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THE S$*-CRITERION FOR HANKEL FORMS
ON THE FOCK SPACE, 0 <p < 1

ROBERT WALLSTEN

1. Introduction.

In [JPR] the authors study Hankel forms on the Hilbert space of analytic
functians square integrable with respect to a given measure on a domain in C".
Among other results they obtain, under some conditions on the measure and the
domain, necessary and sufficient SP-criteria, 1 < p £ oo, for Hankel forms
(8?7 = Schatten class). In particular the theory applies when the domain is C" and
the measure Gaussian, in which case results on decomposition, approximation
and interpolation of norms and of values are given for the corresponding
LP-spaces, 1 < p < co. In this paper we consider this special case and extend the
mentioned results to the range 0 < p < 1.

For a general discussion of the topics treated below, see [R], where further
references may be found. See also [P2].

After reviewing some definitions and basic facts the decomposition theorem is
stated and proved. Then, in the last part, the decomposition theorem merges with
obvious modifications of known techniques, essentially from [CT], [JJ] and [S],
to yield the remaining results.

2. Preliminaries.

2.1. Function spaces. For a > 0 and 0 < p < oo let I? denote the space of
complex-valued measurable functions on C" such that f(z)e™ **!** ¢ [P(m),
normed such that the constant function 1 has unit norm. The subspace of entire
functions is denoted by F”. The operator C,(w), we C", defined by

C,W)f(z) = f(z — wyex=™ - talwl?

is an isometry of FP (and L) onto itself. Moreover C,(w;, + w,) =
C,(w,)e!'m<w1w2> Recalling the group law (z,t)°(w,s) = (z + w,t + s — I,,{z,w))
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of the Heisenberg group H, = C" x R one finds that (w,t) - ¢*C,(w) defines
a unitary representation of H, in F?.
Using the isometries of C,(w) one easily verifies that F? < F?if p < q.

When p = 2, we have 2 = L*(u,), where du, = <%) e *1?” dm. The space

F?iscalled the Fock space. With respect to the inner product { f,g), = j fgdu,it

has reproducing kernel K, (w) = e*<*'?, i.e.

(2.1) @) =<{fKD. = fe““’w)f(W)d#a(W)-

The Bergman projection P,, defined by

P,f(2) = .[e““"”)f (W) dpy (w),

is a bounded self-adjoint projection of L? onto FP, 1 < p < oo. For proofs, see
[JPR].

2.2 Hankel forms and Schatten classes of bilinear forms. Let b be an entire
function on C". Then H%, the Hankel form with symbol b with respect to ug, is
defined by

H{(f,9) = jEfgdup, (f9)eF; x F,.

In general, we say that a bilinear form H on H; x H, is of Schatten class S” if H:
H, - HF defined by

H(f,g) = <f,Hg)

belongs to the ordinary Schatten class S?, cf. [P1] and the introduction in [JPR].
In the sequel the anti-linear identification of H, and H¥ will be used without
mention.

When f = o, = a, = a, HZ is a convolution operator if it is bounded (see
[JPR], sec. 10):

B2 f(2) = j bz + w)TTW) dus ().

For future use we note that

ﬁ:f(z) = b(Z)f (-;i), b(Z) = ¥/2<z.w) —a/4|z|?
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and
CH3 fD0 = bW, f(2) = ¢ o ~dait

2.3. Complex interpolation of  quasi-Banach spaces. Let
S={zeC|0<Rez<1} and let (X,,X,) be an interpolation couple of
quasi-Banach spaces. Let F = F(X,, X,) be a vector space of X, + X,-valued
analytic functions defined on § and quasi-normed by

IFF = sup {IF(iy)lx, IF(1 + iy)llx,, 1F@)llx,+x,}

yeR
zeS

n

If F=F° is the closure in norm of the space of functions Y, f,x,, where
1

x, € Xo N X, and f, are bounded, continuous and analytic scalar functions, then
for 0 < 0 < 1 the quasi-norm on [X,, X, ], the (strong) complex interpolation
space, is defined by

x| = inf {||[F ||z F(6) = x}.

By taking F = F" to be the space of X, + X,-valued functions such that
(U, F(z2)) is analytic and continuous on § for any U €(X, + X,)* one similarly
obtain the weak complex interpolation spaces, denoted by [ X, X;]13.

The definition employed here is the same as in [JJ]. For the FP-spaces to be
treated below it is equivalent with the definition in [CMS]. The mentioned
papers also contain further references on the subject. The basic facts from
interpolation theory may be found in [BL].

3. The decomposition theorem.

A set {w;} in C" will be called e-dense if every ball with radius ¢ contains at least
one of the w;. If, in addition, any ball of radius 1 contains at most M points from
{w;}, the set will be called separated.

THEOREM 3.1. Let 0 <p <1 and o > 0. There exists ¢, > 0 such that if
{w;} = C"is e-dense with ¢ < ¢, then f € F? iff

(31) f(Z) = Zijea(z.w,) - talwj|?
1

with {1;} €£®. | f || e is equivalent to inf [|(4;} ., within constants depending on «,
pand e.
ProOF. Without loss of generality we may assume that « = 1. To begin with we

also assume that {w;} = ¢Z*" in some order.
Let Q; be cubes with centres w;, side-length ¢ and such that | JQ; = C". Let §;
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be the cube with the same center as Q; but with side-length 2e. Let

m= [Zn (% — 1)] and define for || S m, jeZ™

7w
= | gitmom—wp — piwowyiz (B = W)
Sﬁﬂ_Jelm w,Ww—wj tlw—wj ﬁ!

f(w)e =" dy(w)
Qj
and

T{A-’ﬁ} = Z )"Jﬁ(z — Wj)pe<z-wj> _‘HWJ'z'

1Bl £ m, jeZ
S maps F? into /p, because
1
p

5 )
J~eilm(w,w—w,> —ﬂw—wjlzuf(w)e_‘lezn‘"dV(W)

p!

Q;

= _.ﬁ
= J\e“m<w.w—w1)—%|w_wj|2_(w 'wj) f(w)e"(W—wJ,w]>

p!

Q;

p
e—JHw—w_,I2 - 4|wj|2 + ilm(w—Wj,Wj>n-n dV(W)

< C(e"*"”’|2 Jlf(w)e” v d(V)(w)>p
Q;

< Cg2ntp= Do piiw;l? J|f(w)e” wwiw2IP dV(w)
g;

< Ce2roh f |fwle™ *17 dV (w)
g;
by subharmonicity.
That T maps #” into F? follows from the subadditivity of the p-th power of the

norm.
By (2.1) we have

- TS =Y f[e@-w “HIWIE _ gitm gy = ey
J Qj
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m — N k
<Z (z = Wj,k"" w;) )e<z.w> A&lwllz:lf(w)e_“w'de(W)
& !

[°e) _ . . . k
=ZJei'"'”"”_”’)"'”‘”"'z(Z ¢ L n )f(w)e"*'”'zn"'dV(w)

m+1
Q,
. e<zv w,) = *'W.I‘z,
whence, using the estimate above,

a0

5 (z—wpw—wpklr

m+1 k'

If = TSf g < CY. Je*"*"‘”i" sup
J weQ,
cn

’ dVv(z)

-Uf(w)e‘*'W”dV(w)
Q,

a0

— kpokp
Czje_pﬂz_w”z Z |Z le €
J n

I\

g2np—1) J~ |f(w)e ™ **|P dV(w)dV(z)

g;

m+1 (k')p

(5 ()
o —e| T 5 +n
SCY Y S e jlf(W)e‘*'”'zl"dV(w)

N

< CSZn(p—1)+p(m+1)“f”l;_,l, g % ”f”g,l,,

if ¢ has been chosen small enough using our choice of m. Hence T is invertible
and T is onto.
It follows that f'e FP iff

(3.2) @)= % Aplz — wlessmr Tl

jeZ,|l<sm
with llfHFxl» equivalent to inf|[{4;s}l,-

The functions f(z) = 2, |B| < m, all belong to F}. What has been proved so far
implies that A,f — f in measure as ¢ — 0, where the ¢ is the used in the definition
of T and S, and A, = TS is the resulting approximation operator. Further

I = 4)f(@e P < C

P
Z Jlf(w)l e VI gy (w)edlz ~wile Hlzmwil?|
J
Q;j
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It is fairly easy to verify that, for the functions in question, this expression is
dominated by an L'-function independent of ¢ < 1. Dominated convergence
yields that A, f — f in F?. By choosing ¢ small we can find finite sequences {47},
such that for || < m

ll2# — Zl”e“ e <6,

and thus, by translation,

B, <z,wi> — 4 w2 B ailm<wj,wi> <z,wj+wi> —|wj+wg|? N
Iz — s ZHmE = B g elin vz g s Ay <,
By the construction above, the coefficients in (3.2) depend linearly on f, we may
define a linear operator 4 on F{ by

Af@) = Y Ay Y Memimemetamctw) ~dhnctn it
JjeZ, |l sm k

We have || f — Af ||} p < lewl"é" < Co? ”f”r” Thus, for é small enough, 4 is

invertible. This proves the theorem under the restriction {w;} = ¢Z*".
Finally, let {w;} be an arbitrary e-dense set in C”, which, after picking a subse-
quence and reindexing, may be assumed to satisfy |w; — u;| < ¢ for all j, where

2
ut=ce —ZZ". Choose ¢ so small that every feF! can be written
J
fe)= Zle““ﬁ Hul? where A,

J

1{A; . <D fI% iz and so small that

are linear functionals of f and

||e<z.u;> ~Hlul? _ pitmdwy,uid 0(z, w50 —%IWHz“ s ._l_.

= 2D
for all j. Define a linear operator B on F} by
Bf = B(z Aje=u> —ﬂu1|2> = leeilmw,.me(z.wn = %lwyl?,
Then ] J
If— Bf e = ( ) {43120 < ( ) I 1%

Thus, B is invertible and the theorem is proved.
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4, Applications.

As the techniques for obtaining the results in this section are quite well-known,
some details are omitted.

THEOREM 4.1. Let o, B > 0 and 0 < p < 1. Then
(Fp* = Fyp
with the pairing {,),.
PROOF. For a = f this follows from the decomposition theorem, since the
closed convex hullin F}! of the FP-ball contains an F!-ball. The general case is then

proved as in [JPR].
THEOREM 4.2. Let g, 00, > 0,0 <py < 1,pg=p; S 0and0< 0 < 1. Then

[Fre F3ly = F?

agp ?

1 1-6
where — = +—and o = ad %8,
p Po P1

PROOF. Let fe FF have norm 1. Then
f(z) = Z/lje“z' w;> —talwj|?

. 1 1-¢ ¢
with ) |4)P < C. Let — = + — and put
z[ i = p(0) Po P P

G() = Z Mj'pp(C)' T 1/1jea<(an/uo)”"o'z‘wj> - falw,|?

By a Taylor expansion of the exponentials, it follows that G € F*. Furthermore.
[Gllps £ C" and G(0) = f. It follows that F£ < [FZ°, FF1],.

€-0)2
For (€S, define Tf(z) = f <<Z—°) z). T; is an isometry of F?’ onto
1

FPi when Re{ =j, j = 0,1. An application of the abstract version of the Stein
interpolation theorem, theorem 0 in [JJ], yields [F?°, Ff'], < [F°, FP']y.

Finally, let F,e F*(F!°,F}') have norm 1, 0 <r <p,, £({)=(1 —Re{)
(1 = r/po) + Re{(1 — r/p,) and set

IQ) = J g(Z)’“"Fg(Z)e”*“"'zrdV(Z), (€S,

lzl <R

where g is positive and continuous. By Holder’s inequality I({) < j g9(2)dVv(z)

lzl =R
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on 4S. Since log I({) is subharmonic, it follows that

16) = jg(z)‘"/”|F9(z)e‘*“"'2|'dV(z)g j g(z)dVv(z)
lzl <R |zl SR

which implies

j |Fo((z)e” #1117 dV(z) £ 1.
Izl =R

Letting R — oo, we have IlFolifL: < 1 and thus [F!°, FP']y < FP.

THEOREM 4.3. Suppose 0 < p < 1. Then H; € S”(F}) iff be F¥, . The respective
norms are equivalent.

ProoOF. Without loss of generality let « = 1. With the decomposition theorem
at disposal half of the theorem is simple:

1Hy 1§ = 13 4Hy, I8 < 21417 [ H 1§ < ClIbIFe,

where K; are atoms in F?, i.e. K (z) = e?<#"> ~#il* (¢ f. sec. 2.2.).
For the reverse implication, choose an 1-dense and separated set {w;} such that
Zj:lb(2wj)e_'”"'zl" =Gy lIbli%e.
The functions f(z) = e<=*»> ~#I"iI* are, by the decomposition theorem for F7,
almost orthogonal in the sense that they can be mapped, boundedly and inver-
tibly, onto the orthonormal basis of a Hilbert space H.

Let (h;;) denote the matrix of H, relative to the fj- By our choice of the lattice
{w;} we have

S lhal? = c blles.
J

If (h;;) were diagonal the proof would have ended here. However, (h;;) is only
close to diagonal. To remedy this, decompose {w;} into finitely many N-lattices,
where N is to be chosen large. This corresponds to a direct dum decomposition of
H. Let A be the direct sum of the compressions of (h;;) to the summands of H.
Write A = D + F, where D is the diagonal part. Then

D% = Ylhl? = C 15112

Furthermore

IF|I5 < Z 1K ﬁbf;,fj SP < Z e—mm-w/2lle—4}p|w,*—w/2|2’

‘wl'wj‘gN |lwi—=w,| 2N
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if b(z) = e*<#w> ~#I%I*_ By the decomposition theorem we have

IF1I5> = OClibll¢p), N — oo,

and therefore ||b||FZ < C||H, | s», under the condition beF}.

Assuming only H,eS”, put b,(z) = b(rz) for 0 <r < 1. Then b,eF] and
1b,ll¢; < CliHy llse = ClIHy s Since Ilbllp; = lim Ilb,IIF;, the theorem is pro-
ved.

Using the same method one can prove

THEOREM 4.4 Hf e SP(F}, x F7)) iff be Flayy, +q,- The respective norms are
equivalent.

The proofs of the next two theorems are carried over almost verbatim from
[JPR].

THEOREM 4.5. Let o >0 and 0 <p < 1. Then feF? iff fe F® and {dy}e?”,
N
where dy = inf{l]f— gllre|g(z) = zaje<"z’>}.
¢ 1

PROOF. In one direction approximate f by the sum of the N terms in (3.1)
having largest coefficients.

For the other direction observe that

Sy(Hy) < inf {”Hf - Hg”Sw(Fga)

N
glz) =Y a;e* < CdN}.
1
Theorem 4.3. implies || f||zr < C [[{dy} | /»-
THEOREM 4.6. Let 0 < p < 1 and o > 0. Then there exists D(p, o) < oo such that
if {z,} is a sequence in C" with inf|z; — z;| > D(p,), then {a;} = { f(z;)} for some
i=j
feF?iff{ae t*121%} e/P.

PROOF. Define Tf = {f(z,)e #*1=I"} and S{a;} = Y aje* ==’ ~ ¥l T FP — ¢7
is continuous by subharmonicity (cf. the proof of theorem 3.1) and S: /” — F? is
bounded since the p-th power of the norm is subadditive. We have

and therefore

1/p
11— TS| < SUp<Z e‘*f'“'z-‘%”) '

i \j#i
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Thus, if D is large enough, TS is invertible and T is onto.
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