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TWISTED GROUP C*-ALGEBRAS CORRESPONDING TO
NILPOTENT DISCRETE GROUPS

JUDITH A. PACKER*

Introduction.

Operator algebras formed from locally compact groups twisted by multipliers
have been the object of study for several decades, much of this study stemming
from the work of Mackey on unitary representations of group extensions [14].
The purpose of this paper is to present some simple techniques for examining
some of the most basic of these operator algebras, those generated by (countable)
discrete groups and their multipliers. If I' is a discrete groupand o: I’ x I' > Tis
a multiplier one can form the twisted group algebra L!(I',s), an involutive
Banach algebra, whose “left o-regular” representation on I?(I') generates the von
Neumann algebra W*(I', 0), first studied by Kleppner [13], then more extensive-
ly by Zeller-Meier [25]. The enveloping C*-algebra for I}(I', g), C*(I', o), first
studied by Auslander and Moore [1] and also in [25], is currently of greater
interest, and even in the simplest case, when I' = Z", has provided a wealth of
examples on which one can fruitfully use non-commutative algebraic topology
and differential geometry [3], [6], [21].

In this paper, we first review some known facts about the von Neumann
algebra W*(I', 0), stating necessary and sufficient conditions (due to Kleppner
[13]) which involve straightforward counting arguments, for W*(I', ¢) to be
afactor. Using this result in the case where I' is nilpotent, one is able to determine
very quickly, by applying a result of Poguntke [19], necessary and sufficient
conditions that C*-algebra C*(I', 5) be simple. By modifying methods of Slawny
[22] for countable abelian groups and of Howe [12] and Carey and Moran [2]
on characters of nilpotent groups, these same conditions also can be used to tell
us when the C*-algebra C*(I', o) has a unique normalized trace:

THEOREM 1.7. Let I be a countable nilpotent discrete group, with multiplier o:
I' x I' > T, then C*(T', 6) is simple and has a unique normalized trace if and only if
every non-trivial o-regular conjugacy class of I is infinite in cardinality.
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Here “o-regular” means that the symmetrizer 6 of ¢ [10], [15], which has been
shown to define a map from x € I' to the characters of the centralizer of xin I', €,
isidentically 1 on one (hence any) x in the conjugacy class in question. The idea of
the proof of the theorem is to show that C*(I', ¢) is a primitive quotient of C*(I'’)
where I is a countable central extension of I', and apply Poguntke’s theorem on
the maximality of primitive ideals for I'". The proof of uniqueness of the trace is
not so immediate, but can be obtained by a combination of techniques used in the
papers [12], [2], and [22] mentioned above.

Some twisted operator algebras arise naturally in the study of dynamical
systems coming from the affine action of a (countable) discrete group G on
a compact (s.c.) abelian group X; the discrete group in question will be
a semi-direct product X > G ((special cases of this observation have been noted
as far back as the 1950’s in [4] and [20] and subsequently in [8], among many
other references). In the second section of our paper we place some results
involving these particular operator algebras in a more integrated framework and
reprove some old results of Hahn [9] and Wieting [24] concerning ergodicity of
discrete abelian groups acting affinely on compact abelian groups, by means of
studying the von Neumann algebras involved, obtaining:

CorOLLARY 2.3 ([9],[24]). Let (X, G),,, be an affine action of the countable
discrete abelian group G on the compact (s.c.) abelian group X, where B: G - Aut X
is a homomorphism and p: G — X is a B-crossed homomorphism. Then the action of
G on X is ergodic with respect to Haar measure if and only if for every ne X\ {e}
such that {B*(g)(n)|ge€ G} is finite, there exists g, €G with B*(g,)(n) = n and

n(p(g,) * 1.

When the discrete group X x G associated to the affine action (X, G),,, is
nilpotent, the methods used to prove Theorem 1.7 allow us to prove that an
ergodic affine action (X, Gz, is actually minimal and uniquely ergodic; we then
use this result in the situation where (X, G) = (T", Z) to reprove another result of
F. Hahn.

Although a few of the results in this paper may be known to other workers in
the field, we feel that the approach we use in the study of these results and in
relating them to the Howe-Poguntke-Carey + Moran theory are new, and pro-
vide easy methods of determining whether or not certain group C*-algebras
associated to nilpotent discrete groups are simple. Also, Corollary 2.3 and the
results on minimal affine actions provide examples where operator algebras can
be used to determine ergodicity and minimality of some dynamical systems;
heretofore the roles of operator algebras and dynamical systems have been for
the most part reversed in this exchange of information.

The material on von Neumann algebras in this paper first appeared in the
author’s docoral dissertation undertaken at Harvard University under the direc-
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tion of Professor George Mackey, and to a great extent the results can be
regarded as his inspirations. We sincerely thank him for his constant help and
guidance in this and other areas of mathematics. We are also grateful to Iain
Raeburn for many useful conservations on this topic, and for pointing out to us
the reference [10]. Finally, we thank the referee for useful suggestions, and
Jonathan Rosenberg for suggesting to us the references [2] and [19].

1. The operator algebras W*(I', 0) and C*(I', 6)

Let I be a (countable) discrete group, and let o: I' x I' - T be a multiplier,
alternatively called a two-cocycle for I" with valuesin T, o € Z*(I', T). Recall from
[1] and [25] that the involutive Banach algebra L!(I', o) is formed as follows: for
frge L}(I) set

fog) =Y alruyi ' NG gy ')

yiel

and
f*@) =00,y Hfe™h

The isomorphism class of L! (I', o) depends only on the cohomology class of ¢ in
H*(I', T). We can represent L}(I", 6) on I?(I') as follows:

Trg() = Y, oy, i "D g0i 'y

y1el

for fe I}(I'), g I?(I'). We will denote the weak closure of T(L' (I', ¢)) in B(I*(I))
by W*(I',a); W*(I', 0) is called the von Neumann algebra generated by the left
a-regular representation of I'. Thus W*(I', o) is generated by operators of the form

{U,lyer}
where U, f&) = a(ryyy 'S0 ).

Wenote that U, U, = o(y,7,)U,,,,, so that we are following the terminology
of [25] rather than [14] (where what we have would be termed a o~ ! representa-
tion). The representation T of I(I', o) given above is unitarily equivalent to the
one given in [25], and is more convenient for our purposes.

To state conditions that W*(I', ¢) be a factor we recall some notation, mainly
due to Kleppner [13] and Mackey [15]:

DEFINITION 1.1, For any xeI" and multipliera: I’ x I' > T, let y»*: ' - T be
the function defined by

x5 = a(x, ) a(y,y " xy)
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The conjugacy class of x in I is termed a-regular if y*** restricted to the centralizer
ofxin T, C,,isidentically 1. (Kleppner in [13, Lemma 3] and Mackey in the more
general framework of [15, Theorem 6.1] show that whether or not y** = 1onC,,
depends only on the conjugacy class of x in I').

REMARK 1.2. In[1S5, Lemma 5.2] Mackey shows that x°** is a character when
restricted to C,, and proves general identities involving elements of Z%(I', %)
where & is an arbitrary l.c.s.c. abelian group. The function y>* is exactly the
symmetrizer ¢ discussed by Hannabuss in [10], and Proposition 1.2 there can be
deduced from [15].

The following proposition, which is implicit in a theorem of Kleppner, was
pointed out to us in the form below by G. Mackey and gives a straightforward
method for determining whether or not W*(I', 6) is a factor:

PROPOSITION 1.3 [13, Theorem 2]. Let ¢ be a multiplier for the countable
discrete group I'. Then the von Neumann algebra W* (I, o) generated by the left
o-regular representation of I is a factor if and only if each non-trivial o-regular
conjugacy class in I is infinite in cardinality.

The proofinvolves giving W*(I', g) the structure of a Hilbert algebra with basis
{U,|yeT} and calculating what operators can appear in the center.

We now use the above results on twisted group von Neumann algebras to
study the twisted group C*-algebras C*(I',s), which are defined to be the
enveloping C*-algebras of the L (I', 6). The reduced C*-algebra C* (I, o) is the
quotient of C*(I', 6) obtained by completing L (I", 6) with respect to the norm
given by the left o-regular representation, so that CX,(I",0) may be viewed
concretely as the C*-algebra generated by the unitary elements {U, | ye I'} acting
on [Z(I'). As such we may regard C*,(I', o) as a weakly dense *-subalgebra of
W*(I',0). If I' is amenable, then C*(I', 0) = C*,(I', 0) [25, Section 5] so that in
this case we may study C*(I', o) in terms of its concrete representation on I2(I). It
will be fruitful to consider C*(I', 6) as the quotient of some C*(I"’) for a central
extension I of I'. Let

D= {H (@i, v )1 7.7, €T, neN, e,e{—1, 1}}.
k=1

Then D is a subgroup of the circle group T and since I is countable D will also
“be countable, though not necessarily closed in T. Let I = I' x D; then I'" can be
given the structure of a central extension of I' by setting (y,,d,)(y,,d;) =
(y172,0(yy,72)d, d,). Evidently I'" is countable, and the injection i: D —, T may
be viewed as a character ie D.

We consider the following unitary representation of I on s# = I*(I'):

Woapf®) = 0,y '9)id)f(7'y) viyel, dyeD.
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By inspection we see that W, ,, = i(d,) U, ,so that the representation W of I'
extends to give a homomorphism ¢@y: C*(I"") - C*(I', 6); in essence C*(I', g) is
a “twisted covariance algebra” of the form C*(I"’, C, t,) as described in [7]. (See
[18] for a further exploration of this point of view). Then from Proposition 1.3 we
immediately obtain the following

PROPOSITION 1.4. Let I' be a countable amenable group with multiplier o:
I' x ' > T. Then C*(I', 0) is primitive if and only if every non-trivial o-regular
conjugacy class in I' is infinite in cardinality.

PrOOF. If I' contains a non-trivial finite g-regular conjugacy class, then as in
the proof of Proposition 1.3, we can show that the center of C*(I',0) =

*(I',0) € W*(I', ) contains non-scalar elements so that C*(I, ¢) is not primi-
tive. As for the converse, if every non-trivial g-regular conjugacy class is infinite,
then by Proposition 1.3, W*(I', 0) is a factor. It follows that the representation
W of I'" described in the above paragraph is factorial, hence the kernel of the map
Qw: C*(I'',0) > C*(I', 0) is a prime ideal .# = C*(I"'). But I'" is countable so that
# will be primitive, and it follows that C*(I', o) = C*(I'")/.# is primitive.

When I is nilpotent, by using results in Poguntke [29], which generalized
results in Howe [12] and Moore-Rosenberg [16], we can say even more:

PROPOSITION 1.5. Let I' be a nilpotent discrete group, with multiplier o:
I' x ' > T. Then C*(I',0) is simple if and only if every non-trivial o-regular
conjugacy class of I' is infinite in cardinality.

Proor. If I' is nilpotent of degree k, it is easy to see that I'" is nilpotent of
degree < k + 1. By Poguntke’s result, in [19], every primitive ideal of C*(I"")is in
fact maximal. Thus if every non-trivial g-regular conjugacy class in I is infinite,
Proposition 1.4 shows that C*(I',g) = C*(I'"')/.#, where £ is a maximal ideal.
Hence C*(I', o) is simple. The other direction is clear.

We now consider the class of all finite normalized traces on C*(I',0) for
countable nilpotent groups I'. Recall that a trace on C*(I', ) may be viewed as
a positive linear functional . C*(I',g) —» C satisfying t(x*x) = 1(xx*)Vxe€
C*(I',0), t(Id) = 1. Since C*(I',0) is a quotient of C*(I""), a finite normalized
trace t on C*(I', o) lifts to give a trace 7 on C*(I"') and as such corresponds to
a positive definite function y: I" — C which is constant on conjugacy classes and
satisfies /(e) = 1 (such a function y is also termed a trace). Howe showed in [12],
Proposition 3, that if N is a finitely generated non-torsion nilpotent group, and
# is a primitive ideal of C*(N), then # is maximal and there exists a unique
normalized trace t on C*(N) which vanishes on .# (hence a unique normalized
trace on C*(N)/#). Carey and Moran in [2] extended Howe’s results on traces to
the class of all “centrally inductive” nilpotent groups (i.e. those for which each
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character y vanishes on the infinite conjugacy classes of G/K (), where K () =
{geG|y(g) = 1}), using in their proof deep results of Furstenberg involving
unique ergodicity. These results of Carey and Moran allow us to deduce imme-
diately that when I is a finitely generated nilpotent discrete group, then under the
conditions of Proposition 1.5, C*(I', o) is simple and has a unique trace. We wish
to show that for any countable nilpotent group I', under the conditions of
Proposition 1.5, C*(I', o) is simple and has a unique trace. In this situation it
turns out that we can modify relatively straightforward techniques of Carey and
Moran [2], Howe [12] and Slawny [22] (not involving the work of Furstenberg)
to prove the following lemma (we thank the referee for suggesting to us that our
original results could be strengthened and their proofs simplified):

LEMMA 1.6. Let I' be a countable nilpotent group and let o: I’ x I' > T be
a multiplier, and suppose that every non-trivial a-regular conjugacy class of T is
infinite in cardinality. Then C*(I', o) has a unique normalized trace.

ProoF: Let 7 be a normalized trace on C*(I', 6) and consider without loss of
generality the case where 7 lifts to a character ¢ on the group I'=T x D
described above. Note that by Proposition 1.5 C*(I',0) = C*(I"")/.# is simple; we
will show any character  on C*(I"") vanishing on .# is unique, i.e. we will show
that we must have

0 y¥e

v d) = {i( D e

where i: D =, T is the natural injection. Using the notation given prior to the
statement of Proposition 1.4, we see that (U, 4)) = i(d) U, so that V (y,d)e ",
Y((y,d) = t(i(d)U,) = i(d) ©(U,) = id)y((y, 1)). Hence y((e,d)) = i(d)VdeD. Itis
clear that since C*(I', o) is simple, and y is never 1 on {e} x (D\ {1}), ¥ must be
a fathful character on I'". Let FC(I') denote the normal subgroup of elements of
I having finite conjugacy class in I. We first show that if ye FC(I')\ {e}, then
¥((y,d)) = 0VdeD. By hypothesis, if ye FC(I'\ {e}, there exists ge C, with
x°7(g) % 1. Then, following a method used by Slawny in the case where I' is
abelian, (U, ' U,U,) = 1(ow(U,1)-1) ow(U(, 1) @w(Uqg. ) = ¥ (9, )1 (7, 1)
9. D) =v(g 'v9,0(g~ ", v8)0(g,9~ Do 9) =¥ (1" @) = k(@ Y(» 1) =
x”7(g)(U,). But since t is a trace on C*(I', 6) we must also have t(U, ' U,U,) =
7(U,). Hence x*"(g) 1(U,) = t(U,) and since x”?(g) + 1 we must have 7(U,) = 0.
It follows that ¥/((y,d)) = i(d)¥((y, 1)) = 0V ye FC(I')\ {e}, V deD.

We now prove by induction on the length of the upper central series for I that
V((y,d) =0V yel'\{e},VdeD. Let Z'(IN < Z*(IN<c ... €« Z"(I')=T be an
upper central series for I'. Since Z* (I') is the center of I', Z* (I') = FC(I'), hence by
the above paragraph y((y,d)) = 0V ye Z*(I')\ {e}. Assume that V y e Z*(I)\ {e},
V((y,d)) =0V deD, and choose heZ**'(I'\ Z*(I'). Following [2, Theorem
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4.2], let ay o: ' — Z*(I')/Z*~*(I') be the homomorphism defined by a, o(g) =
[h,g] Z*~'(I'). If the range of a, , is infinite, then we can choose an infinite
sequence {g;,g,...} = I'such that [h,g,.g, 1€ Z*(I')/Z* ()Y m,n,m % n, so
that Y([(h, 1), (G 1)(Gns 1)~ ']) = ¥ (([h,9mgs '1,d)) (for some deD)=0 V m,
n,m # n, and it follows by applying Lemma 4.1 of [2] that y((h, 1)) = 0, hence
Y((h,d)) = OV deD. If the range of I" under a, , is finite, then set I'; = ker o, o.
Note I'; is of finite index in I' and contains C, and Z*(I'). Define the homomor-
phismay, : Iy = Z¥ " Y(I')/Z*~2(I') by a1 (g) = [h, g]- Z*~*(I') and continue the
process outlined above, i.e. check if the range of a, , is infinite, if not, set
I', = ker(, ,), etc. Following such a procedure we construct a chain of sub-
groups ' =Ty > Iy oI, > ... o I;and homomorphisms

ah,i:ri—’Zk_i(r)/zk_iﬁl(r), 0sigj

where I'; = keray, ;_, I has finite index in I';_,, and o, ;(9) = [h,g] Z* "~ }(I),
gel;, 1 <i <. Clearly each I'; contains C, and Z*~/(I). If the range of a, ; is
infinite, we can choose an infinite sequence {g, } € I'; with [h, g,,g, '1€ Z*~/(I)\
Z¥7 7Y )Y m,n,m # n,s0 that Y([(h, 1), (Gms DG 1) 7D = ¥ ([h gmgs '1%) =
0V m,n, m % n, by the induction hypothesis. Hence applying Lemma 4.1 of [2]
again we see that y((h,d)) = i(d) Y (h, 1)) = 0V de D. If o, ;(I';) is finite,set I'; ., =
ker a,, ;(note I';, , has finite index in I';), and continue as above. This process will
terminate after at most k steps; for either the range of a,, ; is infinite for some j < k
(in which case we obtain y((h,d)) = 0V d e D) or we obtain a chain of subgroups
Fr=ryorlr orl,...oI_,, Ioffiniteindexinl;_,, 1 2igk—-1,I;>C,
0<i<k—1 with o, , > Z"(I/Z°I') = Z"'(I. If the range of o, , is
infinite, then by Lemma 4.1 of [2] we get y((h,d)) =0V deD. Otherwise
I, = keray,_, = C, has finite index in I', _ ;. It follows in this case that C, has
finite index in I, so that he FC(IN)\ {e}, and by our original argument we get
Y((h,d)) = 0V deT. It follows that ¥V he Z*(I')\ {e}, ¥((h,d)) = 0. This proves
the induction step, and since I is nilpotent Z"(I') = I' for some n so that we have

established
_Jid) y=e

Thus the character y on I'" is uniquely determined, so that the trace r on C*(I', o)
is unique.

Lemma 1.6 and Proposition 1.5 combine to give

THEOREM 1.7. Let I' be a countable nilpotent discrete group, with multiplier
:I' x I' > T. Then C*(I', 6) is simple and has a unique normalized trace if and
only if every non-trivial a-regular conjugacy class is infinite in cardinality.
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Proor. Lemma 1.4 and Proposition 1.5 give most of the above result. As for
the direction =, if there exists a finite non trivial g-regular conjugacy class for I',
then W*(I', 0) is a finite von Neumann algebra which is not a factor, so that the
trace on C*(I', ¢) is not unique.

The combination of the above results give an alternative proof of the following
well-known fact ([27], [7]).

COROLLARY 1.8. ([22], [7]) Let I be a countable discrete abelian group, and let
o:T x I = T be a multiplier. Then C*(I, 6) is simple and has a unique normalized
trace if and only if the symmetrier subgroup S, for o is trivial, where

Sa = {)’15”0'(?1»?)0()’1,)’1) =1V ‘)JEF}

ProOOF. Since I is abelian, each x eI is its own conjugacy class, C, = I', and
1*(y) = a(x,y) a(y, x), hence x is o-regular <> x € S,. Thus C*(I', 6) is simple and
has a unique trace <> S, = {e}. (One could also note that if S, = {e}, then the
center of I is exactly {1} x D. By Howe’s result [12, Prop. 3] any faithful
character ¢ on I'" vanishes on I'"\ Z(I"') = I"\ {1} x D in this case. But any
trace on C*(I', o) uniquely determines the values of  on {1} x D. Hence if
S, = {e}, the trace on C*(I', ) must be unique. We thank the referee for pointing
out this simple proof of uniqueness of the trace to us, when we had originally used
Theorem 5.2 of [2] to get this result).

ExaMPLE 1.9. Let I' be the integer Heisenberg group {(m,n,p)|m,n,peZ}
where (my,ny, py)(my,ny, py) = (my + my + pyny,ny + ny,py + py). Cohomolo-
gy classes in H2(I', T) are parametrized by T> [17], where for (4, p) e T2,

1—1)n (n2—1)n
O'Lu((mp ny, p1)(my, ny, py)) = AmP +,,,_L2_‘ ) 2#”‘(m2+pl"2)+pl_2_2 ) 2
The finite conjugacy classes in I' are singletons consisting of elements in the
center of I', {(m,0,0)| meZ}. Then the centralizer of (m,0,0) is all of I', and

A0 (i, ) = (27 )

Hence no non-trivial (m, 0, 0) is 6-regular if and only if either 4 and/or pis of the
form e*™ for irrational a, so that by Proposition 1.3 W*(I', g, ,)is a factor if and
only if A and/or pis non-torsion in T, as shown in [ 17] by other methods. Thus by
Theorem 1.7 we see that C(I', g, ,) is simple and has a unique trace <> 4 and/or
u is non-torsion, which provides a shorter proof of this result from [17].

ExaMpLE 1.10. Let I" be a semi-direct product of the form Z" ><,Z, where
AeGL(n,Z) and (3,,n,)(5,,n,) = (5, + A"'0,,n, + n,). The group structure of
H?*(Z" ><1,Z,T) has been described in [18]; we may use Proposition 1.3 to
determine when W*(I', g) is a factor, and in the case where A-Id is nilpotent,
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Theorem 1.7 to determine when C*(I', ¢) is simple and has a unique trace. Given
o€ H*(I',T) in the standard form of [18], let y = o restricted to Z" >, {0}, and
S, = symmetrizer subgroup of y in Z" >, {0}, and let

FAO(Z") = {(5,0): {A’(v)|j€Z} is finite}.

Then we have two cases:

1) A has infinite order in GL(n, 2),

2) A has finite order in GL(n, Z).

Computations using Proposition 1.3 show that in case 1), W*(I', ) is a factor if
and only if ¥ (5,0)e S, n FAO (Z")\ {(I',0)}, 3peZ with 4”5 =& and a((0, p),
(0,0)) + 1, and in case 2), W*(I',0) is a factor if and only if the symmetrizer
subgroup of ¢ restricted to 4 = {(5,m)|5€2", A™ = 1d} is equal to the trivial
subgroup {(0,0)}.

Thus when A-Id is nilpotent, by using Theorem 1.7 we see that C*(Z" ><,Z, 0)
is simple and has a unique trace if and only if the conditions given above for
factoriality of W*(I', o) hold. If A-Id is not nilpotent (hence Z" >, Z is not
nilpotent) it is still possible for C*(Z" >, Z, g) to be simple; see [ 18] for necessary
and sufficient conditions.

2. Relationship to affine group actions

In this section we restrict our study to semi-direct product groups of the form
I' = N >1 G where N is discrete abelian and G is discrete (later we will consider
only abelian G). Recall that in this case N is a normal subgroup of N > G on
which G acts by automorphisms: (1,,9,)(n2,92) = (1, A(g1)n2,9:9,) where
A(g)n; = g1n,9; ' Consider a multiplier (two-cocycle) 6 on N >t G such that
o when restricted to the subgroups N x Nand G x Gof I' x I'isidentically one.
Then by a results of Mackey [14, Cor. to Thm. 9.4], ¢ is cohomologous to
a cocycle of the form

04.,((n1,91), (n2,92)) = <M2,p(g,)>

where p: G — N is a “A-crossed homomorphism” [24], [26], .., a map satisfying

(*) p(g192) = A(9:)(p(91)p(92).

Now G acts (on the left) on N via 4 as a group of automorphisms, so that by
duality A4 gives a map of G into Aut(N) which is an antihomomorphism.
Conversely, any map p’ of G into N satisfying (*) gives rise to a multiplier o, on
I' x T by setting

6,((n1,91)(M2,92) = n2(p'(94))
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Any A-crossed homomorphism of G into N can be naturally associated to an
affine action of G (on the right) on N as a group of homomorphisms:

w-g = p(g) A(g)(»), weN.

Letting X = N and B = A, we denote this dynamical system by (X, G)s.p)-
Consider the von Neumann algebra W*(X,G)p ,, formed via the group
measure construction acting on the Hilbert space I?(X x G,vy x vg) where vy
and v are Haar measure on X and G respectively.
Recall (see [23]) that the von Neumann algebra crossed product W*(X, G) s ,
is generated by the operators

{T/|feL*(X,vy)} and {V,]g€ G},
where T l(w,g9) = f(w)lw,g)
and V, l(w,9) = lwgy,97 ' 9)

= l(p(9,) B(g1)(®), 97 '9), w€ X, g,,g€G.

We now observe that W*(X, G), ,, is spatially isomorphic to W*(N >, G,0,).
W*(N >, G, 0,). This is no doubt known to many people and in the case where
either 6, = 1 or A = Id was first noticed in [20] and [8] respectively. We briefly
indicate a proof for the general case.

Let #y:*(N) - [2(X) be the Fourier transform, defined by %y (f)(w) =

Y. f(n){w,n). Then Fy(3,)(w) = n(w),ne X = N, we X. Let
neN
‘%2.9'—N®IdL2(G):LZ(NXG) —PE(XXG)

I I
}(N)® I2(G) » I*(N) ® I2(G).

One easily checks that % ~'V,% = U, ,,ge Gand % ' T = U, ,,,neN = X.
Hence %~ *W*(X,Geg, U = W*(N ><1 G,a,). Similarly % W*(N > G,0,)% " <
W*(X,G)g,, so that U TWHX, G)p,p) % = W*(N >1G,0,). Thus we have
shown:

PROPOSITION 2.1. If o is a multiplier on the semi-direct product I' = N >, G
with N discrete abelian and G discrete, with o identically one on the subgroups
N x Nand G x G, then there exists an affine action of G on N, (N, G),, such that
W*(N >, G,0) = W*(N, G),,)- Conversely, if one is given an ajZ?ne action
(N,G),p), there is a multiplier 6, on N >ipG such that W(N,G)g , =
W*(N >1G,0,).

Now let G be a countable abelian group, acting on the compact Lebesgue space
(X, p) so as to leave the measure u invariant. Then it is known that W*(X, G) is
afactorifand only if G acts measure-theoretically freely and ergodically on (X, ).
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In the situation where (X, G) g, is an affine action of G on the compact abelian
group X, we can therefore deduce that the dynamical system (X, G)g ) is (m.t.)
free and ergodic only when the discrete group-multiplier pair (X > G, o,)
satisfies the conditions of Proposition 1.3. This allows us to deduce:

THEOREM 2.2. Let (X, G)3, ,) be affine dynamical system where X is a compact
(s.c.) abelian group, G is a (countable) discrete abelian group, B: G — Aut(X) is
homomorphism, and p:G — X is a B-crossed homomorphism. Then the action of
G on X is free and ergodic with respect to Haar measure if and only if

1) (Ergodicity condition)
For every ne X\ {e} such that {B(g)(n)|ge G} is finite, there exits

91€G with B(g,)(n) = n and n(p(g,)) * 1.
and

2) (Freeness condition)
For every ge G\ {e} such that {B(g)(n)7i|ne X} is finite, there exists
ny € X with B(g)(n,) = n, and n,(p(9)) * 1.

ProOF. LetN = X, 4 = B: G — Aut(N). Thenby Proposition2.1, W*(X, G)s,,
= W*(N >1,4G;0,), thus to determine whether the system (X, G) 3, is m.t. free
and ergodic it suffices to determine whether or not W*(N >, G; 0,)is afactor, by
ourremarksmade prior to the statement of the theorem. Using Proposition 1.3, we
must compute the non-trivial finite conjugacy classes of N >, G and determine
whether they are o-regular. If (7,g) e N >, G, then its conjugacy class in I" will be
{(yA(g)(y ") A(h)(n), g)| (v, h)e I'}. We see that (1, g) is a finite conjugacy class (or
(n,9)e FC(IN)) if and only if (,e) and (e, g) both have finite conjugacy classes;
moreover (1, e)e FC(I') if and only if { A(h)() | h € G} is finite, and (e, g) € FC(I') if
and only if the set {A(g)(y ')y |y e N} is finite. For (n,e)e FC(I'), (y,9) € C,..), We
have

I

179 (y,g) = a,((n,e),(7,9) 0,79 (1,9~ (n,€)(7,9))

1-6,((y,9),(n,€) = n(p(g)).

Thus the class of (1, e) is not o-regular if and only if there exists g, € G with
A(g,)(n) = n and n(p(g,)) + 1. Taking (e,g) e FC(I'), (7, h € C 4, then

277CP (p,h) = a,((e. 9), (v, M) ,((, h), (e, 9)) = ¥(p(9)).

Thus the class of (e, g) is not o-regular if and only if there exists #, e N with

A(g)(n,) = n, and n,(p(g)) + 1. Finally a calculation shows that if (,g)e FC(I')
and (y,h)e C, ),

X709 (y, h) = a,((n, 9), (v, W) 3, (7,h), (1, 9))
= y(p@)n(p(h)
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Hence (1, g) e FC(I') will not be g-regular if and only if either (n, e) or (e, g) is not
o-regular. Hence statements 1) and 2) of the theorem guarantee that I" has no
non-trivial finite conjugacy classes, which implies by Proposition 1.3 that
W*(N >, G,0,) is a factor = W*(X, G),3 , is a factor = (X, G)g,,, is free and
ergodic with respect to Haar measure. Conversely, if (X, G),3, , is free and ergodic,
then W*(X, G) g, , isafactor = W*(N >, G, 0,)isafactor = Statements 1)and 2)
hold.

George Mackey was the first to suggest to me that something like Theorem 2.2
could be proved via von Neumann algebra techniques, and that one could derivein
analternatefashion the following version of the well-known theorem of Hahn ([9],
Theorem 4) (who dealt with the case G = Z) which was generalized by Wieting to
arbitrary l.c.s.c. abelian groups G [24]:

COROLLARY 2.3. Let (X, G)g,,) be an affine action of the countable abelian group
G on the compact (s.c.) abelian group X. Then the action of G on X is ergodic with
respect to Haar measureif and only if foreveryn € X\ {e} suchthat {A(g)(n)| g € G} is
finite, there exists g, € G with A(g,)(n) = n and n(p(g,)) + 1. (Here A= B:G -
Aut N).

Proor. Ifthe action of G on X satisfies the freeness condition 2) of theorem 2.2,
the result followsimmediately. We assume then thatcondition 1) but not condition
2) of Theorem 2.2 holds for (X, G),p,,). Let G, = G be the subgroup of g€ G such
that {A(g)(y) 7|y € N} is finite and for every ne N with A(g)(n) = n,n(p(g)) = 1. If
9o € Gy, a calculation using 1) shows that O, = {4(go)(n) 17| n€ N} must consist
only of the trivial character y = 1. Hence the action of G, on X is trivial, since
B(g,) = Id e Aut X and p(g,) = e for gy € Go. Thus the action of G on X factors
through to giveanactionof G' = G/G,on X. Itiseasy to check that (X, G') 5 ,, will
satisfy conditions 1) and 2) of Theorem 2.2 so that G’ acts ergodically on X, which
implies that G acts ergodically on X. The converse is extablished similarly.

We now discuss what the above results will tell us about the C*-algebras
corresponding to certain affine dynamical systems, C*(X, G), ). It is clear that
the spatial automorphism between W*(N >, G, g,) and W*(X, G),,) carries
the weakly dense subalgebra CXy(N x G, g,) onto a concrete faithful representa-
tion of the transformation group C*-algebra C(X) x,4G corresponding
to the dynamical system (X,G)gp,. If G is abelian, Cyq(N >,G,0,) =
C*(N >1,G,0,)and C(X) x .4 G = C(X) b< G,sothat we have a *-isomorphism
between C*(N >, G,0,) and C(X) < G. Now it is known ([25]) that for a free
action (X, G), (X, G) is minimal if and only if C(X) b< G is simple, and (X, G) is
uniquely ergodic (i.e., there exists a unique G-invariant Borel probability measure
on X),ifand onlyif C(X) > G hasa unique normalized trace. Thuswhen N ><, G
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is nilpotent, the results in Section 1 will yield information about the dynamics of
(X, G),p):

THEOREM2.4. Let(X, G)p, , beanaffineactionofthecountable abeliangroup G on
the compact abelian s.c. group X and suppose that X x3 G is nilpotent, i.e. suppose
theactionof G on X isnilpotent. Then(X, G) . 5y is minimal and uniquely ergodicif and
only if for everyn e X\ {e} such that { B(g)(n)| g € G} is finite, there exists g, € G with
B(go)(n) = n and n(p(go)) * 1.

PROOF. (<=): Asinthe proofof Corollary 2.3, wecan find a quotient group G’ of
G with natural map y: G —» G’ such that (B, p) factors through G’ as (B oy, p' 0 ¥),
and with(X,G’) p. ,satisfyingconditions 1)and 2)of Theorem 2.2. ThenX xjz G'is
aquotient of X x; G, henceis still nilpotent,and W*(X, Gp.py = w*X x3 G,
o, )isafactor. Hence by Theorem 1.7 C* X x5 G, 0,) = C*(X) x G'issimpleand
has a unique normalized trace, which implies that (X, G’) is minimal and uniquely
ergodic. This implies that (X, G) is minimal and uniquely ergodic.

(=): If (X, G),,) is minimal and uniquely ergodic, the stability subgroups of
every xe€ X must be equal to some fixed subgroup G, and (X, G),,, may be
factored as before as(X, G)p .o ¢ p'00) Where ¢ : G — G/G, = G'isthe quotient map,
and (X, G')p ,- isanaffine systemin which G’ acts freely and which is minimal and
uniquely ergodic. Thisimpliesthat C(X) x G’ = C*(X x G',0,/)issimpleand has
a unique normalized trace, which implies that the desired condition holds, from
Theorem 1.7.

Inthespecial case where X = T"and G = Zweobtainasacorollaryanalternate
proof of the following theorem of Hahn [9]:

COROLLARY 2.5. Let (T",2)p,, be an affine action of Z on the n-torus, with
T"(2) = p(n)B"(2), for Be Aut(T") = GL(n, Z) and p a B-crossed homomorphism of
Zinto T". Suppose that B is unipotent. Then the action of (T",Z) 3 ,, is minimal and
uniquely ergodic if and only if (x*) for every 5eT™ {e} = Z"\ {0} such that
{B(n)(0)| neZ} is finite, there exists ny e Z with B(no)(%) = © and {3, p(no) # 1.

Proor. If Bis unipotent, then B'—Id is nilpotent so that 2" x3 Z = Z" x3 Zis
nilpotent. Hence we apply Theorem 2.4 to get the desired result.

REMARK 2.6. Hahn[9]and Hoare and Parry [11] have shown that all minimal
affineactionsofZonthen-torus(T", Z) 5 , mustsatisfy condition(**)and musthave
B-1d nilpotent. Such systems have quasi-discrete spectrum (c.f. [11]; the “normal
form” of these systems as given in [9] allows one to read off an ascending central
series for (2" ><Z) x ,D quite easily). It follows that in order for
C*(Z" >, Z,0,)tobesimpleitisnecessary that A-Id be nilpotentand(A4’, p)satisfy
(**); as mentioned at the end of Section 1, if we take more general
o€ Z*(Z" >a,Z; T) this no longer is true [18].
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