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CORONA C*-ALGEBRAS AND THEIR
APPLICATIONS TO LIFTING PROBLEMS

CATHERINE L. OLSEN AND GERT K. PEDERSEN

1. Introduction.

In the good old days every C*-algebra had a unit. And if it didn’t, you
immediately adjoined it. Nowadays — when crossed products abound, and
K-theory is the order of the day — the situation is reversed: If 4 is a C*-algebra we
do not expect that it contains 1; and if it does, we quickly replace 4 by the stable
algebra 4 ® X to ensure that 1 ¢ A. This change of attitude has kindled interest
in the structure of the algebra M(A) of multipliers of a non-unital (but usually
o-unital) C*-algebra A. From relatively modest beginnings in [7] and [3], the
concepts of multipliers/centralizers now pervade vital areas of C*-algebra the-
ory. For technical reasons, some of the relations among elements in M(A), that
are invariant under perturbations by elements from A, are best expressed in the
quotient algebra C(4) = M(A)/A —the corona of A. The motivating examples are
firstly commutative: if A = C,(X) for some locally compact (¢-compact) Haus-
dorff space X, then M(A) = C,(X) = C(BX), so that C(4) = C(BX\X) — the
continuous functions on the corona space of X, cf. [8]. Even more illustrative is
the non-commutative paragon A = ¢ —the compact operators on the separable
Hilbert space #. Here M(A) = B(s), so that C(A) is the Calkin algebra. In all
cases the elements in A represent local or (better) quasi-local properties, whereas
relations in C(A) describe truly global phenomena.

The present paper grew out of a desire to understand, and thereby generalize,
some of the results in the Smith-Williams papers, [22] and [23]. We soon realized
that our work had implications for the so-called technical theorems of Kasparov,
which play a key part in establishing his KK-theory. These theorems were
originally proved by bare hands methods, see [11], but can now, thanks to N.
Higson, be established in a more civilized (but still non-trivial) way, cf. [5, 12.4.2].
We show in Corollary 3.4 that every corona C*-algebra enjoys what might be
called the asymptotically abelian countable Riesz separation property. From this
property it is easy to deduce Kasparov’s results. The converse is unlikely to be the
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case: The Kasparov theorems are concerned with orthogonality relations, and
use the AW*- (or rather the SAW*-) character of C(4). Our, AA-CRISP, result
deals with the order structure in C(A),,, and establishes a monotone sequential
property of the corona algebras.

As a generalization of a theorem of Handelman ([10]), we show that every
element x in C(A4) admits a weak polar decomposition: x = v|x|. The elements vin
C(A) is not a partial isometry in general (although |v|| < 1), and therefore not
necessarily unique. Using the asymptotically commutative techniques from the
previous section, we show that v can be chosen normal and commuting with
x whenever x is normal. Moreover, v can be chosen unitary with Rev = 0,
whenever Re x = 0. The method of proof is again based on the principle that if
a property is asymptotically valid in M(A), it holds exactly in the quotient C(A).
The same principle applies to show that derivations of C(A4) are “locally inner”, in
the sense that they are inner on each prescribed separable C*-subalgebra of C(A).
Finally we investigate the special morphism g between corona C*-algebras C(A)
and C(B) that obtains from a surjective morphism p: A - B. From [19] we
already know that g(D)* = g(D*) for every o-unital, hereditary C*-subalgebra
D of C(A); a condition that in the commutative case expresses openness (more
precisely o-openness) of the restriction map between the underlying topological
spaces. We now show that g(D) = g(D’) for every separable C*-subalgebra D of
C(A).

In the last section we apply an equivalent version of Kasparov’s theorem to
solve a lifting problem for general C*-algebras: If I is a closed ideal in
aC*-algebra A4, and x € 4 such that x" € I for some n, there is an element ain I with
(x + a)" = 0. The case A = B(), I = A was solved in [14], and the case n = 2
(A and I arbitrary) was solved in [2]. The general solution is an instance surely
recurring) of K-theoretic machinery being useful for something completely dif-
ferent.

This work was carried out in Copenhagen and Coventry, and the authors
recall with pleasure the warm hospitality of D. E. Evans and his colleagues at the
University of Warwick. We acknowledge with gratitude the support of the
British and the Danish Research Councils, and of the United States Air Force;
SERC to GKP, and SNF and USAF to CLO.

2. Notation and Preliminary Results.

Throughout this article, 4 will denote a C*-algebra represented as operators
on its universal Hilbert space (unless otherwise specified), and A” will denote the
enveloping von Neumann algebra for A, cf. [18, 3.7]. We assume that A is
o-unital, but non-unital. Thus A has a strictly positive element and a countable
approximate identity (e,). Indeed, we may take e, = f, (h), if h is strictly positive
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and if the functions f, increase pointwise to 1 on sp(h)\ {0}, [18, 3.10.5].
Moreover, the approximate unit (e,) may be chosen quasi-central with respect to
any fixed separable subset of A” that derives 4,[18,3.12.14] and [5, 12.4.1]. Asin
[18, 3.12] we let QM(A) and M(A) denote the sets of quasi-multipliers and
two-sided) multipliers of A in 4”. We shall be almost exclusively concerned with
the unital C*-algebra M(A) of multipliers, and we recall from [18, 3.12.8], that if
B is any C*-algebra containing A as an essential ideal, there is a natural
embedding 4 = B = M(A). On M(A) we have the strict topology, generated by
the semi-norms x — || xal| and x — ||ax|, a€ 4; and M(A) is the strict completion
of Ain A", cf. [7]. Our first result uses none of the notions above, however, but
deals with estimates of commutators [x, y] = xy — yx.

2.1. LEMMA. If x and y are elements in a C*-algebra and x = 0, then for every
exponent 5,0 < B < 1, we have

I, 30 < (1 = B~ D, v liylt 7

PrROOF. We may assume that the algebra is unital and that || x|| = ||y|| = 1. For
[t| < 1 we have the power series expansions

1-(1=0f=Y o, Q-0 1= nays" !,
n=1 n=1

where a, > 0 for all n. (Actually a, = (—1)"*(#)). This implies that for any
selfadjoint element z with |z|| < 1 we can estimate

1L = 2)f, 911 = 1| 3 &Lz 111
n=1

o n—1 o n—1

1Y, Y a2 [z,y12 K< Y Y a,lzi” Iz ]

n=1k=0 n=1k=0

I

Y. na,lzl" iz y11 = B = lizI) MLz, v
k=1

Applied withz =1 —x — §,sothat —6 £z< 1 — d,and for 0 < § < 1, we get
106 + x)% y10 < B — 11— x = 3D~ HIDx, vl
< B HIx, 1.
Note now that since the root functions are (operator) monotone, cf. [ 18, 13.8],

0= +x)°f —xP <O +xP)—xF = 5"
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Thus with d = (6 + x)? — x*? we have
DX,y < 10 + %)%, y11 + 1104, y1I

< Bo* Il Y1 + 1I0d — idll, y1I

< RSP ML, v1Il + 206d — 41dDI Iyl < BSP~ I Dx, y1Il + 0%
Taking 6 = (1 — f)||[x, y]|| we obtain the desired result.

2.2. REMARK. Arveson proved in [4, Lemma to Theorem 2] that for x and y in
the unit ball, and for each continuous function on sp(x) there is a function J, with
d(e) = 0 as ¢ = 0, such that ||[ f(x), y]ll = ([x, ¥]ll). The argument in Lemma
2.1 shows that for f(t) = t# one may take &(g) = (1 — B)# "1 &b,

For = 1 (the only case we shall need) we get ||[[x?, y]|| £ 2II[x, y]I)}. This
result with a slightly larger constant) was obtained independently by K. R.
Davidson, and he raised the question whether \/5 is best possible. The answer is
no! An argument by U. Haagerup, based on the integral representation of t#
found e.g. in the proof of [18, 1.3.8], shows that the constant (for any ) may be
reduced to (nf(1 — B))~ ! sinBn. Thus for B =1 to 4n~'. Experiments with
matrices indicate that the best constant should be 1. And another argument by
Haagerup shows that indeed ||[x?,u]|| < |[x,u]||? if u is unitary. The quest for
the best constant will be pursued elsewhere.

2.3. LEMMA. Let (e,) be a countable approximate unit in a C*-algebra A. Then
for every bounded sequence (b,) in QM(A), the element

b= Z(en — €y l)% bn(en — €y l)%
(computed as a strongly convergent sumin A", and taking e, = 0) belongs to M(A).

PRrROOF. Since QM (A)is a *-subspace of A", containing 1, it suffices to consider
the case where 0 < b, <1 for all n. Then with h, = (e, —e,_,)} we have
h,b,h,e A, and h,(1 — b,)h,e€ A, forevery n. Thus in the notation of [ 18, 3.11.4]

be(A,)" and 1 — be(4,)",
since evidently Y h? = 1. Consequently

be(Au)" () (Awm = M(A)y,
by [18, 3.12.9], as desired.

2.4. REMARK. The result above is not new. A special case of it appears in [13,
6.3], and it has certainly been known to L. G. Brown for a long time. A slightly
stronger version can be found in [12,2.2]. In this paper, Lemma 2.3 will be used
repeatedly to convert an approximate result in M(A) (represented by a sequence
(b,)) into an exact formula in the corona C*-algebra C(A4) = M(A)/A.
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2.5. LEMMA. Let (e,) and (b,) be as Lemma 2.3, and assume furthermore that
ball £ 1 for all n. Then with b =) h,b,h, as before, |b| < 1.

ProoF. Consider the operators h and d in A ® B(s) given by
h; if i=1 b, if i=j
h se = J e J
() {0 if i1, @)y {0 if i
Note that d is a diagonal operator with ||d|| < 1, and that h is a partial isometry
with hh* = 1 ® e,,. As hdh* = b ® e, , it follows that

b*b ® e,y = (hd*h*)(hdh*) < hd*dh* < hh* = 1 @ e ,;

whence ||b*b|| £ 1, as claimed.

3. Technical Theorems.

As in §2, A denotes a g-unital C*-algebra with multiplier algebra M(A). The
corona C*-algebra for A is the quotient C(A) = M(A)/A. An account of the
elementary properties of C(A) and its analogues in general topology can be found
in [19].

Following a terminology introduced by R. R. Smith and D. P. Williams [22,
4.5] we say that a C*-algebra B has the countable Riesz separation property
(CRISP), if for any two sequences (x,) and (y,) in By, satisfying

(*) Xp S Xyt 1 S0 SVt S Vo
for all n, there is an element z in B, such that x, <z < y, for all n.

3.1. THEOREM. Every corona C*-algebra C(A) has the countable Riesz sepa-
ration property.

Proor. Consider sequences (x,) and (y,) in C(A),, satisfying (*) above. If h is
a strictly positive element in A and n: M(A4) - C(A) denotes the quotient map,
assume that we have constructed elements a, and b, in M(A),,, for 1 <k < n,
such that

(i) G- Sa b Sby,
(ii) (@) = X, (b)) = Vi
(iii) (b — @bl < k™1,

for all k < n. By [18, 1.5.10] there is an element b, in M(A),, satisfying
a,<b,., £b,and n(b,,,) = y,+- By the same result there is also an element
c in M(A),, witha, < c < b,,, and n(c) = x,+,. Now let (e;),., be an approxi-
mate unit for 4, and put

ay=c+(bysy — ) reslbyiy — o)t
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Thenc < a; £ b,,, and n(a;) = x,,, for all 1. As (b, —c)*he A we have
h(bysy — a)h = h(byyy — (1 — €;)(bpsy — )P h—0;

so we may take a, , , = a, for A sufficiently large, to obtain ||h(b,,, — a,,+ Jhll =
(n + 1)~ !. By induction we can therefore find sequences (a,) and (b,) in M (A),,
satisfying (i), (i1) and (iii) for all k.

Working in the enveloping von Neumann algebra A” of 4, we let a and
b denote the strong limits of the bounded monotone sequences (a,) and (b,) in 4,
We have a £ b by (i), and since the norm is strongly lower semi-continuous,
h(b — a)h = 0 by (iii). Since hA is norm dense in A4, it is weakly dense in A", and
thus b — a = 0. Therefore, in the language of [18,3.12.9],

a=beM(A))" NMA)n < (A" ) (A = M(A)a-

Alternatively, one may argue that the sequence (a,) converges strictly to a
(whence a € M(A)), by observing that

@ — a)hll = llh(a — a,)| = |Ih(a — a,)*h|*
< (la = a,l 1h(a — a,)h)* < (la — a,lllIh(b, — a)h)*
<la—a,*n~*-o0.
Let z = n(a) = n(b) in C(A),,. Then by (ii),
x, = n(a,) < n(a) = z = n(b) < n(b,) = y,
for all n, as desired.

3.2. REMARKS. The CRISP condition gives a very easy proof that C(A) is an
SAW*-algebra. Indeed, if x and y are orthogonal, positive elements in C(A), with
x, y < 1 for convenience, then taking x, = x'™and y, = (1 — y)" we have mono-
tone sequences satisfying the condition (*). If ze C(A),, with x, < z < y, foralln,
then 0 £z £ 1; and as

Ix(1 = 2)]| < lim x(1 — xw)] =0,
lyz|l < lim [y(1 — yyll = O,

we see that x(1 — z) = zy = 0, which is precisely the SAW*-condition, cf. [19].

In[22,4.6] it is shown that a compact Hausdorff space X is sub-Stonean if and
only if C(X) is CRISP, and again if and only if C(X) is separably injective. This is
extended in [23, 3.4] to the case of an n-homogeneous C*-algebra A, which is
shown to be separably injective, hence CRISP, if and only if A is sub-Stonean or,
equivalently, by a short argument, 4 is an SAW*-algebra. R. R. Smith has
informed us that the method of proof extends to cover also the case where 4 is
(finitely) sub-homogeneous.
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There is no reason to believe that all SAW*-algebras are CRISP, although we
see from above that counterexamples are not readily accessible. By contrast it is
obvious that separable injectivity is in general a much stronger condition than
either the CRISP or the SAW*-condition. In fact, the Calkin algebra B(#)/4" is
not even finitely injective.

3.3. THEOREM. Let(x,) be amonotone increasing sequence in C(A),, and D a sep-
arable subset of C(A), suchthat [d, x,] — 0 for everydinD. If x, < y for some y in
C(A),, and all n, there is a z in C(A),,, commuting with D, such that x,, < z < y for
all n.

PROOF. Choose a separable subset B of M(A) such that n(B) = D, and let (b,)
be a dense sequence in B. Taking d, = n(b,), and passing if necessary to a sub-
sequence of (x,), we may assume that

(l) ”[dk’ xn]“ < 2_"

for all k and nwith k < n. From the proof of Theorem 3.1 we obtain an increasing
sequence (a,) in M (A),,, converging strictly to an element a in M(A), such that

(i) ma,) = X, X, S7(a) Sy

for all n.

Now choose a countable approximate unit (e,) for A, that is quasi-central with
respect to the elements b,, a, and a, cf. [ 18, 3.12.14]. Specifically we may assume,
passing if necessary to a subsequence of (e,) and using Lemma 2.1, that with
h, = (e, — e,_ )} (and e, = 0) we have

(iii) Ila, kIl =277,
(iv) Ila, o1l =277,
v) ILbw, A 11l = 277,

for all k and n with k < n. Furthermore, since by [18,1.5.4] we have

Ilan, b J(1 = e)ll = lIn([a,, b DIl = [IDxm dicJll < 27"

for k < nby (i), for every approximate unit (e;) of 4; we may assume also, passing
if necessary to a further subsequence of (e,), that

(vi) by, bl b, <277+
for k < n. This follows from the estimate
IhuLan, bidhll < L@, gl +2-27"
< 0an b (1 = e)ll + I[an b (1 — e, ) +27"71 <2:27" 2771 = 2702,
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By Lemma 2.3 we have b = ) h,a,h,€ M(A). For a fixed m, let

1

Cl = Z hnanhns c2 = Z hn[am,hn]’
n=1 n=m

and note from (iii) that c, € A4, since the sum is uniformly convergent in 4. Of
course, c, € A as well. Thus

m-1 ©
bz Y hah, + Y hauh,

n=1 n=m

=c,tcey+ Y hlay=cy+cy+ (1 —e,_y)a,.

This shows that if z = n(b), then
z = n(b) 2 (a,) = X

for all m. Similarly, if we set

C3 = Z hn[a’ hn],
n=1

then c; € A by (iv), and we have
b<Y hah,=cs+ Y hla=c;+a;
which shows that
z=mn(b) = n(a) = y.
Finally, for each k,
[b, b = Y. [haa,h,. bi]
= Y haa,[hy, b + Y halay, b dhy, + 3 [hy, b agh,.
Each of these three sums converge in 4 by (v) and (vi), and thus [b, b,] € A; whence
[z,d,] = n([b,b;]) = 0.
Thus z commutes with D, and the proof is complete.

3.4. COROLLARY. If (x,) is a monotone increasing sequence in C(A),, and (y,) is
a monotone decreasing sequence such that x,, < y, for all n, and if furthermore D is
a separable subset of C(A) such that [d,x,] — O for every d in D, then there is an
element z in C(A),,, commuting with D, such that x, < z £y, for all n.

Proor. Combine Theorems 3.1 and 3.3 to get AA-CRISP.
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3.5. THEOREM. (Kasparov). Let B, and B, be orthogonal, o-unital C*-subalge-
bras of C(A). Assume further that D is a separable subset of C(A) deriving B, (i.e.
[d,b,]1€ B,,YdeD,b, e B,). There is then an element z in C(A), commuting with D,
with 0 < z < 1, such that B,(1 — z) = zB, = 0.

PROOF. Let x and y be strictly positive elements in the unit balls of B, and B,,
respectively. Then with e, = x'/” we have an approximate unite for B,. For each
b, in B, and d in D we therefore have

lim [e,,d]b, = lime,[d,b,] + [e,b,d]
= [d,b,] + [b,,d] = 0.

This means that [e,,d] — 0, strictly ([7]), hence weakly in B,. By the Hahn-
Banach theorem we can therefore find a sequence (x,) such that ||[x,,d]|| - 0,
and each x, is an convex combination of ¢,’s. With (d,) a dense sequence in D we
may thus by induction choose an increasing sequence (x,) in C*(x), such that
x, 2 x'"and ||[x,,d, ]|l <n 'forallk <n.

Let y, = (1 — y)" and observe that (y,) is decreasing, with x, < y, for every n.
By Corollary 3.4 there is an element z in C(A), commuting with D, with0 < z < 1,
such that x, < z < y, for all n. This means that

[x(1 = 2)|| £lim [ x(1 = x,)|| < lim [|x(1 — xn)|| =0,
lyzll < lim [[p(1 — y)"|l = 0;

so that x(1 — z) = yz = 0. Since B, x and y B, are dense in B, and B,, respective-
ly, it follows that B,(1 — z) = zB, = 0.

3.6. REMARK. The result above is known as Kasparov’s Technical Theorem
[11,§3 Theorem 3]. Our quotient formulation (with the elements in C(A4) and not
in M(A)) can be found in [5, p.123]. In his excellent book, B. Blackadar
reproduces N. Higson’s proof of the KTT [5, 12.4.2], and the present authors
certainly used it as an inspiration for the arguments leading to Theorem 3.3 and
its corollary.

The following equivalent formulation of KTT treats the subalgebras symme-
trically, and is phrased entirely in terms of orthogonality relations. It could
therefore conceivably be valid in any SAW*-algebra.

3.7. THEOREM. Let D be a separable, unital C*-subalgebra of C(A) such that
xDy =0 for some elements x, y in C(A). There is then an element z in C(A),
commuting with D, with 0 £ z £ 1, such that x(1 — z) = zy = 0.
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Proor. Let (d,) be a dense sequence in D, and with dy = 1 put

Xo = Z 2'nd:=x*xd" “dn“-_z'

n=0
We still have x,Dy = 0, but now if d = d*,
2i[d, xq] = (1 + id)xo(1 — id) — (1 — id)xo(1 + id)
S (1 +id)xo(l — id) £ 2xq + dxod).

We claim that for every ¢ > 0 there is a constant y such that dx,d < yx, + &.
Indeed, we have

dxod £ Y 27"dd*x*xd,d||d,| " + e

n=0

for m sufficiently large; and choosing now d,, in (d,) for 0 < n < m, such that
I, ™" dyd = dny + c,p Where Jlc,|| < 41x]| 7 e, we get

dx,d £ Y 27" diyw + C)* x*x(dyn) + €,) + 3¢
n=0

IIA

Y 27" 2dE X * xdym + CEX*XC,) + e
=0

n

m
-n+1 7% *
Y 27t haE x* xdy,

n=0

IIA

+ 2 27" e Xl + e S yxo + &
n=0

for y = max {2™*1~"||d,,1>|0 < n < m}. If therefore B, denotes the hered-
itary C*-subalgebra of C(A4) generated by x,, i.e. B, = (xoC(A)x,)~, then
dxqde B,. By the first argument, both i[d, x,] and —i[d, x,] are dominated by
Xo + dxod, whence [d,x,]€ B;. Consequently D derives B,. If we now set
B, = (yC(A)y*)~ we have exactly the assumptions in Theorem 3.5, hence the
conclusion.

4. Polar Decompositions.

4.1. LEMMA. If x and y are elements in C(A) with x*x < y*y, then x = vy for
some v in C(A) with |v|| £ 1.

PROOF. Letn: M(A4) - C(A)denote the quotient map, and take bin M (A) such
that n(b) = y. By a result of F. Combes, cf. [18, 1.5.10], there is then an element
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a in M(A) such that n(a) = x and a*a < b*b. Pute, =47 ""! and define
(%) w, = a(e, + b*b)~ 1 b*.
Note that
la — w,bll = lla(1 — (¢, + b*b) ' b*b)|| = |lac,(e, + b*b)~ ||
= ||(e, + b*b) " '¢,a*ac,(c, + b*b)~||?
< li(en + b*b) " e b*be,(e, + b*b) 1|
= |len(b*b) (e, + b*b) 7!
With ¢ = |b| (= (b*b)*) we see from spectral theory that
(1) la — w,bll < lleyc(e, + ¢*) 71 < beb =277

Choose now a countable approximate unit (e,) for 4 which is quasi-central
with respect to the elements a and b. Specifically we may assume, invoking
Lemma 2.1, that with h, = (e, — e,_;)* we have

(i) IChy,all =27" and |[h,b]| =27

Definew = Z h,w,h, and note that we M (4) by Lemma 2.3. Moreover, |w| £ 1
by Lemma 2.5, since ||w,|| < 1 for every n by an argument similar to the one
above, cf. [18, 1.4.4]. Finally,

a—wb =Y ah? — h,w,h,b
=Y [a,h]h, + ) h(a — w,b)h, + 3 h,w,[b,h,].

It follows immediately from (i) and (ii) that a — wb € A. Take now v = n(w). Then
vl = 1and

vy = n(wb) = n(a) = x.

4.2. ReMARK. The result above was suggested by D. Handelman. He proves
in[10,2.1] thatif A and M are, respectively, the direct sum and the direct product
of a sequence of unital C*-algebras, the quotient M/ A satisfies the conclusions in
Lemma 4.1 (called X -injectivity by him). Since in this case M = M (A), our result
is a natural generalization.

Appealing to the asymptotically abelian techniques from §3, we obtain a
considerably stronger version of the lemma.

4.3. PROPOSITION. If x and y are elements in C(A) with x*x < y*y, and if D is
a separable subset of C(A) commuting with x, y* and y* y, then x = vy for some v in
C(A), commuting with D, with ||v| £ 1.
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PROOF. Let(b,) be a countable subset of M (A4), chosen such that (n(b,)) is dense
in D. Then, with notations as in the proof of Lemma 4.1, we have [b,,w,] € 4 for
all n and k, since

([bi, wal) = [m(be), x(e, + y*y) "' y*1 = 0.

Thus [b,,w,](1 — e;) = O for every approximate unit (e;) of 4. Choosing the
countable approximate unit (e,) to be quasi-central for the sequence (b,) as well,
and noting that

[bi Walhz = [bis w1 (1 — €y 1) — [bis w1 (1 — e,,),
we may therefore assume (in addition to (i) and (ii)) that (e,) also satisfies
(iii) IhaLbr walhyll =277
(iv) IChn bl =277,
for all k < n. This implies that when we set w = Y h,w,h,, then
[ w] = ¥ (B b, Iw,hy + 3 h[be, w1,
+ Y hw,[b,h,]€ A
Consequently v = n(w) commutes with D, as required.

4.4. THEOREM. For every x in C(A) there is an element u in C(A), with |u]| £ 1,
commuting with every separable subset D that commutes with x and |x|, such that
x = ulx|. Thus u*u|x| = |x|, uu*x = x and u*x = |x|. If x is normal we can
moreover choose u to be a normal element commuting with x and x*.

PRrOOF. Since x*x < |x|?, we have x = u|x| for some element u as specified
above, by Proposition 4.3. As |x|? = x*x = |x|u*u|x|, it follows that |x|(1 — u*u)
|x| = 0. Since 1 — u*u = 0 this means that u*u|x| = |x|. Consequently u*x =
u*u|x| = |x|, and uu*x = uu*u|x| = u|x| = x, as claimed.

If x is normal, both x and x* commute with x and |x|. They can therefore be
included in D to produce a decomposition x = u|x|, where u commutes with x and
x* (as well as with the rest of D). Consequently

u*ulx| = u*x = xu* = u|x|u* = uu*|x|,

so that (u*u — uu*)|x| = 0. Applying Theorem 3.7 with x and y replaced by
u*u — uu* and |x|, and with the C*-algebra generated by D, u and u*, we obtain
an element z in C(A4), with 0 £ z < 1, such that

W*u —uu*)z=0, (1-2)|x|=0;
and such that z commutes with D, u and u*. Put v = uz. Then

v*v = u*uz? = uu*z? = v*,
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so that v is normal. Moreover, v commutes with x, x* and D, because both u and
z do so. Finally,

v|x| = uz|x| = ulx| = x.
Replacing u with v we obtain the desired conclusion.

4.5. REMARK. Itis notin general possible to write x = u|x| with u unitary, even
if x is normal. Take for example a locally compact, g-compact Hausdorff space
Y such that dim (Y\ C) = 2 for every compact subset C of Y. Then the corona set
X = BY\ Y has dim X = 2 by [8, 3.6]. By definition there is therefore a unitary
function fy: E — S!, defined on a closed subset E of X, that has no continuous
extension as a unitary function on all of X. However, by Tietze’s extension
theorem there is an extension f in C(X), with ||f| = 1 (identifying S* with the
unit circle in C). In the corona C*-algebra C(4) = C(X) (where A = Cy(Y) and
M(A) = C,(Y) = C(BY)) the normal element f has no unitary polar decomposi-
tion f = u|f]|,becauseu| E = f | E = f,, so that u would be a unitary extension of
Jo-

As an ilustration of this topological obstruction, let Y be the disjoint union of
acountable number of compact spaces 4,, each homeomorphic to the unit disk in
C;and define fin Cy(Y)as f =) f,, f,€ C(4,), where f,(z) = z, zeA4,,forevery
n, cf. [25, Example 6].

4.6. REMARK. If x = x* in C(A), then x = u|x| for some normal element u in
C(A) by Theorem 4.4. Thus (u — u*)|x| = 0, whence (u — u*)z = 0,(1 — 2)|x| =0
for some z in C(A4), commuting with u, u* and |x|, by Theorem 3.7. Replacing
u by uz it follows that we have x = u|x| with u* = u. In this case we can dilate u to
a unitary by writing w = u + i(1 — u?). Since (1 — u?)|x| = 0 it follows that we
have a unitary polar decomposition x = w|x|.

Even so, we can not in general hope to write x = u|x| with a self-adjoint unitary
uwhen x = x*. The obstruction to such a decomposition is the possible scarcity
of projections (hence of symmetries = self-adjoint unitaries) in C(A4). Indeed, if
Yis a locally compact, g-compact space which is connected at infinity (e.g.
Y = R% d > 1), then with 4 = Cy(Y) we have C(4) = C(fY\ Y, and BY\ Y is
connected by [8, 3.5]. Thus C(A) has no non-trivial projections.

4.7. LEMMA. If xe C(A) such that x + x* = 0, then x = v|x| for some v in C(A)
with |v]| £ 1 and v + v* 2 0.

PrROOF. Choose y in M(A) with n(y) =x and y + y* 2 0. Then y + ¢, is
invertible for every ¢, > 0, so that y + ¢, = w,|y + ¢,| with w, unitary in M(A4).
Since

waly + &l + |y +elwr =y +y* + 2,

we see from [13, 6.1] or [26] that w, + w* = 2¢,|ly + ¢,]| ~*. In particular,
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w, + w¥ = 0. Now
1y = waldll = 1y = waly + &l | + [wally + €.l = I¥DI

=y =+l + Iy + &l = Iyl £ 2,

Thus with ¢, = 27" we may use the w,’s constructed above in place of those in (¥)
in the proof of Lemma 4.1, to obtain w=) h,w,h, in M(A) such that
y — w|y| € A. Evidently w + w* = 0, and thus with v = n(w) we have the desired
conclusion.

4.8. PROPOSITION. If xe C(A) such that x + x* = 0, then x = u|x| for some
unitary u in C(A) withu + u* 2 0.

PROOF. Assuming, as we may, that C(A4) < B(s#°) for some (huge!) Hilbert
space J, we take £ in ker x. Writing x = h + ik we compute (h&| &) + i(kE| &) =0,
whence (h¢ | &) = (k€| &) = 0. Since h = 0 by assumption, this implies that h& = 0,
whence also k& = 0. We conclude that x*& = (h — ik) £ = 0, so that, in fact,
ker x = ker x*. Taking complements, (x* #)~ = (xH)~, and we let p denote the
projection on this subspace. Note that p is the smallest unit for |x| (and for |x*|) in
B(¥).

By Lemma 4.7 we have x = v|x| for some v in C(4) with |jv| £ 1 and
v + v* = 0. Thus x = vp|x|, and vp is the canonical partial isometry in the polar
decomposition of x in B(#), cf. [18, 2.2.9]. In our case it means that vp is
a unitary on ps# and vanishes on (1 — p)#. Consequently vpv* = pv*vp = p,
whence vp = vpv*v = pv. Write v =a + ib and note that [v,p] = 0 implies
[a,p] = [b,p] = 0. As ap + ibp is unitary (on ps#) and ap = 0 we conclude that

(*) ap = (p — (bp)*)* = (1 — b*)*p.

Put u = (1 — b?)* + ib, and note that u is unitary in C(A) with u + u* > 0.
Furthermore, by (*) we have

ulx| = up|x| = (a + ib)p|x| = v|x| = x.

4.9. REMARK. The authors suspect that every element in the closure of the
group of invertible elements in C(A) has a unitary polar decomposition in C(A).
As shown in [20] and [21], the condition dist (x, GL(B)) = 0 is necessary to have
x = u|x|, ue%(B), for any element x in a unital C*-algebra B. In general the
condition is not sufficient; one must ask also that x has vanishing index, cf. [15].
For corona C*-algebras, however, we have the feeling that all notions of index
should be trivial in the closure of the invertibles. Certainly this happens in our
guiding example 4 = ", where C(A) is the Calkin algebra. In this case our
conjecture about unitary polar decomposition is easily proved. For more general
algebras, even commutative, we do not know the answer. We can show, however,
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that another obstacle is not present in corona algebras: any element in the unit
ball with unitary rank 2 admits a unitary polar decomposition.

4.10. PROPOSITION. If x = 4(v + w) for some unitaries v and w in C(A), then
x = u|x| for some unitary u in C(A).

PROOF. Sety = 2v*x =1 + v*w. Then yis normal and y + y* = 0. By Prop-
osition 4.8 we therefore have y = u ,|y| for some unitary u, in C(A4). Withu = vu,
this means that

x = oy = vuo}|yl = ulv*x| = ulx|.

5. Derivations and Morphisms.

5.1. PROPOSITION. If 0 is a (bounded) derivation of C(A), there is for each
separable C*-subalgebra B of C(A) an element b in C(A), with 0 £ b < |0 if
0% = — 9, such that §(x) = [b, x] for every x in B.

PrOOF. Without loss of generality we may assume that 6 = —§* and that Bis
d-invariant. Choose a separable C*-subalgebra D of M(A) such that n(D) = B,
where n: M (4) — C(A) denotes the quotient map. Let (y,) be a dense sequence in
D and let (x,) be its image in B. Now recall from [18, 8.6.12] that there is an
increasing sequence (b,) in B, bounded by |||, such that

(1) 60x) — [by, x, Il < 277,

for all n and k with k < n. We claim that there is a corresponding increasing
sequence (d,) in D, with 0 < d, < ||4|| and n(d,) = b,, such that

(ii) ICdy = dp— 1yl < 27772

for1 £ k < n — 1. Suppose that we have already chosend,,d,,...,d,_, subject
to the conditions in (ii). By [18, 1.5.10] there is an element d in D with n(d) =
b,, such that d,_, < d £ ||§]|. In order also to satisfy (ii), let (e;) be an approxi-
mate unit for 4 which is quasi-central for (y,) and for (d —d,_,)?, cf. [18,
3.12.14]. Consider the element

d}. =d— (d - dn—l)%e}.(d - dn-—l)i‘7

and note that d,_, < d, <d and n(d;) = b,. Moreover, for | Sk <n—1 we
have

limsup ||[d;, — d,_ 1, ¥i]ll

= limsup ||[[(d — d,-,)*(1 — e;)(d — d,_,)}, y,]ll
= limsup |[d — d,-,, y:](1 — €;)]

= |[b, = by_1,x ]| < 27" 427" <272
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by (i) and [18, 1.5.4]. Taking therefore d, = d, for A sufficiently large we have
I[d, —d,—, yx]ll <27 "*2 for k £ n— 1. By induction the sequence (d,) can
therefore be constructed as claimed.

Define 64(y,) = lim [d,, y, ], cf. (ii). Then §, extends uniquely to a derivation of
D with 6% = —d, and ||d,] < ||4]|. Moreover,

(md0)(x4) = m(So(yx)) = lim n([d,, y,])
= lim [b,, x,] = &(xy),
which shows that §, is a lifting of 6| B, cf. [18, 8.6.15].

Choose now a countable approximate unit (e,) for A which is quasi-central for
(y) and for (d4(y,)). Specifically we may assume, applying Lemma 2.1, that with
h, = (e, — e,_,)* (and e, = 0) we have
(iii) T yidll <277 NITh, S0yl <277,
for 1 < k < n. Define d = ) h,d,h,, and note from Lemmas 2.3 and 2.4 that
de M(A), with |d|| £ |6|. We have

[d’ yk] = Z hndn[hm yk] + Z hn[dm yk] hn + Z [hn’ yk] dnhn’

and it follows from (iii) that the first and the third sum converges in A. For the
middle terms we use the fact that ) h? = 1 to compute

Zhn[dn’yk] hn - 50(yk)
= Zhn([dm yk] - 6O(yk))hn + Z[hm(s()(yk)]hnEA5

because |[d,, yi] — do(¥i)ll <27 "*? for k < n. Taken together it means that
[d, y.] — 6o(yi) € A for every k. Now let b = n(d). It follows immediately that
[b, x] = d(x) for every x in B.

The argument above — to the effect that derivations of C(A4) are “locally inner”
— uses only the existence of the derivation on the subalgebra. It applies therefore
immediately to give the following

5.2. COROLLARY. Let I be an essential ideal in a separable C*-algebra A (so that
we have a canonical embedding I = A = M(I)). There is then for each derivation
0 of A an element d in M(I) such that 6(x) — [d,x] €l for every x in A.

5.3. REMARK. Itisinstructive to compare Corollary 5.2 with the main result in
[17]: Given a derivation 6 of A4 there is for each ¢ > 0 an essential ideal I of 4 and
an element d in M (I)such that | 6(x) — [d, x]|| < ¢|/x|| for every x in I. Despite the
similar vocabulary the two statements are quite different.

Let p: A —» B be a morphism between g-unital C*-algebras 4 and B, and
assume that p(A) contains an approximate unit for B. As proved in [19,23] there
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is then a natural extension p”: M(A4) - M (B), with Ker p” = M (A, Ker p), and an
induced morphism g: C(A4) - C(B), with

Ker g = M(A, Ker p)/Ker p.

The morphism g is an analogue of a -open map (a o-morphismo, cf. [19, 17]),
which means that (D) = her §(D*) for every o-unital, hereditary C*-subalge-
bra D of A. If p is surjective, so is p” by [19, 10]; whence also g is surjective. The
condition above then takes the simple form: §(D)* = j(D*). We shall investigate
a similar condition, where annihilators are replaced by commutants.

5.4. PROPOSITION. Let p: A — B be a surjective morphism between o-unital
C*-algebras, and let p also denote its extension to a surjective morphism p: M (A) —
M(B). If A is a separable subset of derivations of M(A), and y e M(B),, such that
(pd)(y) € B for every & in A (where (pd)(b) = p(6(p ~ (b)), be M(B), by definition),
then there is an element x in M (A),, with p(x) = y, such that 6(x)€ A for every é in
4.

PROOF. Let h be a strictly positive element for A, so that k = p(h) is strictly
positive for B. Reasoning exactly as in the proof of [19, 10] we find sequences (x,,)
and (y,) in B,,, such that (x,) is increasing, (y,) is decreasing, x, < y < y,, and
Ik(y, — x,)k|| < n~* for all n.

For each 6 in A we know that pd is a derivation of B, hence o-weakly
continuous on B” (cf. [18, 8.6.6]). As y, — y strictly, hence g-weakly, it follows
that pd(y,) = pd(y), a-weakly. Since, however, pd(y)e B by assumption, it
follows from the Hahn-Banach theorem that pd(y)e(Conv pd(y,))~. If (3;) is
a dense sequence in 4 we may therefore, working by induction, replace (y,) with
another decreasing sequence (z,), such that each z, belongs to Conv(y,,) and
satisfies the conditions

(*) Iz, — x)kIl <n™" [1pdi(y) — pdulz,)| < 27"

for every k < n.

Assume that we have found sequences (a,,) and (b,),1 £ m < n — 1,in A,,, the
first increasing and the second decreasing, but with a,, < b,, for all m, satisfying
the conditions

(l) p(am) = Xpm» p(bm) = Zms lsmsn-— 1,
(ll) “h(bm - am)h" <m” la 1 é m é n— 1’
(i) 1ulbms — bl <2772, TSm<n—1.

By [18, 15.10] there is an element b, in Ay, with a,_, < b, < b,_,, such that
p(b,) = z,. If (e;) is an approximate unit for ker p in 4, then e; 1 p for some central
projection p in A", whence (e;) — 0, o-weakly, for every é in 4. Passing if
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necessary to another approximate unit in Conv (e;) we may therefore assume that
|6(e;)l| — Ofor every din 4. We may furthermore assume that (e;) is quasi-central
with respect to (b, — b,_)*. This means that

lim sup [|6((b,— 1 — by)* (1 — €)(by—1 — b,)*)I
= limsup [|6((b, - — b,)(1 — e,))l
< limsup [|(6(b, -y — b))(1 — ex)ll + [l(by—1 — ba)(e,)l
= “pé(zn—l - Zn)” + O,
by [18, 1.5.4]. Replacing therefore if necessary b, by
b:, = bn + (bn—-l - bn)iel(bn—l - bn)%
(so that we still have a, < b, < b,_, and p(b,) = z,), we may assume that
10k(bp—y — b)) <27"F1 427" <2772

for1 £k £n— 1,by(*). Again by [18, 1.5.10] there is an element a,, in /Tsa, with
a,_, < a, < b,, such that p(a,) = x,. As above we see that

lim sup [|h(b, — a,)*(1 — e;)(b, — a,)*hll = [Ik(z, — x,)k|

for a suitably quasi-central approximate unit (e;). Replacing therefore if neces-
sary a, by

a:l =a, + (bn - an)%el(bn - an)%

(so that we still have a,_, < a, <b, and p(a’) = x,), we may assume that
|h(b, — a,)h| < n~ ' by (). By induction we can therefore find sequences (a,) and
(b,) satisfying (i), (ii) and (iii). These sequences converge strongly in 4” to elements
aand x, witha < x. However, h(x — a)h = 0by (ii), whence a = x. Consequently,

x = ae(A)" ((Aun = M(A),
by [18, 3.12.9]. Since p is normal from A" onto B” it follows that
p(x) = lim p(b,) = lim y, = .

Finally, by (iii), (6,(b,)) is norm convergent for every k. Since b, — x, strongly,
we have 6,(b,) — 8,(x), strongly, whence |0,(b,) — dx(x)| = 0. As b, = c, + 4,1
for some ¢, in 4 and 4, in C, and §,(1) = 0, we conclude that §,(b,) € 4, and
therefore d,(x) € A4, as desired.

5.5. REMARK. Itshould beevident to the reader that, working along the lines of
the previous proof, we can prove versions of Theorems 3.3, 3.4, 3.5 and 4.3, where
the subset D is replaced by a separable subset 4 of derivations of the corona
algebra. On the other hand we see from Proposition 5.1 that nothing much
would be gained; because the derivations in these embellished theorems only
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operate on countable families of elements, and thus can be replaced by inner
derivations.

5.6. THEOREM. Let p: A — B be a surjective morphism between a-unital C*-alge-
bras, and let §: C(A) — C(B) denote the induced surjective morphism between the
corona algebras. Then (with ' meaning relative commutant) we have

FDY = p(D)
for every separable C*-subalgebra D of C(A).

Proor. Clearly p(D') = g(D). Take now y, in §(D), and note that since g(D) is
self-adjoint we may assume that y, = yg.

Let y be a counter-image of y, in M(B),,, and let C be a separable C*-subal-
gebra of M(A) such that C + A/A = D. Then [p(c), y] € Bfor every cin C (cf. the
commutative diagram in the proof of [19,23]). By Proposition 5.4 there is
therefore an x in M (A),, with p(x) = y, such that [c, x] € A forevery cin C. Taking
Xo as the image of x in C(A4) we see that j(xy) = yo and that xoe D'".

6. Applications to Lifting Problems.

We shall use the technical results for corona C*-algebras established in [19] to
solve some extension or lifting problems for quotient maps between C*-algebras.

6.1. LEMMA. If {x,,...,x,} = M(A) such that T1 x,€ A (where A is g-unital),
there are elements a,,...,a, in A such that T1(x, — a;) = 0.

PrOOF. The Lemma is valid for n = 2 by [2, 2.3] (for any closed ideal in every
C*-algebra). Assume now that it has been established for n factors (n = 2), and
take x,...,X,4+; in M(A) with ITx, in 4. If y = [T} _, x,, and n: M(4) - C(A)
denotes the quotient map, then n(y)n(x, +,) = 0. Since C(A) is an SAW*-algebra
by[19, 13] or Remark 3.2, there are elements d and ein M (A) .., with n(d)n(e) = 0,
such that

(*) n(y)(1 = n(d) =0, (I —n(e)n(x,+,) =0.

By [2, 2.4], we may assume that de = 0. The induction hypothesis, applied to the
elements x,,...,x,_,, x,(1 —d) (whose product lies in A by (*)) assures the
existence of elements a,,...,a, in 4, such that with z = T} _{ (x, — a,) we have
z(x,(1 —d) —a,) =0. Set a,,, = (1 — e)x,+1, and note from (*) that a,,, € A.
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Finally,
(0 — a) = 2(x, — a,) (X1 — Gys1)
= z2(x,(1 — d) — a, + x,d)ex, .,
= z(x,(1 —d) — a,,)ex,,+.1 + zx,dex, +
=0+0=0.

The proof is completed by induction.

6.2. THEOREM. If I is a closed ideal in a C*-algebra A, and if {x,,...,x,} = A
such that Tl x, € I, there are elements ay,...,a, in I with I1(x, — a;) = 0.

ProoF. Let B denote the C*-subalgebra of 4 generated by {x,,...,x,}. Re-
placing 4 and I by Band B (") I, we may assume that 4 is separable. Let I* denote
the annihilator of I in A. Then I* is a closed ideal in 4, orthogonal to I,and I + I*
is an essential ideal in 4. By [18, 3.12.8] there is therefore a natural embedding

I+I*cAc MU+ IY.

Applying Lemma 6.1 to the separable, hence o-unital C*-algebra I + I+, we
find elementsc,,...,c,in I + I* such thatTI(x, — ¢,) = 0. Since I () I* = 0,each
element has a unique decomposition ¢, = a, + b, in I + I*. Thus

0 = n(xk — Qg —bk) = l—[(xk - ak) + b,

where the element b is the sum of products, each of which contains at least one
factor b,. Thus be I, whereas I(x, — a,) €I by assumption. We conclude that
b = 0 and, more importantly, I1(x, — a,) = 0.

6.3. LEMMA. Let C(A) be the corona of a -unital C*-algebra A. If x € C(A) and
x" = 0 for some n, there are elements e, e,, . .. ,e, in C(A),0 < ¢, < 1, such that

(i) (1—e)x"*=0, 0<k=n,
(i) (1 —e )xe, =0, 1<k<n,
(iii) ey =¢€-; lsksn,

with eq = 0 and e, = 1 by definition.

PrOOF. Suppose that we have already constructed e, ey, ...,e,, in C(A) sat-
isfying the conditions in (i)—(iii) for all k £ m, where 0 £ m < n. Then

1—e)xx" ™ 1=0
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by (i). Furthermore, by (ii) and (iii)
(1 —e,)xe, =(1—e,)e, xe,=0,
so that
(1 — )" " Hx" " )* +e,) = 0.

Since C(A4) is an SAW*-algebra by 3.2, there is an element e, ,,, with
0 < e,.1 = 1, such that

(1 - em)xem+1 =0,
(1—ep X" " 1 =(1—epsi)e,=0.
Thus ey, ...,e,+ 1, satisfy (i(iii) and the proof is completed by induction.

6.4. REMARK. Inavon Neumann algebra, Lemma 6.3 is quite easy to prove: If
x" = 0, let ¢, be the range projection of x" ~* and check that eq, ey, . . . , e, satisfy (i),
(ii) and (ii1). In a corona algebra the elements ¢,, 0 < k < n, need not be projec-
tions, and there is no canonical choice for them. Nevertheless they serve the same
function of establishing a triangular form for x relative to a commutative algebra,
and thus prepare the way for a lifting.

6.5. LEMMA. If p: A — B is a surjective morphism between C*-algebras A and
B, and (e,) is a sequence in B such that 0 < e, < 1 and e,e, ., = e, for all n, then
there is a sequence (d,) in A with

Oédné 1’ dndn+1 =dm p(dn)ze

n

for all n.

ProOOF. We may assume that A and B are unital and that p(1) = 1. Since
e,(1 — e,) = 0 there are by [2, 2.4] orthogonal positive elements d, and x, of
norm one in A such that p(d,) = e, and p(x,) = 1 — e,. Take A; = Aand let A,
be the hereditary C*-subalgebra of 4 generated by x,. Then d; A, =0 and
1 — e, = p(x,)ep(A,), whence 1 — e, e p(A,)forn = 2.Set A, = C1 + A,. Now
e,(1 — e3) = 0in p(4,), so as above we can find orthogonal elements d, and x; in
A, with p(d,) = e, and p(x;) = 1 — e;. Note that d, = A1 + a with ain A, and
41in C. But

p(1 —d;)=1— 4 —pla)ep(4,),

which is a proper hereditary subalgebra of B. Thus 4 = 1, so that 1 — d, e 4,.
Continuing with 4, = (x;A4x;)~ and A; = C1 + A4;,and so on by induction, we
find a sequence (d,) in A with 0 < d, £ 1 and p(d,) = e,; and a sequence (4,) of
hereditary C*-subalgebras of 4 such that d,4,,, =0,1 —d,eAd,and 1 — e, €
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p(A,) for all m = n. From this we immediately see that d, (1 — d,,,) = Ofor all n,
as desired.

6.6. LEMMA. Let A be a o-unital C*-algebra, and let n: M(A) — C(A) denote the
quotient map onto the corona C*-algebra of A. If xe€ C(A) such that x" = 0 for
some n, then x = n(y) for some y in M(A) with y" = 0.

PrOOF. Choose by Lemma 6.3 elements ey, ey, .. ., e, in C(A) satisfying (i), (ii)
and (iii) of that Lemma. Then use Lemma 6.5 to lift the e’s to a set {d,,d,,. ..,d,}
in M(A), such that 0 <d, <1 and d,d,_, =d,_, for 1 £k < n, with d, =0,
d,=1.

Take continuous functions f and g on [0, 1] with f(0) = g(0) = O and f(1) =
g(1) = 1, such that fg = f. Then let z be an element in M (A) with n(z) = x, and
define

Vi = fldi-1)z(g(dy) — gldi - 1))
for 1 £ k < n. Note that y, = 0 and that
n(yi) = flex—1)x(g(ex) — glex— 1)) = x(glex) — glex- 1))
since (1 — f(e,_1))xg(e) = O by (ii). Therefore, with y = )y, we have

n(y) = Z glex) — glex—1)) = x(g(e,) — gleo)) = x.

Since (g(dy) — g(dx—,)) f(d;-,) = 0if j < k, we see from the construction of the
yi’sthat y,y; = 0ifj < k. Now y"is a sum of products, each of which must contain
nfactors from the set { y,,. .., y,}. It must therefore have the form y, 1) V.2, - - Vainy
where a(k — 1) = a(k) for some k, which means that the product is zero. It follows
that y* = 0, as desired.

6.7. THEOREM. If I is a closed ideal in a C*-algebra A, and x € A such that x"e |
for some n, then (x + a)* = 0 for some a in I.

PrOOF. As in Theorem 6.2 we may assume that A is separable, passing if
necessary to the C*-algebra generated by x. Also, we may take I* as the
annihilator of I in A, to obtain an embedding

I+I*cAc M(I+1Y).

Applying Lemma 6.6 to the o-unital algebra I + I* we find an element
¢=a+ binI + I* such that

=(x+ )" =(x + a)" + b,

where b, is a sum of products, each of which contains a factor b. Thus b, e I*,
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whereas (x + a)" € I by assumption. Since | ﬂ I* = 0 we conclude that (x + a)" =
0, as desired.

6.8. REMARK. If A = B(s#)and I = &£, the first named author proved in [13,
2.4], that if xe A such that f(x)el for some complex polynomial f, then
f(x — a) = Ofor some a in I. The method of proof (existence of range projections
in the algebra) immediately generalizes to the case where I is a (norm) closed ideal
in a von Neumann algebra A4, cf. [2, 4.3].

When A is only a C*-algebra there are topological obstructions to the lifting of
polynomially ideal elements. Already in the case A = C([0,1]), I = C,(]0,1[)
and f(t) = t* — t we have a counterexample, cf. [2, 2.9]. For the monomials
f(t) = t" no such obstructions exist, and the question was raised in [2,2.7],
whether x" e I would imply (x — a)" = 0 for some a in I. Although the case n = 2
was solved in [2,2.8], we had to wait for the J¢ -theoretical machinery, viz.
Theorem 3.7, in order to prove the general case.
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