2. PROPOSITION. Let 6:I'; — *C be internal. Define 6:I'y — *C by
6(y) = X (Ax)'a(x)exp(yix-y) (yel})
xsl“,
where x - y denotes the scalar product. Then

d
o(z) = (l) Y (4xY'é(y)exp(—yiy-2)

2n ) et
forall zerl',.

ProoOF. Inserting the definition of 6, we obtain:

(l) Y. (4x)6(y)exp(—yiy-2) =

2n ) et

d
(22) 5 o0 T expin-tx— 1)

xely yel'y

So it is sufficient to show that

27 \¢ i
ux,z): = Y exp[yiy-(x — 2)] = Sar =kl if x=2

yel'y .
0 , otherwise
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for all x,zeI',. Since

-1+k/2 -1+xk/2 d
x,z)= Yy ... Y exp[z yin, Ax(x, — z,)]
1

m=-x/2 na=-x/2 =1

d -1+«/2
=1 X explyindx(x,—z)],
=1 n=-x/2

we only have to consider the case d =1. Fix arbitrary x,zel’,

139

. Then

x —z = {Ax with {e*Z such that —(k — 1) £ { £ (x — 1). Hence k| {, iff { = 0,

i.e. x = z. This implies

-1+x2 -1+x/2 ”C
x,2)= ), explyinéd]l= Y exp[Zni—K—:I

n=-x/2 n=-x/2

{x, ifk|lie x=z

0, otherwise

By Proposition 1.2, we have

d
plz, 0) = <%> Y (4x)'p(y, w)exp(—yiy-2) (z€l),weQ)

yel'y

with

Ay, 0) = 3. (4x) p(x, w)exp (yix- y)

d b
Z Z At O(s, t) exp (il f(t, ) — Bls, )] y)

by (14). Therefore, we get for every keN and x,yel';:

(15) Elp.—p,) = (n> Y. (4x)*qwHw),

uell

where u = (uy,...,u,), [ = ('),

k
q(u) = [ [exp(—yiu;- x) — exp(—yiu;- y)],

i=1

a b k
Huw =Y 4y’ (At)z"[ﬂ 6(s), t,)] (s, t; u),
s=a t=b j=1

and

s, L) = [CXP(W Y. [B(t;) — Blsp]-u )]
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Now we can do some obvious manipulations, which lead to (18)+21).
Since B has *independent increments, we have

[T, t; )l < (s, (@,...,a)u)l |t(b,...,b),t;u)

Hence
[Hw)| = U(u): V(u)
with
U@ = ¥ (40F (s @ ..k u)
s=a
and
b
V) =Y (40t |t((b,...,b)t;u)l.
s=b
Moreover,

Uw = Y U,u),

oeT
where T is the group of permutations of {1,...,k} and
(16) Uw) = Y (4045, (@, ..., @) w) 1{a £ 5,00 S .. £ Sp S a),
$=a
and similarly for Hu). So (15) turns into

(17) E(ps — p,) g( ! ) Y Y (4x)%* |q@w)| U, @)V, u)

2n a,0'eT uell

(L) 3,

a,6'eT

IIA

by Holder’s inequality, with

M, = ¥ (4x)* |q@)| [U,w]

uel

and

N, = Y. (4™ |q(u)| [V,@)]*.

el

Fix 0 € T. Then (16) implies

a

Upt) = Y (4011(5, @,.... @50 W x{a S s, < ..

s=a

lIA
=

IA
&
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with 6u = (Ug(), . - -, Ugwy). Next we want to rewrite 7 (see(15)f.):

Z [B(a) — ,)] Uiy = Z Z [B(si+1) — ﬂ(sr)]’ua(j)

i=1 j=11=j

; < )3 am>‘[ﬂ(81+1) — B(s)]

1]
with s, ., := d. Thus we introduce the new variables v, = Y u €@, i.e. Uy =
j=1
vy (1=1,...,k)withvy:= 0.
Since § has *independent identically distributed increments, we have

k
T(§’ (d, . 96)9 Ju l:_l [exp ylﬁ(sj*l - j). vj)]’
and therefore

k 5~
(18) U = ] [ At|E [exp (yip, - v))]l]

I
Q o
~
i)
I3}
—

Consequently, the term M, in (17) can be estimated as follows:

< Y (4™ p)UG@E — gv) = : M@ — a)

vell -
withl'=T, x... x I, and

k
(19 pv) = l_I lexp [ —7i(v; — v;_ ) x] — exp [—»i(v; — vi—) vl
j=1

Note that M(a — a) does not depend on the permutation ¢. Similarly:
N, £ M(b — b). Therefore (17) implies

(20) |E(p, — py)*|<<2 ) (k!)? /M(a — a)M(b — b).

By analogy, we have

|E(p) < ( > (k)?/N(@ — a)N(b — b)

for all xeI',, with

N(a) = Y, (4x)*U(a; v).

vel’
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Now a difficulty arises by the fact that our random walk f in general is not
strongly aperiodic in the sense of Spitzer [19], e.g. the simple random walk can
reach ‘even’ lattice points only in an even number of steps. But the time weight
O(s, t) may be chosen to be zero, if the difference s — t is odd, so that p, is zero for
all odd x. Consequently, the paths of p are oscillating on I', i.e. p cannot be
S-continuous. However, the right hand side of (20) does not depend on @, so it
cannot give the estimate required by Kolmogorov’s continuity theorem. There-
fore, we have to divide I into sublattices depending on the properties of the
distribution Q which generates the random walk f. For ne N, and x, ye Z¢, we
write x —— y, iff there exist x,,..., x, € Z(Q) (see (4)) such that

Q

y=x+ x,. Let

=1

R.(Q) = {er":O —-5—* x for some ne NO}.

Clearly, R,(Q) is a semigroup and Z¢ is the group generated by R,(Q)
according to our aperiodicity assumption. In fact, by our assumptions on Q, we
actually have R, (Q) = Z%. This case is not covered by P2.5 of Spitzer [19]. The
elementary but somewhat tedious proof proceeds as follows: First modify the
proof of P7.1in [19] to find a basis x,,.. ., x, of Z¢in R . (Q); then exploit the fact
that E(Q) = 0in order to conclude that R, (Q) = Z°. In particular, there exists an
integer n > 0 with 0 —20. Let

Q

ri=ry = max{keNzo—g—+ 0 implies k| n (neN)}.

For:=0,1,...,r define
H(Q) = {er":O ﬂ_Qi'_b x for some ne NO}.

Using R, (Q) = Z“ and the definition of r, one can easily show that H:= Hy(Q) =

H,(Q) is a subgroup of Z¢, and Z¢ = Hy(Q) U ... u H,_(Q) is a disjoint union of
r copies of H. Note that r=ry,=r, and H(Q)=H,_(Q_) 1 =0,1,...,r),
where Q _{x} = Q{ —x} (xeZ?. Let Q, be the distribution of X — Y, where X, Y
are independent random vectors with distribution Q, i.e. 9, = Q *Q _. Notice
that R,.(Q,) = Ho(Q,).

1.3. LemMA. H = R . (Q,).
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PRrROOF. Let xe R . (Q,). Then there exists ne N such that 0 %' x and hence
n S

0——y —2 . x with some yeZ®. For some 1, we have ye H(Q) and hence

0 Q-
x — ye H(Q_) = H,_(Q). Conversely, if x € H, then there exist ne N, y e Z¢ such

that 0 —é—* E—Q:—l-* x. Then y mrtl, x for some me N,. For large enough
k,say k 2 ko, we have 0 %—» 0. Therefore 0 k'g Ly "'QJ“ L s ifk = ko + m

This implies 0 <=1 x ie. xe R, (Q,)

s

The further estimation of (20), (21) is based on an analysis of the Fourier
transform of Q.

1.4. NOTATION. (i) Define ¢: R? — [0, 1] by

1/2

d(x). = J exp (ix - y)Q,(dy) =

jCXP(ix *y)Q(dy)

(ii) Let H' be the dual lattice of H, i.e.
H = {xeR%x-yeZ for all yeH}.

Then H' is a lattice in R? with Z < H'.
(ili) Choose a basis ¢,...,€; of H'. Note that de; = ¢, (1 = 1,...,d) defines
a matrix A such that H = 4(Z% and r = det A. Thus H' = A~ !(Z%).
(iv) Let C be the ‘cube’
C={x¢+...+xepxe[-nn] (=1,..,d}

Then the following follows easily from Notation 1.4, Lemma 1.3, and T7.1,
P7.5 of Spitzer [19]:

1.5. LEMMA. (i) For all x,y e R?, we have:
x — ye2nH' implies ¢(x) = ¢(y).
(ii) For all x € RY, we have:
¢(x) = 1,iff xe2nH'.
(iii) There exists a positive real c, such that
1 — ¢(x) = c,|x| for all xeC.
Thus we have to adapt the variables v,€ I, in (19) to the lattice H":
1.6. NoTATION. (i) Define Int: R - RY, Frac: R* —» R by
Int(x): =[x, + 1/2]e; +... + [x, + 1/2]e;e H',
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Frac(x): = x — Int (x)eLC,
2n

where x = x,€; +... +x,6;€R? and [y] = max{neZn<y} (yeR).
Note that for every ke N:

{Int(x):|x-e| £ k(1 =1,...,d),xeR¥} | £ 2k + 1)*r.
Furthermore, there is a positive real c; such that
|Frac(x)| < c, for all xe R,

(i) For ve T, define &, § by

v v
b = kAx *Int D = *F —
v KAX™In ( >,U KAx rac( )

Now, if x/Axe*H and ve I, then

. ) .
; e*H’andhenceyﬁ-x=——( v )-(.’L)e*z

KAX 21 \ kAx Ax
(recall Notation 1.1), i.e. exp [yiv- x] = 1. Using the elementary inequality
It — €™ < 2IxI*|yI* (x€]0,1[ and x, yeRY),
we obtain the following estimate for (19):

1.7. LEMMA. Ifa€]0,1[,x — ye Ax*H, and vel, then
k
p(v): = [T lexp [—vi(v; — v;-,)- x] — exp [—yi(v; — v;_1)- ]I
j=1

<

—.

1]
—

[2y*(15;] + 15;- 1% Ix — yI°].

J

The estimation of U(a; v) is done in Lemmata 1.8 and 1.9.
1.8. LEMMA. Ifvel, andteT,, then

|E [exp (yif, v)]| < exp [—4c,y? 0 (¢ — 240)].
PROOF. |E [exp (yif, v)]|

E [ﬁ" exp(yidx &y v)]

s=0

» by 3):

= [*@(y 4x v)]"34Y, since the &, are *i.i.d. with distribution *Q, and
¢ is the Fourier transform of Q,;

AN e
< |:*¢ (27t e )] , by Notation 1.1 (ii);
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5\ Erzan
= l:*qﬁ (27! i >:I , by Lemma 1.5 (i),

v ] b v
b e — = = Int *H',
COAE Ax  wdx  kdx " (KAx)e ’

v
KkAx

< [1 — (2m)2c?

270/240])
:I , by Lemma 1.5 iii;

2
< eXp[~ (%) ¢, |01 At l[t/(ZAt)]]], by 1 + x < e%

< exp[—1y%c, |0 (t — 241)], by Notation 1.1 (ii).
1.9. LEMMA. IfveTl, and aeT,, then
Y. At|E [exp(yip,-v)]| <
t=0

calbea? 101%) 711 — exp [ —4cy7*101% (a + 4r)]),

where ¢, = exp [3¢,(2ncs)?], and c; is the constant in Notation 1.6 (i).

If 5 = 0, the right hand side is understood to be c,(a + 4t).

ProoF. First note that Notations 1.6 and 1.1 imply

1 [ 2mcy \?
2 < (kdxey)? = —( —2 ),
91° < (kdxcs) At( >

s
and hence
(22) exp [3¢,7? 1017 4t] < exp [3¢,(2n¢;3)*] = ca.
Then

M=

" At|E [exp (yip,-v)ll

0

]

t

M=

s
t

" Atexp[—1c,y? |6]%(t — 241)], by Lemma 1.8;
0

<y Y Arexp[—3e;7 62(¢ + A0)), by (22)

t=0

a

t+4t
s ), J exp [ —4c,y? [0]* s] *ds
t=0 Jt

I\

a+ A4t
C‘*j exp [ —4c,y? 101 s] *ds

0

145
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= caldey? |91) 7' (1 — exp[— 29 101 (@ + 4D)]).

Putting Lemmata 1.7, 1.8, 1.9 together, we obtain the following estimate for
M(a) (defined by (18), (19)), supposed that x,yel';,x — ye Ax*H,ae T,, and
ae]0,1[:

k
M(a) < 2y*cilx — yIoF 3 ()™ [T L4551 + 15,4 * 15,1
vel ji=1
(3e2v*)72(1 — exp[— ey 1) (a + 40)])*].

But the terms of the sum depend only on the #;(j = 1,..., k), which run over the
lattice

I ={Ax(n,€y + ... + ney)yne*Z, —x/2 <n, <k/2 (=1,...,d)},

whereas ; takes one of (2k + 1)? r possible values (see Notation 1.6).
Therefore, we get:

M(a) £ (2k + 1)™(Q2c2r3)* |x — y|™* [y ~4(2/c) /2] S(k, o, a + At)

with
k
Stk,a,a) = Y, r7 (Ax)™ [T [v;l + loj— () v ~*
vel” j=1
(23) (V2/c2/7)* 471 — exp[—4c,y? vji*a))*]

k

and I" = x I'. Thus, from (20), (21) we obtain:

1=1

1.10. PROPOSITION. (i) Whenever ke N, €]0,1[, and x, ye I'; with(x — y)/dx €
*H, then

|E(px — Py)"l < k9K |x — yI* [S(k,0,a — a + At)S(k,a, b — b + A)]*

with cs = 2c2r3(1 v 2/c,)4* D2,
(i) For all xeI'; and ke N, we have

|E(p, )| < ckk“*2*[S(k,0,@ — a + At)S(k,0,b — b + At)]:.
The terms S(k, a, a) can be estimated as follows:

1.11. PROPOSITION. For every
c [0,1[, ifde{1,2}
[0,30.ifd=3
there exists a positive real ¢ = c¢(d, o) such that

S(k,a,a) < [c6a‘4‘d—a)/2]k
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for all finite ae *R , and ke N.

PROOF. Put 4x: = /jc,7%adx and [: = AX*H'.
Then (23) scales to

Stk,a,a) £ {Zr"‘(AX)‘”‘ [T Llojl + Joj- oDl =

vel

(1 —exp[— Iv,lz]) ]}a“‘ e,

Let us first assume that a + 0. Then we choose £¢€]0,4[ such that with
g€ =4—¢ o =1—0a we have ¢/a —2 >d and ¢/a’ > d. E.g. we can take
e=4da+ 1/2,ifd =3 and a€]0,1/2[, and ¢ = 3 + 1,if de {1,2} and «€]0, 1[.
Then we can apply Holder’s inequality:

k

a4t M2 gk o, a) (Z rkAx)% H [(vjl + v;- 1)F(vj)‘/a’:|>

vel ji=1

k a’
(Zr"‘Ax [] F(v,-)”"') =[Sk, 0, ) [S,(k, o, )],

vel

with F(v) = |o] ' [1 — exp(—[v|))]*.

Furthermore
k k
[T (o + 1o, 1) < 26 TT (yl? v 1),
j=1 j=1
Therefore
k
Sik.,0) [2Zr“ ASYlol? v l)F(v)‘/“]
vel
and

K
S,(k, o, a) |:Z_r Y(Ax)y (v)‘/“:l.

vel

Note that the lattice I' with weighting AX/r is a hyperfinite representation of
the Lebesgue measure in R? (cf. Stroyan and Bayod [22]. So it is certainly enough
to show that the functions

= *R,o-([v)*> v 1)F(v)** respectively v F(v)t’*

are S-integrable. But this is obvious, because F has a finite bound and both
&/a — 2 and &'/’ are greater than d.
The case a = 0 is analogous.

Fix 1€{0,1,...,r} and let
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5 ={aabbx):x/Axe*H;0<a<a<b=<b<wadbbeT}
Then Propositions 1.10 and 1.11 show that there exists a positive real ¢, =
¢,(d, k, w) such that
|E(p, — p )| € cqlu — o]t 44k

for all finite u,ve =, and ke N. Choosinge.g. k = 32, we have (1 — d/4)k > d + 4,
so that the nonstandard version of Kolmogorov’s continuity theorem (see e.g.
Albeverio et al. [1]) implies that P-almost all paths of the internal process
p:E, x Q> *R, are S-continuous.

Moreover, by (6) we have for P-a.a. we :

p(x, ) = 0 for all infinite x.
Consequently, P-a.a. paths of p are nearstandard in C,(M, R) with
M = {(a,a,b,b;x)eR***0<a<as<b=<b=<w}

Therefore p [ £ has a projection l,,i.e. [: M x Q — R, isa Cy-standard process
such that

(24) ) =1(u,0) uek)

holds for P-a.a. we Q, where °u = oo for |u| infinite and /(c0, w) = 0.
Fori=1,...,r,define ©: T x T - *[0, 1] by

O(s,t), if (s — t)/Ater*Z + 1
0 , otherwise )

O,s,t): = {
Note that f(t, w) — (s, w)e Ax*H,, iff (s — t)/Ater*Z + 1.

Therefore pg = ), pe,and pgl &, = pe [E,=p (1= 1,...,7).
=1

So we cannot expect that pg is S-continuous in general. Let 4 be the internal
measure on T x T with weight A{(s,t)} = (4¢)%, and L(4) the induced Loeb
measure. Then 2 = L(4)ost ™ !is the Lebesgue measure on R, x R..Obviously
the measure L(@,4)ost ' on R, x R, whichisinduced by the internal measure
0,4{(s,t)} = O(s,1)(4t)* on T x T, has a Lebesgue density §: R, x R, — [0, 1],
ie. L(®,A)ost™! = @,4. Note that every measurable @:R2 — [0, 1] for every
1 can be represented this way, i.e. § = @, A-a.s. with some 6.

1.12. THEOREM. For everyu = (a,d,b,b)eR*with0 <a<a< b < bh < w,the
process Y:D x Q = R, Y(s,t;w) = W(t,w) — W(s,w), where D = [a,a] x [b,b]

1
and W is given by (6), has a C,-local time - I(u;—,-):R? x Q = R, withrespect to

the time measure @,4.[ D. Moreover, |, can be chosen jointly continuous and is given
by (24).
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ProOOF. Fix weQ such that (6) and (24) hold. Pick u = (a,a, b, b)e T* such
that0<a<asbs<b=<wandputD =[g°a] x [°h,°h],B = {(s,t)e T x T:

a<s£absts 5}. Let f:R?Y— R be an arbitrary continuous function with
compact support. Then we have to check (11):

J‘ f( W(tv UJ) - W(S7 (U))@,(S, t)d./;(s? t)
D

= J-)C[T2 N st™ Y (D)](s, 1) f(W(°t, 0) — W(°s, w))dL(©,4)(s, 1),
since L(@,4)ost ™! = 6,4;

= J SCB(t, w) — °B(s, w))dL(O,4)(s, 1), by (6) and L(O,4) < L(4);
B
= J St (B(t, w) — P(s, )dL(O,2)(s, t), by the continuity of f
B

b
Z Z I(Sa t)*f(ﬂ([’ (1)) - ﬁ(S, (,l)),
s=b

since the internal function (s, t) — *f(B(t, ) — (s, w)) is S-integrable with respect
to ©,4[ B;

a b
=°"Y"4t Y At 0(s,0) Y x{o(t) — wls) = x}*f(x),
= xel

since w(t) — w(s)e T for all (s, t)e T?;

= Y (4x)'p(u; x, w)*f(x), by the definition of p (see (14));

Ax*H;

j st [p(u; x, )* £ (x)] dL(4x)"(x),
Ax*H,

by S-integrability (use the S-continuity of p| Z);

= J 1(°u; °x, w) f(°x) dL(Ax)%x), by (24) and the continuity of f;
Ax*H,
r

L j LCu;°u, ) £ Cx) dL(AX)'(x)
ns(I')

= %J‘l,("u, x, ) f(x)dx

since L(4x)?ost™! is the Lebesgue measure on R
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The new point in Theorem 1.12 is that the intersection local time J, is given by (24).
Because then a routine argument, which was employed e.g. by Anderson [2],
Perkins [13], or Stoll [20], [21], shows the following:

. ~ ~ 1
1.13. INVARIANCE PRINCIPLE. (i) If @, =... = O, =:—0, then pg is S-con-
r

tinuous with projectionl = 1, = ... = |, which is the local time of Y with respect to
the time measure @[ D.

(i) Let K be the distribution of the random funtion
Q2 - Co([0,w] x M,R? x R),w— (W(w); [w)),

where W(w): [0, w] — RY, t— W(t,w) is a d-dimensional Brownian motion (with
covariance matrix (5)) and {w): M — R, u— l(u, ) is the corresponding intersec-
tion local time (as given by (24)) with respect to a measurable time density
@:R, x R, »[0,1]. For each neN, let (2,, 4,,P,) be a probability space,
At, a positive real, Ax, = /4t,, T, = {kdt, keNy}, T, , =[0,wln T, M, =
{(a,a,b,b; x): x€ Ax,Z% a,a,b,be T,;0<a<a<bs<b<w

©,:T? - [0,1] an arbitrary functlon and (X, ,|te T) a sequence of indepen-
dent random vectors on Q, with distribution P,0 %, = Q. Moreover, for each
1=1,...,r define @, ;: T,> > [0,1] by

.y {OA 0, TG — 0/t erZ 44
! R , otherwise

’

and let 4, be the measure on T, x T, with 1,{(s,t)} = (4t,)>. For each ne N, define
the processes B,: T, ,, x 2, — R% p,: M, x Q,— R, by

Bt ) = Y [X, (w)4x,|se T, s < t], respectively
pa(a,d,b,b; x, ) = Y [(41,)* O,(s, t)(4x,) | 5,t € T,;
a<s=a,b<t< b (s,0) =Bt o)]

and the random functions B,:Q,— Fo(T, ,.,RY) = {/TT, . feCo(R+,RY},
Pn: 2, = Fo(M,,R) by B,(w):T,,, — R%t— B,(t, w), respectively p,(w): M, - R,
ur p,(u,w). For each ne N, let K, be the probability measure on Fy(T, ,, x M,

R? x R)induced by the random function (f,, 5,). Suppose that lim At, = 0 and

n— o

vaguely 1

0,4, 70). <that means *@,,_,?—_l(ﬂ for all infinite 11) for
r

1= 1,...,
Then we have

- w Tr T
(Bm pn) m (Wa I)’
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ie K,ol ! :ei—ksz for every reasonable sequence (/,),.n Of interpolations
L: Fo(T,,,, x M,,R? x R) - Co([0,w] x M,R? x R).
‘Reasonable’ means that *I, preserves S-continuity for every infinite n; however it

is possible to extend the classical notion of weak convergence to cases like (24)
without referring to a particular interpolation procedure (see e.g. Stoll [20]).

2. The Renormalized Intersection Local Time of Planar Brownian Motion.

For the rest of this article we shall restrict ourselves to the case d = 2. In this
section, we shall study the ‘full’ internal intersection local time

(25) 1(x, w): = T6(v; X, W)
= Z[At@(s,t”s,te T,; B(t,w) — B(s,w) = x] (weR,xeT),

with T, = {te 't < v},vens(*R,),and @: T x T — *[0, 1]internal. In order to
get a standard part of 7, it will be necessary to renormalize t by subtracting its
expectation, which is infinite in general. So, for any internal process o(x, w) the
renormalized process is defined by d(x, w) = o(x, w) — Eo,. For the renormalized
7 we can prove similar resuls as we did for p in Section 1. First we shall show that
7 is jointly S-continuous by establishing estimates analogous to Propositions
1.10 and 1.11. Then the standard part of t turns out to be the renormalized
intersection local time of the planar Brownian motion W. We can make use of the
results in Section 1, if we split the domain T, x T, by Westwater’s manner (see
[25]). To this end, we fix v = At (otherwise 7 = 0) and put

(26) k: = k" = min {ne*Ny:2"4t > v},

i.e. v <2"At < 2v (forget Notation 1.1).
For every £€{0, 1,...,k}, we define the following domains:

2.1. NotaTion. (i) Ifne{0,1,...,2° — 1}, put
Ag(n) = {(s,t)e T* there are so, o€ T such that so, 1, < 2~ °4t

and s = 92 %At + so,t = 2" At + to},
Agln, 1) = {(s,t) e T?: there are s, to€ T such that s, 15 < 27~ ' At

and s = (n + 1/2)2% %At + so,t = 12" %At + t,},
A, 2) = {(s,t) e T* there are sy, o€ T such that s,,t, < 27" 4t
and s = 72" " CAt + so,t = (n + 1/2)2° %4t + t,},
(i) Let

4, =) {4:nxn =0,1,...,2°71,
Ag=U{Amin=0,1,..,257 1},
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(iti) If 4 is an arbitrary internal subset of T2, define the internal process
15[4): T x Q - *R, by 15[4] = 14(v;—,—)with @ = @ - y,. In particular, put for
callée{0,1,.. ., k}:

o: =19l 4], pe: = 16[A4,], and
1 =1p[4] with 4 = () {4:({ =0,1,...,& — 1}.

Note that 4, = {(s,t)e T%s,t <2*4t}, 4, = {(s,t)e T*:s =t < 2*4t}, and
A, =0.

Moreover, for all £€{0,1,...,k — 1} and n€{0,1,...,2° — 1} we have
Ag(’?) = Ag("l) v A§+1(2’7) o A.§+ 12n + 1), A¢+1 = A;\Ag, and

-1
T=0,+T,=0:+ ) P
=0

In order to estimate the moments of 7, it will be convenient to use Lemma 5 of
Westwater [25]. The proof of this lemma immediately gives the following
nonstandard version:

2.2. LEMMA. Let X,, 1€*N, be an internal sequence of *independent random
variables. Suppose there exist positive reals cg, cg such that | X,|,: = (E[X])'* £

1 n
cgk® for all even ke N and all 1€ *N. For ne*N, put N, = 7; ; (X, — EX).

Then |N, |, < 2cgk®* /2 for all even ke N and all ne*N.
From Propositions 1.10, 1.11 it follows that, with & =2*"°"!4t and
O(s,t) = O(s + n2° At t + n** A1) x12(s, 1), we have
(27) tel A, 2)1(x, )k = Ilps(0, 0 — At, 7,20 — At; x,-) |,
S csk?2cg(2 761 A2 T2 < csc®kAv278

forallkeN, ée{0,1,...,x — 1},n€{0,1,...,2° — 1},xeT}.
So we can apply Lemma 2.2 with

X, = t[Am)](x,-)- 2%/

and obtain
(28) 1506,k < descek®?©27%) /25,
and hence

k—1
e £ Y 18elx, Dl S descak®?u(l — 2712
&=0

for all ke 2N, x e I';. With a similar procedure for 7, — 7, we obtain:
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2.3.  PROPOSITION. (i) Whenever ke2N,ae]0,1[and x,yel, with
(x — y)/Axe*H, then
It = 2,0k S crolx — yl*v! 72,
with €10 = Cyolk, ) = descg()k®2(1 — 27 -2y =1,
(i) For all xe fl and k € 2N, we have
IE:llk = c10(k, O)o.

Like in Section 1, we can now use the nonstandard version of Kolmogorov’s
continuity theorem in order to conclude that the internal process
1¢: (T,, X Ax*H,) x 2 — *R is S-continuous and has a projection
[ ([0,w] x R?) x Q - R,i.e. [,is a Cy-process such that

(29) *to(v; X, w) = [(°v;°x,w) (veT,,xeAx*H,)
holds for P-a.a. weQ (1=1,...,r).

2.4, THEOREM. For every positive real w, the process Y:[0,w]? x Q - R,
Y(s, t,w) = W(t,w) — W (s, w), where W is given by (6), has a renormalized C,-

1 ~

local time — I,(w;—,-): R? x Q — R with respect to the time measure ©,.| [0,w]>.
r

Moreover, |, can be chosen jointly continuous and is given by (29).

PrOOF. Fix we Q such that (6) and (29) hold. Pick ve T, such that °v = w and
put D = [0,w]? B = T?2. Let f:R? - R be an arbitrary continuous function with
compact support. Then we have to check (12):

j Lf(W(t, @) — W(s,w) — Ef(W, — W)1 6(s,1)dA(s, 1)
D

= ) (A’ 05, ) [} (B(t,w) — Pls, ) — E*f (B, — B,)),

(s,1)eB

by the same steps as in the proof of Theorem 1.12, using in addition the
S-integrability of the function (s,t; w)— *f(B(t, w) — B(s,w)) with respect to
(04| B ® P;

= Y (4x)*1g,(v,x;0)*f(x), by the definition of 7 (see (25));

xedx*H,

= lff,("v; x, w) f(x)dx, by (29) as in the proof of Theorem 1.12.
’

~ ~ 1
2.5. COROLLARY. () If @, =...=0,= :70, then tg is S-continuous with
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standard part [ =1, = ... =1[, which is the renormalized local time of Y with
respect to the time measure 04| D.

(ii) Theorem 2.4 implicitly contains an invariance principle which can be stated in
analogy to Corollary 1.13 (ii).

3. Nonstandard Construction of Varadhan’s Polymer Measure.

In this section, we shall not only consider the specific realization (7) of the
d-function, but an arbitrary internal @: I' —» *R , such that

(30) Y #(x)(4x)* < 1.
xel

Let L(®) be the Loeb measure on I', induced by the internal measure on
I giving each x e I' the weight ®&(x)(4x)?. Then m: = L(P)ost ™! is a measure on
R? with m(R?) < 1. Every such measure m can be represented in this way by
a suitable internal @. In general, m is not absolutely continuous with respect to
the Lebesgue measure dx on R2. Nevertheless, we heuristically write &: = dm/dx.
So, if

4x)"%, ifx=0

r
0 , otherwise (xel),

PD(x) = {

then & is the d-function. The functional J in the definition of the polymer measure
(see (1), (2)) will then be represented by the internal random variable

(31 Q> *R,, 0 Y, 14(; x, 0) P(x)(4x)?,

xel’

where vens(*R.)and @: T x T — *[0, 1] are fixed.
Note that by (25) we have

Dr(w) = Y. [(41)* O(s, 1) D(B(t, ) — fls, 0))|5,te T,]
for all w e Q. Fix gens(*R ) and define the internal polymer measure v on (€2, 4)

by giving it the P-density

1
(32) P (@) = —exp[—gPr(@)] (weQ),

where Z = E (exp [ —g®r]) is the normalization contant. Note that
dv . ,
(33) 2p @) =/Z)exp[—gPHw)] (weL),

where Z = E (exp [ — g ®7]) is another normalization constant and ¢+ is defined
in analogy to (31). Our goal is to show that the partially defined measurable map
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W = sto f:(R, A) = C([0, w], R?)(where B(w) = B(, w)and st is coming from the
sup-norm) turns the Loeb measure L(v) into Varadhan’s polymer measure v,
characterized by w = °v,g = °g, &, and . The main difficulty is to show that Z is
finite. Then we can make use of the results in Section 2. We shall prove the
finiteness of Z by a nonstandard version of Nelson’s trick (see [ 12], [23]). To this
end, we work with the Westwater domains given by Notation 2.1 and define &1,
®a,, Pp, in analogy to (31). Our application of Nelson’s trick is based on the
following estimates:

3.1. LEMMA. Forall £€{0,1,...k}, we have
(i) Var(®o,) < ¢ 0?27 withcyy = (1 —2712)7223(c5c6)%
(i) E(®Pt;) < ¢;,08 with ¢y, = 2¢5¢6.

PrOOF. (i) [Var(®0,)]''* < Y |94l ,, by notation 2.1,
{=¢

< Y sup [lpdx, )2, by (31), (30);

{=¢& xel
< Y (4esce2°202792), by (28)
(=¢

(notice that p,(x,w) = 0 for all xe '\ I'y),

S(1—27 122132 0 p27 82,

e-125-1 2

(i) E@t)= Y ¥ Y E@ty[A%n,})]), by Notation 2.1.

{=0n=0 j=1
E-125-1

< Y Y 2suplte[Am 2)1(x,-)ll;, by (31);

{=0 n=0 xel
g-120-1

<Y Y 2c506v278 by (27);

(=0 n=0

< 2c5c6VE.
3.2. PROPOSITION.
Z: = E(exp [ —g®7]) is finite
Jor all finite g,ve*R .

PROOF. (i) Let us first consider the case thatv < land v-g < ¢, 3 = (log 2)/(2c, ;).
Furthermore, we may assume thatg > Oand v 2 4t. Thenforall ¢ e{1,2,...,k},
we have:
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(34 P(®t = —2¢,,00)
S P(P6; = —2c,,0¢ + E(P1e)), by 1 = 0, + 1,and 1, 2 0;
< P(96, £ —c;,v¢), by Lemma 3.1 (ii);
< (cy,0)” 2 &7 % Var (®o;), by Chebyshev’s inequality;
<c1161£27%¢7 2 by Lemma 3.1 (i).

On the other hand, by integral transformation we get

e8]

E[exp(—g®7)] = j P(exp(—g®7) 2 1) *dt
0

<1+ J P(9t < —s5)ef* *ds, by the substitution s = (logt)/g;
0

2vcy2 x—1
<1 +f ef'*dt + Y P(Pt < —2ucy,8)2vc,, exp [2gve, (¢ + 1)],
0 ¢=1

since ¥t = — E(P1,) = —vc,,k by Lemma 3.1 (ii);

< 1+ 2vcy,exp [2vgcey,] + 2v(cyy/cyp)exp [2vgey ]
x—1

2. 27¢¢ 2 exp[2vgc,,¢], by (34);

=1

<1+ 2ci,exp[2cy5613] + 2cqi/cra)exp[2e5¢13]-

x—1
Z & 2exp[—&(log2 — 2¢y5¢13)], byv-g<cjzandv S
E=1

k—1
S 1+4c;, +4Heyy/cra) Z &2, by ¢;3 = (log 2)/2cy,);
&=1
S 1 +4cy, + 8(cyy/c1a) = ¢4
(ii) In the case not covered by (i), v is not infinitesimal, in particular ke *N\ N
(cf. (26)). Choose ne N such that 2" > 2v(1 v 2g/c, ;). Holder’s inequality gives

E [exp(—g ®9)] < (E [exp(—2g®<,)])"/* (E [exp(—2994,)])"?,
Moreover,
(E[exp(—2g #1,)])'/* < exp (g E[®1,]) < exp(c;,vgn),

by Lemma 3.1 (ii). Thus it remains to show the finiteness of

2n—-1

(35) Elexp(—2g®6,)] = ) E[exp(—2g®t5[4,(n)])]

n=0
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Fix ne{0,1,...,2" — 1}. Put & = 2*~"4¢. Note that
(36) 127" Uy <1 and 2ig 27" PDug ¢y
by the choice of n. Define the internal 6:T?-*[0,1] by
O(s,t) = O(s + n2*~"4t, t + n2*~"41)- x1(s, t). Then we have

E[exp(—2g 975[4,(m)]1)] = E [exp(—2g P1(5;—,-))]

< ¢4, by (i) because of 36).
Since n€{0,1,...,2" — 1} was arbitrary, (35) implies
E[exp(—2g ®6,)] < (c14)*" < 0.

Proposition 3.2 implies that the internal density dv/dP, given by (32) or (33),
belongs to the class SL” (defined as in Anderson [2]) for all real p > 1. Let us now

o . o ~ 1
determine its projection. For simplicity, let us assume @, =... = &, = — 6.
r

The extension to the general case is obvious. Moreover, let
w="v>0,g="geR,.
If we Q is such that (29) holds, then

*Pi(w) = Y. 1(v; x, ) P(x)(4x)%, by (31);

xel’

= j °tg(v; X, ) L(P)(dx),
ns(I')

since Tg(v;—, w) is S-integrable with respect to L(®P);

~

= I(°v; °x, w) L(®)(dx), by (29);
Jns(I)

r»

= | {w; x, w) m(dx) = :ml, by L(®)ost™! = m;

= wdsjwdt (s, ,)%_';1[;4/(,,(0) — W(s,w)] — E(...), by (13).

JO 0

Therefore
(37) ‘exp[ —g Pt] = exp[—g ml] P-as.
Then with proposition 3.2 we infer that

0 >°Z= °E[exp(—g ®7)] = E[exp(—gml)] =:Z.
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Thus we may define a ‘polymer’ measure v on C([0, w], R?) by the Wiener-
density

(39) %o W = (1/Z)exp[—gml] P-as.

Notice that v is well defined by (39), because u = Po W~ ! and | is measurable
with respect to the P-completed c-algebra generated by W. From (37) and
(38) we can conclude that dv/dP = exp(—g @7)/Z is a S-integrable lifting of
exp [ —gml]/Z and hence

dL(v)
dL(P)

Since u = L(P)o W™ !, we have obtained:

=(1/Z)exp[—gmi] = —Sz—o W P-as.

3.3. MAIN THEOREM. v = L(v)o W™ 1.

Routine applications of the permanence principle show that Theorem 3.3
implies the following results, which are formulated purely in standard notation:

3.4. COROLLARY. (i) The operator (g, 0, m)— v is continuous in the sense that we

eakly

w . . ;
have v, ol if v, is constructed with g,, 6,, m, such that g, TS

vaguel vaguel ..
0,4 i og » 04, m, guey | m (note that m, must be a positive measure on R?

n— oo
with m,(R?) < 1). In particular, we may choose m,(B) = | xg(x) f,(x)dx, where
f.:R2 > R, is continuous and bounded. Then we have

(40) =Zl exp[—g"jwdsj dt 0,(s, 1) f,(w(t) — s))]
n 0

for u-a.a. we C([0,w], R?).

Since the right hand side of (40) is well-defined, this gives an alternative
possibility, to define the polymer measure v for arbitrary m, i.e. to give a precise
meaning to the heuristic expression

Z; (©) = —;—exp[ f " ds j Ow dt (s, z)%(w(x) _ w(s))].

In particular, we have recovered Varadhan’s results (see [23]).

(i)) Moreover, we obtain an invariance principle for the polymer measure v, i.€.
v can be approximated by elements of a certain class of self-repellent random
walks. Assume the same setting as in Corollary 1.13 (ii) and let d = 2. Further-
more, for each neN, let I, = {(k, 4x,,k,4x,): k,,k,€Z}, G,eR,, and m, an
arbitrary positive measure on I', with m,(I',) < 1. For each ne N define the
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probability measure v, on (,, 4,) by giving it the P,-density
(dv,/dP,)(@) = (1/Z,) [ ] [exp(G,0,(s, ) m,{B,(t, ) — Bu(s,®)})|s,teT,]

for P,-a.a. w € Q,. Suppose that

(0) lim 4t, = 0;

n— o0

(1) lim (G,/4t,) = g;

n— o

(2) 6,4,

3) m

vaguely 1o =1,
o r

vaguely

— 0

n

w .
Then we have (B, v,) S i.e.

_, weakly
L, 0 (In o Bn) m v

for every reasonable sequence (1,),.n of interpolations
In: FO(T;L“n RZ) - C([O, W], RZ).

~

[72]

. K.
. D. Geman, J. Horowitz, J. Rosen, A local time analysis of intersections of Brownian paths in the

L

mao 0z >
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