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COMMUTATORS AND GENERATORS II

DEREK W. ROBINSON

Abstract.

Let # be a Banach space and ¢ a C-group of isometries of # with generator H. Set #, = D(H"),
B = ﬁ B,, and |a|, = sup, <, |[H™a| for all ae #,. I K is a dissipative operator from %,, into
B satis"f;ilng

l(ad 6)(K)all < k |lall, [t|

forsome k = Oand all |t| £ 1,ae 4., then we prove that the closure K of K generates a C,-semigroup
of contractions S. Moreover, if K#,, S 4,, then S#, < #, and S defines a | - || ;-continuous semig-
roup on #,. Analogous results are proved for non-isometric groups o, or for holomorphic semig-
roups, but at the cost of imposing additional multi-commutator conditions.

1. Introduction
Let 0 be a C,-group of isometries of a Banach space # with infinitesimal
generator H and set 4, = D(H") and #,, = () B,. Then 4, is a Banach space

n=1

with respect to the norm

”a"n = sup0§m§n ”Hma“

and 4, is a Fréchet space with respect to the topology induced by the family of
norms {|| - [l,;n = 1}.
The primary aim of this paper is to prove the following commutator theorem.

THEOREM 1.1. Let K be a dissipative operator from B, into & satisfying
(1.1) l(ad o )(K)all < klt|- llall,

for some k 20and allac B, |t| £ 1.

Then the closure K of K is the generator of a C,-semigroups S of contractions.
Moreover,if K&, S B, then SB, S B, and S|4 isa | | -continuous semigroup,
generated by the | - || ,-closure of K, satisfying

IS.all; < € lally, t20, ae,.
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Our secondary aim is to prepare the ground for a subsequent extension of the
above theorem [Rob3] in which ¢ is replaced by an isometric representation of
a general Lie group, and (1.1) is modified accordingly. The proof of this generali-
zation requires a number of new techniques together with a version of Theorem
1.1 in which ¢ is a holomorphic semigroup. We prove the appropriate result in
Section 4 but as an intermediate step we establish an analogous result for
a non-isometric group ¢ in Section 3.

A result similar to Theorem 1.1 was proved in [BaR] for dissipative operators
from 4, into # and in fact the proof of the second statement of the theorem is
identical to the proof in [BaR]. The proof of the generator result is based on
arguments of “singular perturbation theory” similar to those used in [BaR] but
now we use perturbation theory of holomorphic semigroups instead of contrac-
tion semigroups. This requires new growth estimates for perturbations of holo-
morphic semigroups which are based on the approximate commutation of K and
H.

If # is a Hilbert space, and ¢ a unitary group, then Theorem 1.1 is an
elaboration of a commutator theorem of Glimm and Jaffe. The Hilbert space
theory, which has been studied extensively, is described in [Rob1] and this paper
contains references to earlier work.

In the case K%, < %4, general theory gives another characterization of the
generator of the || - ||,-continuous semigroup obtained by restricting S to %,.
Since 4, is continuously embedded in 4 it follows that this generator is the
restriction of K to the domain {ae D(K) () #,; Kae %, } (see, for example, [ Paz]
Chapter 4, Section 4.5).

The starting point of the proof of the theorem is the observation that dissipati-
vity of K implies closability and hence K is a closable from the Fréchet space 4,
into the Banach space 4. Hence K is continuous in the sense that

(1.2) IKa| = cllal,

for some ¢=20, p=0, and all ae4%,. Since by standard reasoning &, is
Il - Il ,-dense in 4, it follows that %, < D(K) and (1.2) is valid for the closure K on
A,. Another version of Theorem 1.1 follows if one assumes directly that K is
a dissipative operator from 4, into 4, for some p > 0, which satisfies (1.2) on 4,
Alternatively it suffices to assume (1.2) is satisfied on some norm-dense o-
invariant subspace & which is contained in 4,. Similarly for the second state-
ment of the theorem it suffices that there is a norm-dense g-invariant subspace 2,
such that 2, < D(K) () %, and K2, < %,.

If one relaxes the requirement that the group o is isometric then the problem
becomes more complicated. Nevertheless one can prove versions of Theorem 1.1
if one has additional higher-order estimates

l@d o)™ (K)al < knllall,, 6™



COMMUTATORS AND GENERATORS II 89

forallae #,,|t| < l,andm = 1,2,..., p. This will be discussed in further detail in
Sections 3 and 4 but we note in passing that higher-order estimates lead in
general to stronger smoothing properties, e.g. S4,, S %,

To conclude this introduction we give a brief sketch of the proof of the
generator property of Theorem 1.1. First, by the previous discussion (1.2) is
satisfied for K on 4, for some p 2 0. Hence if 2n > pit follows that K is relatively
bounded by (— H?)" with relative bound zero. Second, (— H?)" generates a holo-
morphic semigroup and therefore by perturbation theory f(—H?)" + K also
generates a holomorphic semigroup for each § > 0. In particular, for each 8 > 0
there is an g5 > 0 such that the resolvents ry(e) = (I + ¢(8(— H?)" + K))~* exist
as bounded operators for all e€ [0, ¢,]. Third, by the Hille-Yosida theorem K is
a generator if, and only if, R(I + ¢éK) = # for all small ¢ > 0. But if there is
a ¢ e #* such that

oI + eK)a) =0
for all ae #, then
(I + eR)ry(e)b) = 0
for all be #. Therefore one has the estimate
|$(b)l = eBld((—H?)"rg(e)b)
S efloll-lrge)bll 2,

for all be # and ¢ in the interval [0, ¢;]. Now if one can prove that ¢, is bounded
away from zero as f — 0 and that |r4(e)b| ,, is bounded for be %,, uniformly in
Be[0,1] then in the limit f — 0 one concludes that ¢(b) = 0. Since %,, is
norm-dense this implies ¢ = 0 and K is a generator. Thus the proofis reduced to
establishing the boundedness properties of ¢; and r(e). Unfortunately the
bounds on ry(¢) are not generally true under the hypothesis of Theorem 1.1 and in
order to establish them it is necessary to replace K by a regularized operator. This
complicates the proof somewhat but it nevertheless follows the above lines.

2. Resolvent Bounds

In this section we derive resolvent bounds of the type indicated above and then
we apply them to the proof of Theorem 1.1.

If H generates a C,-group o then the operators (—H?)",n = 1,2,... generate
holomorphic C,-semigroups S defined by

sm = f ds " (),
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where the u™ are convolution semigroups given by
w"(s) = (2m)~ 1j‘ifl e i e,
Continuity and holomorphy of the S™ follow directly from the explicit form of
the 4™ and in fact one has the following basic estimates.
LEMMA 2.1.There is an M, = 1 and w, = 0 such that
IH™ S| < M, e t=m/2

forallt >0andm =0,1,2,...,2n. Moreover if o is isometric then one can choose
w, =0.

PROOF. Set D = d/ds then
H™S"™ = st (D™ 1i™)(s) as.

But it follows from the explicit form of u™ by scaling that
(D™ W) (s) = £ m* 2 (D ) st V),
Therefore if o is isometric one obtains the bounds
IH™ S| < t™™2" MaXg < m < 20 st (D™ uP)(s)I-
(Note that the integrand is bounded by e ~*! for any k > 0.) The general result

follows similarly because o satisfies bounds ||a,|| < M exp {w]s|}.

Next we are interested in operators satisfying bounds || Ka| < c|lal|, and it is
convenient to re-express these as relative bounds with respect to powers of H.

LEMMA 2.2. For each ¢ > 0 there is a c'P’ such that
lall, < ellHP* all + ¢ |lall, aeB,.,,.

ProOF. First, since

t
o,a:a—tHa+j ds(t — s)yo,H?a, ae%,,
0

one readily obtains estimates
2.1 IHa|l < el|H?all + k(" llall, aeB,.
Therefore

2.2 lally < elH?all + ¢V |lall, ae,
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with ¢{" = 1 v k{". Second, one argues by induction starting from (2.1) that
(2.3) [H?al < el|H?* 'a| + kP ||a]|

forallae%,,,,p =1,2,... Finally one deduces the statement of the lemma by
another inductive argument starting from (2.2) and using (2.3). We omit the
details.

Lemma 2.2 provides the starting point of the proof of Theorem 1.1.

COROLLARY 2.3. Let K be a closable operator from &, into # with closure K.
Then there is an n 2 1 such that %,, < D(K) and the operators Hy #,,— #B
defined for § > 0 by

Hy = B(—H*Y + K
are generators of holomorphic semigroups.

ProoOF. It follows from the uniform boundedness theorem that there are
¢,p 2 0 such that

IKall = cllall,, ae,.

Then since 4, is || - | -dense in %, by a standard regularization argument, it
follows that 8, = D(K) and (2.4) extends to K on #,. Now choosing n such that
2n > p one deduces from Lemma 2.2 that

IKall < ecllH*a|| + cc!" ! lal, a€B,,

ie. K is relatively bounded by (—H?)" with relative bound zero. Hence the
corollary follows from the theory of perturbation of generators of holomorphic
semigroups (see, for example, [Paz] Theorem 3.2.1).

Our next aim is to obtain estimates on the resolvents and resolvent sets of
operators Hy of the foregoing form. The principal tactic is to introduce a family of
equivalent norms.

LEMMA 2.4. Let S™ denote the holomorphic semigroup generated by (— H?)" and
fix M, 2 1, w, > 0, such that |S{”|| £ M,exp{w,t}, t =2 0. For each f > 0 set
Y =7.(B) = log M, + Bw, and define | - ||, by

lally = sup,»o IS§Y ale™™, aed.
Then one has the following:
L lall = llall; = M, lal,
2. ”a“ﬁ =SUPo<is1 HS}'?aH e’ ",
3. IS5 all; < e lally, aeB.

In particular (— H?)" + y1 is | - || -dissipative.
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ProoF. The proofs of 1 and 3 are elementary and 2 follows because y is chosen
such that

M, efont < e 1> 1.

The last statements of the lemma follows since B(—H?2)" + yI generates the
|| - || j-contractive semigroup t — S§ e~ .

Now let K be a dissipative, hence closable, operator from %, into # and
choose n = 1 such that the conclusions of Corollary 2.3 are valid. The next idea is
to use the assumption (1.1) to prove that K + w1 is | - || ;-dissipative for some w;
and hence deduce that H; + (wy + )l is | - || ;-dissipative. This then implies that
the semigroup S” generated by Hj satisfies the estimates ||S, | < M, exp {t(w; + 7)},
t > 0, and bounds on the resolvent of Hy follow by Laplace transformation.
Unfortunately the first step in this procedure appears impossible unless one has
stronger commutation hypotheses than (1.1). Nevertheless the procedure works
if one replaces K by a regularized operator. But then it is critical that ¢ is
isometric. Hence throughout the rest of this section we adopt the assumption of
Theorem 1.1 and choose n such that the conclusions of Corollary 2.3 are valid.

Let o > 0 and define the regularized operators K!™ as linear operators from
A, into & by

a a

(m) _ o—m %

Ka = J‘dtlj‘ dtmUz,+...+rmK0—r,—“.—z,,,
0 0

Note that the strong integrals exist because ¢ is continuous and K satisfies the
estimate (2.4). For brevity we also use the notation

Km = (a"’f dty" o,m K 6 _ ym.

0

LEMMA 2.5. The operators K™ are dissipative and

(2.5) (ad o, )(K{™) al| < kit~ |laly,
forallac B, and |t| < 1. Moreover, K\ B, < B, and
(2:6) I(K¥™ — K)a|| < (mka/2) |lall,, acB,.

PROOF. Since K is norm-densely defined and dissipative it follows that for
every ae #8,, and w e #* such that w(a) = ||w| - |lal| one has Re w(Ka) = 0. But
(woo)o_,a) = ||w|"|a||l = |lwoa,| |lo_,al because g is isometric. Therefore
0,Ko _, is dissipative and it follows immediately that the K™ are dissipative.

Next it follows from (1.1) that
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lad o, )(Kg™)all < (™! f ds)" |ogm(ad 0, )(K) 0 _ gmal
0

é(a"j ds)" k|t| - llo - gmall,
0

ékltllla”l5 aegrx»

where we have again used the isometry of ¢. Similarly

(K™ — Kal = (ot“rd5>m l(ad o _ o) (K)al|
0

IIA

oz""‘j ds, f ds,(sy + ... + s klal,

0 0
= (mka/2) ||all;.
Finally it follows by straightforward calculation that K™ #_ < %, and
2.7) HK™a =K™Ha +a (K™Y — g, K™ Vg_,)a
for all ae B . Thus by iteration one has K{" #_ < 4,,.
The next result is the first crucial estimate in the proof of Theorem 1.1.

LEMMA 2.6. Let o, f€]0,1] and fix M, 2 1 such that |[H"S™| < M, t~™",
t20,m=0,1,...,2n. Then K" + wl is || - || p-dissipative for all o 2 w,, ; where

W, p = 8k MG (1 + (2/2)(B/2)"/2)*" .

PrOOF. Since K{?" is dissipative, by Lemma 2.5,and S" # < 4, t > 0, one
has

(1 + o) IS5 alle™ < (I + e(KP™ + wl) Sgal e
< [ISEUT + e(KZ" + ol)al e
+ ¢ll(ad SEKLE)all e
for all ae 8. Therefore setting y = log M, one has
(1 + ew) lall, £ (I + e(KE™ +ol))ally + esupo <, <1 lI(ad S5) (KE™)all.
Next we establish the bounds
(2.8) SUPo s <1 lI(ad SE)KE)all < @, 4 llally
and consequently deduce that
lally < I + e(KE™ + oD)alls

for all ¢ > 0 and w, 5. Thus K@ + wl is || - || p-dissipative for o 2 w,, 4.
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The proof of (2.8) starts with the observation that K?" &, < #,,, by Lemma
2.5,and K" is | - || ,,-continuous. Hence one can derive the Duhamel identity

(ad SYNKP™)a = —p(—1y j ds S§) (ad H*")(KZ™) SG0_ g a
for all ae 4.,. Hence using the combinatorial relation

(ad A)(B*") = Z (—1)'( )BZ" "(ad B (4)

one obtains
2n 2 t
(ad SPIKP"a=p Y (- 1)"“( r")j ds-
r=1 0
-H*™r S};‘s’ (ad HY (K'2™) S},"l 0d

for all ae 4,,. This immediately gives the estimates

l(ad SEY(KLZ™) all < B Z <2n> f‘ds IH* = SR

ll(ad HY (K") S - g all

< M,p Z <2">J ds(Bs) =1+ rin.

“liad HY (K&™) S _ g all.
Now by iteration of (2.7) one finds

r-1 _
lad HY (K@™)bll <0771 3 (r s 1)II(éld H)(KZ" " D)o _, bl

s=0
< (2/ay ' klbl

for all be A,, where the last bound follows from (2.5). But if b = S§), _ a then for
O<t—s=<1

Iblly < M,(B(t — 5)”"/*" | al
and hence combination of these estimates yields

(M) ( 1 (2n) 2 2 (2n
l(ad SEYKT™all < kM2 Y. )

r=1

t

‘(2/(1)'_1 ﬂ(r—l)/ZnI dss—1+r/2n(t _ s)—1/2n "a"

0
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for t€]0,1]. But the integral is convergent, because r = 1, and a crude estimate
establishes that it is bounded by 4n(t/2)" ~"/2"_ Therefore

2n
I(ad SE)KE™)all < dnk M7 3. (2n> /oy =1 (B/2)"~ P2 jal|

r=1 r

< 8n2k M2(1 + (2/0) (B/2)"2")*"~ 1 |all

for te]0,1] where we have used |a|l < |lall; and the convexity inequality
(1 +x)®" <1+ 2nx(1 + x)*>*~ !, x 2 0. This establishes the bounds (2.8) and
completes the proof of the lemma.

Since K" is dissipative, by Lemma 2.5, it is closable and its closure is also
dissipative and automatically satisfies the dissipativity property of Lemma 2.6.
Moreover, since ¢ is isometric it follows easily that K{?" satisfies an estimate
similar to (2.4), i.e.

IKg all < cllall,, ae .

Therefore 8,, = %8, < D(K@™) where for simplicity we now use K{?” to denote
the closed operator. But it follows from Lemma 2.2 that K" is relatively
bounded by (— H?)" with relative bound zero. Consequently, by Corollary 2.3,
the operators

H,p = B(—H?)" + K"

are generators of holomorphic semigroups S*#. But then it follows from Lemma
2.4, with w, =0, and Lemma 2.6 that H,; + wl is || -dissipative for
o Z w, s + log M,. This implies, however, that

IS:# all < 182* all,
§ er(w,‘,, + logMp) “a“p § 1\,1’I el(wu.ﬂ +logMp) “a”

for allae % and t = 0. Now the most interesting feature of this estimate is that if
B < o?" then w,; is uniformly bounded. Therefore one reaches the following
conclusion.

COROLLARY 2.7. If0 < 2 £ 1 and 0 < B < " the operators
H,; = p(—H?)" + K@"

generate holomorphic semigroups S** and there exist M = 1,w 2 0 independent of
o and f such that

IS¢ < Me®*
for all t 2 0. Hence the resolvents (1 + e¢H, ;)™ ! exist for ee [0, '[ and
B

I +eH, )" "Il < M(1 — &)™ "
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In fact the foregoing discussion establishes that one may choose M = M, =
sup {t"2" |[H"S™|;t 2 0,m = 0,1,...,2n} and = w, ,n + log M,

Our next aim is to estimate ||(I +¢eH, ;)" Y, for m=1,2,...,2n. Now set
rp(6) = +¢H,z) ' and D, = (I — o,)/t then

H™r,g(e)a = lim D{r, 4(e)a
=0

forallaeZand m = 1,2,...,2n because r, 4(¢) B < %,,. But D|'%#,, < %,, and
hence

D"r,g(e)a = r, z(e) D" a + (ad DY")(r, 4(e)) a
=1, 5(e) D' a — er, »(e) (ad D{™) (K™ r, 4(e)a.

Next we use the combinatorial relation

m

(ad A)(B™) = — Z( >(adB Y (4) B" "

to deduce that
m(m
Dlrope)a=r,4(e)DMa—¢ Y (r)rw(ay
r=1
(ad D,y (K@™) D" ry 4e)a
for t > 0, and this leads to the estimates

2.9) IH"r, p(e)all < ura.,,(e)n{nrff"an +ed (?)

r=1
‘limsup, .o [l(ad D,)" (K2") Dy* ™" ra,ﬂ(e)all}

for ae 4,. Now we use a combination of three different estimates to bound the
terms on the right.

First, if L denotes any closed operator with 4, < D(L) then one can define
similar operators t,(L), t > 0, by setting 7,(L) = 6,Lo _,. It then follows that

t
I = )K= a7 (I~ T,)(t"f dso, K" Vo).
0

Since (ad D,)(L) = t~ (I — 1,)(L)a, one immediately obtains the identity
t

(@d D,y (Kg") = o~"(I - Ta)’(t_‘j

r
ds) (05 K" "0 _3)0,—gabll.
0

Second, it follows from Lemma 2.5 that

lad D)(KZ™)ell < kliclly.
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Third, one has the Duhamel estimate
ID{d|l, < |Hd||,.

These three estimates can also be established in combination. Then using the
first with r replaced by r — 1, m = 2n, and L = (ad D,)(K), then the second, and
finally the third with ¢ = m — r, one obtains

(2.10) lim sup, .o [l(ad D,)" (K2") D" ™" bl| < k(2/af =" |H™ " b],.
Therefore (2.9) and (2.10) give

IH™ry g(e)all = [Iry, gl {IIH"'aII +ek ) (T)Q/ot)"’ IIH"'_'ra,p(s)alll}
1

r=

< a1 {uanm vek Y (’f)(z/a)"* ||ra,,,(e)a||m-,+1}.
r=1

Since these bounds are valid for m = 1,2,...,2n, one deduces that
Z(m
(2.11) Irap(@)alm, < lirg @)l {Ilail... +ek ) <r)
r=1

“(2fay ™! Ilr,,,;(ﬁ)all...-,ﬂ}

forallm = 1,2,...,2n. Now choose M and w such that the bounds of Corollary
2.7 are and set w,, = Mmk(1 — ew)™!. If ew, < 1 it follows directly from (2.11)
that

Irep@ally £ M(1 — ew) ™ (1 — ewy) ™ llall,.

More generally, if ew < 1 and ew,, < 1 one obtains

Irp€)all, < M(1 — ew,,) ! {”a”m Fek S (,:)
r=2

2/t IIVa,,;(B)allm-,n}

form = 2,3,...,2n. But as a €]0,1] this gives
" rg pe)all, £ M(1— ew) ™' (1 — ew,,) ! {Hallm +ek Yy (T)
r=2

2™ g p(€)allp -y v 1}

and iteration of these inequalities leads to a bound on o™~ ! ||r, 4(¢)al|,, which is
independent of « and B. In particular one has the following:
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LEMMA 2.8. Choose M 2 1,w 2 0,suchthat |S*#|| < M exp {wt} forallt 2 0,
a€]0,1]and B €10,a*"). Thenforee [0, [ definew,, = w,(e) = Mmk(1 — ew)™ .
If ew,, < 1, where 1 £ m < 2n, there is a c,(¢) independent of o and B such that

o™ (1 + eH, ) allw S () lallm
forall ae %,

Note that it is not necessary to take a 2n-fold regularization of K to obtain these
bounds, it suffices to regularize (2n — 1)-times. One regularization allows one to
reduce a double commutator estimate to a single commutator estimate and
a (2n — 1)-fold regularization allows estimates of all commutators up to and
including order 2n in terms of a simple commutator.

Now we are prepared to prove Theorem 1.1 by an elaboration of the method
sketched in the introduction.

First, since K is dissipative K is also dissipative and then, by the Lumer-Philips
version of the Hille-Yosida theorem, K generates a continuous contraction
semigroup if, and only if, the range of I + ¢K is dense in % for small ¢ > 0. Assume
this is not the case then there is a non-zero ¢ € #* such that

&I + eK)a) =0
for all ae 4,,. Therefore
AU + eR)r, 4(e)b) =0

for all be # where once againr, 4(e) = (I + ¢H, ;) ' and H, ; denotes the operator
introduced in Corollary 2.7. Consequently

o(b) = e p(B(—H*"' + KZ" — K)r, 4(e)b)

which gives the estimate

o) < ell Dl {B lIra5E)bll2y + anklir, 4(€)bll }

by dint of (2.6). But we may assume ¢w,, < 1, where w,, is defined in Lemma 2.8,
and then the estimates of this lemma give

1$®) < ellpll {Bor™2" "t caple) 1bll 2 + omk c4(e) 1B}

for allbe 4,,. Thusin the limit § — 0 then o — 0 one concludes that ¢(b) = O for all
b e #,, which forces the contradiction ¢ = 0. There R(I + ¢K) is dense for small
&> 0and K is a generator.

The proof of the second statement of Theorem 1.1 is not significantly different to
the proof of the analogous statement in Theorem 2.1 of [BaR]. Hence we omit
further details.
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A slight simplification of the above proof also establishes that the regularized
operators K'2", which are dissipative by Lemma 2.5, are generators of continuous
contraction semigroups. In fact the holomorphic semigroups S*# generated by
H, ; converge strongly to the contraction semigroup S* generated by K" as
p — 0. Moreover the S* converge strongly to the contraction semigroups S gener-
ated by K as « — 0. These results can be established by proving resolvent conver-
gence of the appropriate generators exactly as in [BaR]. This convergence argu-
ment carries through with the aid of the uniform estimates of Corollary 2.7 and
Lemma 2.8, e.g. the usual resolvent identity gives the estimate

(s, (&) — rap,(eNall = 1By — Bal e @)l lIre 5,()all 2
S 1By = B M(1 — ew) ™' o™ 2" ey, (e) all 2

and strong convergence of r, 4(€) as  — 0 follows for small ¢ > 0. Again we omit
details.

We conclude this section by remarking that since ¢ is isometric —AH? + uH is
dissipative forall A = 0 and ue R. Then replacing K by — AH? + uH + K does not
affect the hypotheses of Theorem 1.1. Therefore one reaches the following conclu-
sion.

COROLLARY 2.9. Adopt the assumptions of Theorem 1.1. Then for each 4 = 0 and
ueR the closure of the operator —AH? + uH + K generates a Cy-semigroup of
contractions S and if KB, < B, and S|4 is a | - ||;-continuous semigroup satisfying

IS.all, < € lall,, t=0,ae,.

3. Multi-commutator Theorems

The strength of Theorem 1.1 is that the action of K relative to H is only
restricted by the simple commutator condition (1.1). But the proof nevertheless
needs estimates on multi-commutators, and the regularization of K was used to
estimate the higher order commutators in terms of the simple commutator. If,
however, one has appropriate bounds on sufficient multiple commutators one
can prove Theorem 1.1 without introducing the regularized K. This is of interest
because isometry of ¢ is then inessential. The only delicate use of isometry in the
foregoing proof was to establish dissipativity of the regularized K. If the regular-
ization procedure is not used then the isometry condition can also be avoided.

THEOREM 3.1. Let o be a Cy-group on a Banach space # with infinitesimal
generator H and K a dissipative operator from the Banach subspace %, into 8 where
B = D(H™) and |a|, = SUpo <, < mlHall, m = 1,2,... Assume

1. for each £€]0,1] there is a k, > 0 such that

IKall £ ¢ellalizn + kellallza-1, acPy,
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2. there exist I,, = 0 such that
lado)"(K)all < Iy llalllt™, a€RB,,
forlt|<landallm=1,2,...,2n — 1, and
lad 3,)*"(K) all < (Ollallzn + 12407 llallzn-)It1*", a€B,,
forjt)=1and0<d < 1.

It follows that the closure K of K is the generator of a C-semigroup of contrac-
tions S. Moreover, for each m = 1,2,...,2n — 1 one has KB, < B, SB,, = B,
and the restrictions S|g_are || ||,,-continuous semigroups satisfying

IS.allm = I!allme)(p{t > <m) l,,}.
p=1 14

ProOF. The proof of the generator property for K follows the outline given in
the introduction and for this one needs modifications of the estimates of Lemmas
2.6 and 2.8.

First one proves that there is an w, such that K + wl is | - || ;-dissipative for all
w = w, for all B€7]0,1]. The proof is along the lines of Lemma 2.6. It relies on an
estimate

SUPo<r<1 i(ad S}a”,’)(K)aH < wg ”a"[b a€ B,

To obtain this estimate one begins with the Duhamel identity

t
¢ (ad SP) (K)a = B(— 1)+ j ds {HZ" S K S a

0

( 2n C(n)
— Si+nKH ”Sﬂ';,_s,a}

t
= p(—1y*! limf ds S§ 1, (ad D2")(K) Sy a

u—04J0

where D, = (I — ¢,)/u and ae #,,. But this leads to a bound
n 2" . t _
G.1) IS5 @dSE)(K)all < B Zl <m> “limsup, o L ds || H* ™" S ol -

“litad 6,)" (K) Sgo, - g all /u™

Now the integrals in this estimate can be bounded by combined use of Lemma 2.1
and Condition 2 of the theorem. First one has
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t
(3.2) J ds||H*"~" S || - lad a,)™ (K) Sgo; -y all /u™

0
1
§ M'%eﬁw..rlmﬂ—lj‘ dss—l+m/2n(l _ s)—m/ln ”a“
0
form=1,2,...,2n — 1. In addition one has

(3.3) f ds IS5 | - (ad 0,)*" (K) Sgi - g all /u®"
0

1
s Mfe”"’"'ﬂ“j ds(@(1 — )" + 15,67 (1 — 57 12 |ja]

0
1

S Miefor(1 + IZn)ﬁ_lj ds(1 — )~ "1 a]
0

where we have chosen § = (1 — s)'/4". But the integrals in these last bounds are all
convergent, and |la| < |all;. Hence the desired bound follows for all ae 4, by
combining (3.1)-(3.3) and taking the limit » — 0. The bound then extends to all
a€ #,, by continuity.

Next,if H; = B(—H?)\" + K and ry(e) = (I + e¢Hy) ™' one has bounds ||r4(e)|| <
M(1 — ew)” ! analogous to those of Corollary 2.7. These bounds are valid for all
small ¢ > 0and are uniform for €]0,1]. Using these bounds one can thus obtain
uniform estimates on the norms |r4(e)all,, for ae 4, and m = 1,2,...,2n. First
one has the identity

Dl'ry(e)a =rg(e) D'a + i (=1p*! (::) erple)-

p=1
“(ad 0,)? (K) D"~ P ry(e) a/t”

and using Condition 2 of the theorem one immediately obtains

1H™rg(e)all < lirg(e)ll {lallm + &7m 7€) allm}

form=1,2,...,2n where
" (m
Ym = L.
p§=:1<p> ?

Solving these inequalities gives the desired bounds, e.g. one has
Irg(e)ally = M(1 — ew) ™" llall, + epy Irge)aly
where p, =y, M(1 — ew)”! and consequently
Irap(ealy < M(1 —ew)™ (1 —eyy) ™" llall

ifey, < 1.
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The generator property of K now follows from the uniform resolvent bounds
as before. But the proof of the second statement of the theorem has, however,
a new element. In order to apply the arguments of [BaR] to obtain the smoothing
properties S& < %,,,m = 1,2,...,2n — 1 one must first prove that K%, <
#,, - . But this follows from the bounds on the multiple commutators because of
the following observation

LEMMA 3.2. Let o be a Cy-semigroup with generator H. The following conditions
are equivalent for eachn = 1.

1. sup{lld —a)y"*tall/t"*;0<t< 1,1 Em<n) < oo,
2. ae%B,and
sup {(I — 6,)H"al|/t;0 <t < 1} < oo.

This result was proved for n = 1in [BaR] and the general case can be deduced
from the special case by the arguments of [BaR]. In fact an even stronger result is
true; the conditions of the lemma are equivalent to the condition

SupPo << I — a,)"* ' all/t"*! < 0.

An elementary proofis given in [Bur] but the result can also be deduced from the
general theory of Lipschitz spaces associated with a semigroup (see, for example,
[BuB] Theorem 3.4.10).

Now let us return to the proof of Theorem 3.1. If ae &, and D, = (I — o))/t
then

D"Ka=KDMa+ fj ('I')')(— 1) (ad )" (K) D™ 7 a/t?

p=1

and hence by Conditions 1 and 2 of the theorem

1D Kall < (1+ ky) lalznem+ Y (’")1,, lall
p=1\P
for m=1,2,...,2n. Therefore Kac%,,_, by Lemma 3.2. But once this is
established the smoothing properties of the semigroup S are proved by a slight
elaboration of the arguments of [BaR] using K&, < #,,—,. First one proves
that K + wl is | - || ,-dissipative for

m(m
W= l
.—pgl(p> F

and then one argues that (I + (K + wl))4,, is || - || ,-dense in &,,, for m = 1,2,
...,2n — 1. We will not give further details.
Note that if S* denotes the semigroup generated by H; = f(—H?)" + K thenit
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follows from the assumptions of the theorem that S? converges strongly to the
semigroup S generated by K as 8 — 0. This is again established from the resolvent
estimates as in [BaR].

Moreover, if K&, < #,, then one also has S8,, = %,, and Slg, is || ||,
continuous.

4. Holomorphic Semigroups

In this section we prove versions of Theorems 1.1 and 3.1 in which the group
o is replaced by a semigroup that is holomorphic in a suitably large sector.

Throughout this section ¢ will denote a holomorphic semigroup with genera-
tor H and sector of holomorphy Y (0) = {zeC; |argz| < 6} where 0¢€]0,n/2].
Now ¢ is at most of exponential growth in each closed subsector Y. (¢), where
¢ €70, 0[, and hence multiplication by a suitable exponential factor reduces it to
a semigroup which is uniformly bounded in the closed subsectors of }_ (). Since
properties of ¢ and those of the modified semigroup are related in an obvious way
we will restrict our attention to uniformly bounded semigroups.

The first step in the proof of commutator theorems related to holomorphic
semigroups is the derivation of an analogue of Lemma 2.1. In particular it is
necessary to examine semigroups generated by powers of H.

LEMMA 4.1. Let o be a uniformly bounded holomorphic semigroup with gener-
ator H and holomorphy sector Y (6). Assume that 6 > (1 — 1/n)n/2 for some
positive integer n. It follows that H" generates a uniformly bounded holomorphic
semigroup with holomorphy sector Y. (nf — (n — 1)m/2).

This result was proved by Goldstein [Gol] in the special case n = 2. The
general case was subsequently established by de Laubenfels [Lau]. Our proof is
a simple extension of Goldstein’s argument. Note that we use a different sign
convention to both these authors, i.e. in our notation o, = exp { —tH} etc.

Proor. It follows from Hille’s theorem that a closed densely defined operator
H generates a bounded holomorphic semigroup o, with holomorphy sector Y’ (6),
if, and only if,

R(I+eH)=%
and
4.1) (I + eH)all 2 my ||all,

for some m, > Oand all ¢, ¢ with ¢ €0, [ and |arge|] < ¢ + /2. Infact one then
has ||lo,|| < My, <m; ' forall ze) ().
Now if ae D(H") then
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@.2) (I + ¢H"a H (I +¢,H)a

where |e,| =l¢/'" and arge, =((n + 1 — 2m)n + arge)/n. Thus large,| <
(1 — 1/n)7 + |argel/n and if large] < n@ — (n — 1)7/2 + n/2 with § > (n — 1)n/2n
then |arge,| < 0 + n/2 for each m = 1,2,. .., n. Therefore

(I + eH")all 2 mg |lall, aeD(H"),
by iteration of (4.1) and R(I + ¢H") = # because

(I + eH™) H +é¢,H) 'a=(+¢H)a, aeD(H).

The statements of the lemma then follows from Hille’s criterion.
Next we have the analogue of Lemma 2.1.

LEMMA 4.2. Let o be a uniformly bounded holomorphic semigroup with gener-
ator H and holomorphy sectorZ(B) where 0 > (1 — 1/n)n/2. Further let S denote
the holomorphic semigroup generated by H". Then there is a M, = 1 such that

4.3) [H" S| £ M, t™™"
forallt >0and m=1,2,...,n

ProOF. Since S™ is a uniformly bounded holomorphic semigroup there is
a C, > O such that |S™| < C, and |H"S™|| < C,t ' for all t > 0.
Next it follows from the factorization formula (4.2) that

(I + tH") = I] ( +t,H)a, aeD(H")

m=1

where t,, = t'"exp {i(n + 1 — 2m)n/n}. Thus |argt,,| < (n — 1)n/n and choosing
¢ such that 0> ¢ > (1 — 1/n)n/2 one has |argt,| < ¢ + n/2 for each
m = 1,2,..., n. Therefore using (4.1) one obtains the estimates

4.4) I + tH"a| = m;,_l I(I + t;H)all, aeD(H").
Consequently
t'"||Ha| £ (I + tH)a| + |all

<M+ tHYal| + |lal

S My || H al + (1 + M3 |al
where M, = m; '. Replacing a by S"b one then has

tMIHSP bl < My~ e |[H" S bl + (1 + MY IS b]|
< C,(1 +2M37 Y |Ibl|



COMMUTATORS AND GENERATORS [I 105

for all b e # because S # < D(H")fort > 0. This establishes (4.3) for m = 1 with
M, replaced by N, = C,(1 + 2M}™"). But then

[H™ S| < |HS, ™ < Ny (m/t)™"
for m =z 1. Thus (4.3) is valid for m = 1,2,...,n with M, = n N".

After these preliminaries we can now formulate the third commutator theo-
rem.

THEOREM 4.3. Let o be a uniformly bounded holomorphic semigroup on the
Banach space # with generator H and holomorphy sector Y (6). Further let K be
a dissipative operator from the Banach subspace #, into %, where 1 < n <
n/2(n/2 — 6)~ ', and B,, = D(H™) with |a||,, = SUPo <, <mIH?al.

Assume

1. for each ¢€]0,1] there is ak, > 0 such that

IKall = ellall, + k. llall,-1, ac

ns

2. there exist I, = 0 such that
lad o)™ (K)all = I, lalnt™, a€B,,
fortel0,1]Jand m = 1,2,...,n — 1, and

lad o,)"(K) all < (dlall, + 1,6~ " llall,—,)t", ae,
fort,6€1]0,1].

It follows that the closure K of K is the generator of a C,-semigroup of
contractions S. Moreover for eachm = 1,2,...,n one has K®,,, S8,,< B,, and the
restrictions S|g are Co-semigroups with

IS:allm = llallmexp {l > (:l)’p}
p=1

ProoF. First, it follows from Lemma 2.2, which is valid for the generator of
a Cy-semigroup, that Condition 1 implies K is relatively bounded by H" with
relative bound zero. But H" generates a holomorphic semigroup S, by Lemma
4.1, and hence the operators

Hy=BH"+ R, Belo,l]

also generate holomorphic semigroups by perturbation theory.

Second, if rg(e) = (1 + eH,,)“ one has bounds ||rz(e)| < M(1 — ew)™ ! analo-
gous to those of Corollary 2.7. These bounds are again valid for all small ¢ > 0
and are uniform for $€]0,1]. The bounds are obtained by the arguments of
Lemmas 2.4 and 2.6 but now S™ is the semigroup generated by H". Thus one uses
S™ to define the equivalent norms || - | p as in Lemma 2.4 and hence deduce that
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thereisay > 0 and independent of S such that BH" + yl is || - || ;-dissipative. Then
one uses the commutator bounds of the theorem to argue that there is an w, > 0
independent of B such that K + wl is || - | s-dissipative for all w = w,. This
argument follows the lines of the proof of Lemma 2.6 but modified as in the proof
of Theorem 3.1. Then S? denotes the semigroup generated by H, one concludes
that

IS all < [S7ally < e llally < M, e |al

where w =y + wo and M, = sup,., [|S™|. The resolvent bounds follow by
Laplace transformation.
Third, one proves that for small enough ¢ > 0 one has bounds

Irg(e) allm = cmllallm a€B,

form = 1,2,...,nand these bounds are uniform in . These bounds are obtained
by the integral inequality method used to prove Lemma 2.8 but using the
multi-commutator conditions as in the proof of Theorem 3.1.

The generator property of K then follows by use of the resolvent bounds
exactly as in the proof of Theorem 1.1 and the smoothing properties of S are
proved asin [BaR] with the extra argument outlined in the proof of Theorem 3.1.

Note that if n = 1 in Theorem 4.3 then there is no restriction on the angle of
holomorphy @ butifn > 1 then thereis a restriction. But if o is holomorphic in the
open right half plane, i.e. in Z(n/ 2) then all values of n are allowed.

If n = 1 then the semigroups S generated by K has no apparent smoothing
properties unless one assumes that K%, < %, in which case S#; = %4, as in
Theorem 1.1. In fact the n = 1 case is a single commutator theorem comparable
to Theorem 1.1.

COROLLARY 4.4. Let ¢ be a holomorphic semigroup with generator H and K
a dissipative operator from D(H) into #. Assume
1. for each ¢€]0,1] there is ak, > O such that

IKal < ¢l|Hall + k,llal, aeD(H),
2. thereisanl; = 0 such that
lad o,)(K)all < (3|Ha|| + 1,67 |al)t, aeD(H),
for all t,6e€70,1].

It follows that K generates a C,-semigroup of contractions S and if
KA, < #, then SD(H) < D(H) and |H(S, — I)a|| - 0as t — 0 for each ae D(H).

Note that a stonger version of this corollary can be proved [Rob2] if ¢ is
a contraction semigroup, which is not necessarily holomorphic, and K is relati-
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vely bounded by H with relative bound zero. Then the commutator bound
lado)(K)al = I, llall,, t€]0,1[,aeD(H),

suffices to prove that K is a generator.
Finally remark that if the semigroup o in Theorem 4.3 is contractive then H is
dissipative and satisfies estimates

“Ha” égua“n-*_kc “aHn*l’ ae.%,,,se](),l[,

forall n = 2. Therefore if n = 2 Conditions 1 and 2 of the theorem are unchanged
if one replaces K with AH + K where 4 = 0. Hence one reaches the following
conclusion.

COROLLARY 4.5. Adopt the hypotheses of Theorem 4.3 but further assume o is
contractive and n 2 2. Then for each A =0 the closure of AH + K generates
a Cgy-semigroup of contraction S and for each m =1,2,...,n— 1 one has
(AH + K)#,, S Bp» SBy S B, and S|y is a || - || ,-continuous semigroup satisfy-
ing the bounds (4.6).

5. Concluding Remarks

Commutator estimates play an important role in Nelson’s theory [Nel] of
analytic elements associated with representations of Lie groups. This theory
gives commutator criteria for operators. As an illustration we mention the result
of Goodman and Jergensen, [GoJ] Theorem 2.1. This theorem has the corollary
that if o is a Co-group with generator H and if K; 2, +— 4 satisfies the conditions

(5.1 IKall < llal,,
(5.2) Iad o)™ (K)all < [k™ [lall [, 1] = 1,a€ B,

for some k,/ = 0 and all m = 1,2,... then each analytic element of H is analytic
for K. Thus ifin addition K is dissipative then its closure is a generator. This type
of result differs from the foregoing commutator theorem in several respects. In
particular it only applies to operators K which are relatively bounded by H and
this restriction appears difficult to relax. For example, the theorem cannot be
expected to apply to K = — H?, because H has analytic elements which are not
analytic for H2, but the commutator conditions are obviously satisfied.

It should also be emphasized that the C,-norm | |, is essential in the
commutator bound (1.1). Example 1 in Section X.5 of [ReS] demonstrates that
this bound cannot be weakened without the validity of Theorem 1.1. Similarly
Theorems 3.1 and 4.3 are sensitive to any change of order of the multicommu-
tator bounds. There is, however, a weak relationship between these orders. For
example, if one has bounds

”Ka” é kO “a”n(,, ae,@w,
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and in addition

lad o)™ (K)all < ky llall, 8", |t| £ 1,a€ B,

for some fixed m = 1 then it follows that

I(ad o,y (K)all < k, llall, lt", |t] = 1,ae2,,

forallr =1,2,...,m — 1 where n, = ny v n,, [Bur]. Hence if (5.1) is valid and
(5.2) is valid for large m then (5.2) is valid for all m.

ACKNOWLEDGEMENTS. This paper arose as a direct result of an earlier collabo-
ration with Charles Batty, and during the initial stages of its development
I benefited from numerous discussions with Ola Bratteli and Trond Digernes.

[BaR]
[BuB]
[Bur]
[GoJ]
[Gol]
[Lau]

[Nel]
[Paz]

[ReS]
[Robl1]

[Rob2]

REFERENCES

Batty, C. J. K. and D. W. Robinson, Commutators and generators, Math. Scand. 62 (1988),
303-326.

Butzer, P. L. and H. Berens, Semigroups of Operators and Approximation, Springer-Verlag,
1967.

Burns, R. J.; Commutators and Generators, M. Sc. Thesis, Australian National University,
1987.

Goodman, F. M. and P. E. T. Jergensen, Lie algebras of unbounded derivations, J. Funct.
Anal. 52 (1983), 369-384.

Goldstein, J. A., Some remarks on infinitesimal generators of analytic semigroups, Proc.
Amer. Soc. 22 (1969), 91-93.

de Laubenfels, R., Powers of generators of holomorphic semigroups, Proc. Amer. Math. Soc.
99 (1987), 105-108.

Nelson, E., Analytic vectors, Ann. of Math. 70 (1959), 572-615.

Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations,
Springer-Verlag, 1987.

Reed, M., and B. Simon, Methods of Modern Mathematical Physics 11, Academic Press,
1975.

Robinson, D. W., Commutator theory on Hilbert space, Can. J. Math. XXXIX (1987),
1235-1280.

Robinson, D. W., Differential and integral structure of continuous representation of Lie
groups, J. Op. Theor. 19 (1988), 95-128.

DEPARTMENT OF MATHEMATICS
AUSTRALIAN NATIONAL UNIVERSITY
CANBERRA, ACT 2601,

AUSTRALIA



