ORDERS, IN NON-EICHLER (R)-ALGEBRAS OVER GLOBAL FUNCTION FIELDS, HAVING THE CANCELLATION PROPERTY

MARLEEN DENERT*

Abstract.

We study R-orders θ in central simple algebras A over global function fields K. In studying the locally free left θ -ideals, one has to deal with the following difficulty: the set of isomorphism classes of locally free left θ -ideals, $LF_1(\theta)$ is in general not a group; but one can consider the group $\mathscr{C}(\theta)$ of stable isomorphism classes of these ideals. We say that θ has the cancellation property if $LF_1(\theta) = \mathscr{C}(\theta)$, i.e. if all stably free θ -ideals are free.

A theorem of Jacobinski and Swan states that if A satisfies the Eichler condition with respect to R, then all R-orders in A do have the cancellation property.

In [DVG 1] we proved that there only exist R-orders with the cancellation property in a non Eichler (R)-algebra A if the center K of A is a rational function field.

In this paper we obtain a complete characterization of the non Eichler (R)-algebras which contain R-orders with the cancellation property. This characterization, although obtained by analytic-numbertheoretic methods, is of geometrical nature. We also determine all hereditary R-orders in these algebras which have the cancellation property.

0. Preliminaries.

For a complete discussion of the definitions and methods we refer to [D 1], [DVG 1] and [DVG 2].

Let A be a central simple K-algebra of index n (i.e. $n^2 = (A:K)$) and $K = \mathsf{F}_q(\mathscr{C})$ the function field of a complete regular curve \mathscr{C} , defined over F_q . F_q is the finite field with q elements which we suppose to be algebraically closed in K.

Recall that for $n \in \mathcal{C}$, the completion $A_{n} \cong M_{\kappa}(D_{n})$ with D_{n} a skewfield of index e_{n} over K_{n} , κ_{n} is called the capacity and e_{n} the ramification index of A at m and $e_{n}\kappa_{n}=n$. We denote $S_{\text{ram}}=\{n\in \mathcal{C}\mid 1\neq e_{n}\}$, $S_{\text{ram}}^{t}=\{n\in \mathcal{C}\mid e_{n}=n\}$ and $e_{n}\in \mathcal{C}$ are $e_{n}\in \mathcal{C}$ and $e_{n}\in \mathcal{C$

We fix a Dedekind ring R in K by choosing a finite non-empty subset \mathcal{F} of

^{*} The author is supported by an N.F.W.O.-grant. Received January 10, 1987, in revised form July 07, 1987.

 $\mathscr C$ and $R = \left(\bigcap_{\not = \mathscr T} R_{\not =}\right) \cap K$ where $R_{\not =}$ is the completion of the valuation ring corresponding to $\not =$. We denote $i = \# \mathscr T$ and for $\not = \mathscr C$ the absolute norm of $\not =$ is $\mathscr N_{\not =} = q^{\phi_{\not =}} = \# (R_{\not =}/\not =)$.

In this paper we always restrict to non Eichler (R)-algebras, which means that $\mathcal{F} \subset S'_{\text{ram}}$ (so $i \leq i_{\ell}$), cf. [DVG 1].

Fix a genus \mathscr{G} of R-orders in $A(\theta_1, \theta_2 \in \mathscr{G})$ then $\theta_{1, \neq} \cong \theta_{2, \neq}$ for every $\not \in \mathscr{F}$, then both $\mathscr{C}\ell(\theta)$ and $LF_1(\theta)$ do not depend on the choice of $\theta \in \mathscr{G}$, so the cancellation property (C.P.) is a property of the genus \mathscr{G} , cf. [V].

For $\theta \in \mathcal{G}$ we choose a set $\{\theta x_i | i \leq i \leq r_\theta\}$ of representatives for the isomorphism-classes of stably free left θ -ideals $(x_i \text{ are idèles of } A)$. Remark that θ has the C.P. iff $r_{\theta} = 1$ for some $\theta_1 \in \mathcal{G}$.

Denote $\theta_i = x_i^{-1} \theta x_i \in \mathcal{G}$, the right order of θx_i , and $\hat{w}_i = \# \theta'_i$, where $X' = \ker(nr/x)$ is the kernel of the reduced norm map nr.

The measure of stably free θ -ideals is given by (cf. [V]):

$$\mathscr{M}_{\theta}(\mathscr{S}) = \#\mathscr{C}\ell(\theta) \sum_{1 \leq i \leq r_{\theta}} \frac{(R^{\circ} : nr \, \theta_{i}^{*})}{\hat{w}_{i}}$$

where
$$R^{\circ} = R^* \cap \left(\bigcap_{\not = \emptyset} nr(\theta_{\not =}^*)\right), \ \theta \in \mathscr{G}.$$

For hereditary orders θ one has $R^{\circ} = R^{*}$, cf. [R], [D 1]. By using analytic methods, M.F. Vigneras was able to calculate $\mathcal{M}_{\theta}(\mathcal{S})$ for Z-orders θ in totally definite quaternion algebras over number fields, cf. [V]. These methods can be extended to calculate $\mathcal{M}_{\theta}(\mathcal{S})$ for R-orders in non Eichler (R)-algebras over global function fields of any index $n \geq 2$:

(F1)
$$\mathcal{M}_{\theta}(\mathcal{S}) = \sharp \mathscr{C}\ell(\theta) \, q^{(n^2-1)(g_K-1)} \, \zeta_K(2) \dots \zeta_K(n) \prod_{\beta \in \mathscr{C}} T_{\beta}$$

where g_K is the genus of K, $\zeta_K(s) = \prod_{k \in \mathscr{C}} (1 - \mathscr{N}_k^{-s})^{-1}$ is the zetafunction of K and the factors T_k are given by:

$$T_{\not h} = \prod_{\substack{1 \le i \le n-1 \\ i \not\equiv 0 \bmod e_{\not h}}} (\mathcal{N}_{\not h}^{i} - 1) \cdot \frac{v_{\not h}(\Lambda'_{\not h})}{v_{\not h}(\theta'_{\not h})}$$

with $A_{\not h}$ a maximal $R_{\not h}$ -order containing $\theta_{\not h}$ and $v_{\not h}$ a bi-invariant Haarmeasure on $A'_{\not h}$.

Remark that $T_{n} = 1$ for almost every $p \in \mathcal{C}$.

In the function field case (F1) can also be deduced using the relation between ' θ -divisors' and the genus zetafunction, cf. [D 1].

From all this we obtain the following 'cancellation formula': All R-orders in

 \mathcal{G} have the C.P. iff there exists $\theta \in \mathcal{G}$ such that:

(F2)
$$q^{(n^2-1)(g_{K}-1)}\zeta_{K}(2)\ldots\zeta_{K}(n)\prod_{A\in\mathscr{C}}T_{A}(\overset{\leq}{=})\frac{(R^{\circ}: nr\ \theta^{*})}{\hat{w}}$$

Remark that if (F2) holds with the inequality sign \leq then the equality follows.

To calculate the right-hand side of (F2) we introduce: $\overline{F_q(\theta)} = \theta \cap \left(\bigcap_{k \in \mathcal{F}} \Lambda_k\right)$

where $\Lambda_{\not A}$ is the unique maximal $R_{\not A}$ -order in the division algebra $A_{\not A}$. One can think of $\overline{F_q(\theta)}$ as being the algebraic closure of F_q in θ , cf. [DVG 2]; so $\overline{F_q(\theta)} \cong F_{q'}$ with $\ell \mid n$. For hereditary R-orders θ we obtain:

$$\frac{(R^*: nr\,\theta^*)}{\hat{w}} = \frac{(\mathsf{F}_q^*: nr(\mathsf{F}_{q'}^*))}{\hat{w}} \cdot (R^*/\mathsf{F}_q^*: nr(\theta^*/\mathsf{F}_{q'}^*)) = \frac{q-1}{q^\ell-1} x_\theta$$

with $x_{\theta} = (R^*/F_q^*: nr(\theta^*/F_{q^{\ell}}^*)) | n^{\ell-1}$.

A non Eichler (R)-algebra which contains R-orders with the cancellation property is called an NEC(R)-algebra.

1. Characterization of the NEC(R)-algebras.

From [DVG 1] theorem 2.1, the center K of NEC (R)-algebras is a rational function field, so $K = \mathbb{F}_q(t)$, $g_K = 0$ and the zetafunction of K is

$$\zeta_K(s) = \frac{1}{(1 - q^{-s})(1 - q^{1-s})}.$$

If we put $\mathcal{F} = \{ p_1, \dots, p_i \}$ and denote φ_i the degree of p_i , (F2) yields:

(C.F.)
$$\frac{\prod\limits_{\substack{1 \leq i \leq s \\ (q-1)^2 \dots (q^{n-1}-1)^2}}{(q-1)^2 \dots (q^{n-1}-1)^2} \prod\limits_{\not k \notin \mathcal{F}} T_{\not k} \stackrel{(\leq)}{=} x_{\theta} \frac{q^n-1}{q^\ell-1}$$
 with $\overline{\mathsf{F}_{a}(\theta)} \cong \mathsf{F}_{a^\ell}$ and $x_{\theta} \mid n^{s-1}$.

By a result of Fröhlich, cf. [F, p. 117], all maximal R-orders in NEC (R)-algebras have the C.P., so A is an NEC (R)-algebra iff (C.F.) holds for some $A \in \mathcal{G}_{max}$ (\mathcal{G}_{max} is the genus of maximal R-orders in A).

Before passing to the main theorem we prove two lemmas about $\overline{F_q(\Lambda)}$ and x_{Λ} , $\Lambda \in \mathscr{G}_{max}$.

LEMMA 1. Let A be a central simple algebra of index n over $F_q(t)$ such that $S_{\text{ram}} = S'_{\text{ram}} = then \overline{F_q(\Lambda)} \simeq F_{q^n}$ for some $\Lambda \in \mathscr{G}_{\text{max}}$ if and only if $\varphi_{/\!\!\!/} \not\equiv 0 \mod n$ for every $/\!\!\!/ \in S_{\text{ram}}$.

PROOF. The proof in [DVG 2], where we assumed n to be prime extends directly since $S_{\text{ram}} = S_{\text{ram}}^{\ell}$.

LEMMA 2: Let A be a non Eichler (R)-algebra of index n over $F_a(t)$ with q=2, n=3 and $S_{ram}=\{t^{-1},t,t+1\}$ such that $i=\sharp \mathcal{F}\geqq 2$ then $x_{\theta}\geqq 3$ for every R-order θ in A.

PROOF. Remark that $\mathcal{F} \subset S_{\text{ram}}$, so $i \leq 3$. Let i = 3 (i = 2 can be treated similarly) then $R^*/F_a^* = \{t^k(t+1)^1 | k, l \in Z\}.$

It is sufficient to show that for c = t, t^2 , $(t + 1)^2$ we have $c \notin nr \theta^*$.

Assume that $nr(\alpha) = c$ for some $\alpha \in \theta$ then $L = F_{\alpha}(t)(\alpha)$ defines a splitting field in A and $f_{\alpha}(Y)$, the minimal polynomial of α , has coefficients in R. Moreover t^{-1} , t, t + 1 may not decompose in L, cf. [R, p. 238–239], from which we easily obtain a contradiction.

In central simple algebras over function fields of curves there exists a notion of "genus of the algebra" g_A , and one also has a Riemann-Roch Theorem (due to E. Witt), cf. [Wi].

Using this "geometric" invariant we can characterize NEC(R)-algebras as follows:

THEOREM 3. A non Eichler (R)-algebra A over a global function field K is an NEC(R)-algebra if and only if $g_A \leq \varphi_b$ with $\varphi_b \in \mathbb{N}$ such that all primes in K of degree $\leq \varphi_h$ are totally ramified in A. Moreover if $\varphi_h \neq 0$ then the choice of R is restricted by $i \geq q - \varphi_h$

It turns out that, at least partially, our results can be extended to central simple algebras over function fields of curves, defined over some infinite field (Q, Q_{\star}, \ldots) . This is done by P. Salberger cf. [V – Sa, appendix]. Salberger's proof is geometrical in the sense that it describes the problem in terms of the Brauer-Severi scheme of an order; it also relies on Witt's Riemann-Roch.

Before proving theorem 3 we determine the non Eichler(R)-algebras with $g_A \leq \varphi_b$, using the Hasse-invariants of the algebra. Recall that the Hasseinvariants of a central simple algebra A determine (A), the class of A in Br(K), completely. Since non Eichler (R)-algebras are division algebras, we can characterize them by giving their Hasse-invariants, cf. [R, p. 266–277].

For the Hasse-invariants
$$\left\{\frac{S_{\mu}}{e_{\mu}}\middle|_{\mu\in\mathscr{C}}\right\}$$
 one has $(s_{\mu}, e_{\mu}) = 1$ and $\sum_{\mu\in S_{\text{ram}}}\frac{S_{\mu}}{e_{\mu}} \equiv 0 \mod Z$.

We will see that if $n, q, \mathcal{F} \subset S_{\text{ram}}$ and $\{e_{\not A} | \not h \in S_{\text{ram}}\}$ satisfy certain conditions A will be an NEC(R)-algebra. This means that for every choice of $\{s_{\neq} | p \in S_{ram}\}$

for which $(s_{\not h}, e_{\not h}) = 1$ and $\sum_{\not h \in S_{\text{ram}}} \frac{s_{\not h}}{e_{\not h}} \equiv 0 \mod Z$; the corresponding class (A) in Br(K) contains an NEC (R)-algebra.

We reformulate the condition $g_A \leq \varphi_b$ in terms of the Hasse-invariants, using

the generalization of the Hurwitz formula, cf. [V – V, Theorem 0.3], [D 1, lemma III.5]:

(H.F.)
$$g_A = 1 + n^2(g_K - 1) + \frac{1}{2} \sum_{\mu \in \mathscr{C}} n \, \kappa_{\mu} \, \varphi_{\mu} (e_{\mu} - 1)$$

If $\varphi_b \neq 0$ then all primes of degree $\leq \varphi_b$ are contained in S'_{ram} , so $g_A \geq 1 + n^2(g_K - 1) + \frac{n(n-1)}{2} (q^{\varphi_b} + 1)$. For $\varphi_b \geq 3$ this yields $g_A > \varphi_b$. For $\varphi_b \leq 3$

 $2 (\sharp S_{\text{ram}} \ge 2, \imath_{\ell} \ge 1) g_A \le 2$ yields $g_K = 0$. We deduce further conditions on the Hasse-invariants for the particular values of $\varphi_b = 0, 1, 2$, (for $\imath_{\ell} = 1$ we also use

that
$$\sum_{\not=\in S_{\text{ram}}} \frac{s_{\not=}}{e_{\not=}} \equiv 0 \mod Z$$
 with $(s_{\not=}, e_{\not=}) = 1$).

We can reformulate Theorem 3 as follows:

THEOREM 3 (bis): A non Eichler (R)-algebra A over a global function field K is an NEC(R)-algebra if and only if K is a rational function field $F_q(t)$ and one of the following conditions is satisfied.

- i) $S_{\text{ram}} = \{ h_1, h_2 \}$ with $\phi_1 = \phi_2 = 1$
- ii) n = 2 and $S_{ram} = \{ \not p_1, \not p_2 \}$ with $\varphi_1 \cdot \varphi_2 = 2$
- iii) n = 2, q = 2 and $S_{\text{ram}} = \{t^{-1}, t, t+1, t^2+t+1\}$
- iv) n = 2, q = 3, $S_{\text{ram}} = \{t^{-1}, t, t+1, t-1\}$ and $\# \mathscr{F} \ge 3$
- v) n = 3, q = 2, $S_{\text{ram}} = \{t^{-1}, t, t+1\}$ and $\# \mathcal{T} \ge 2$

PROOF. If $g_K \neq 0$ the statement follows from [DVG 1, theorem 2.1.]. So we can assume that $K = \mathsf{F}_q(t)$.

We only prove the theorem for n > 2. For n = 2 the proof is similar and is done in [DVG 3], remark that for n = 2 the result is slightly different.

We must show that (C.F.) is only satisfied for maximal orders in non Eichler (R)-algebras corresponding to i) or v).

We introduce the following notation:

 L_{hs} (resp. R_{hs}) is the left-hand (resp. right-hand) side of (C.F.)

$$T_{p} = \prod_{\substack{1 \le i \le n-1 \\ i \not\equiv 0 \bmod e_{p}}} (\mathcal{N}_{p}^{i} - 1) = (q^{\varphi_{p}} - 1) \cdot / \cdot \cdot \cdot / \cdot (q^{\varphi_{p}(n-1)} - 1)$$

First we check that if A corresponds to i) or v) then $L_{hs} \leq R_{hs}$ for a good choice of $\Lambda \in \mathcal{G}_{max}$:

i)
$$L_{hs} = 1 \le x_A \frac{q^n - 1}{q^\ell - 1} = R_{hs}$$

v) $L_{hs} = 3$ and the lemmas 1 and 2 provide that $\ell = n$ and $x_A \ge 3$ for some $A \in \mathcal{G}_{max}$; $L_{hs} \le R_{hs}$ follows.

Now we prove the converse: for all the other non Eichler (R)-algebras A over $F_q(t)$ (of index n > 2) $L_{hs} > R_{hs}$ for some $A \in \mathcal{G}_{max}$.

If A corresponds to v) and i = 1 then $L_{hs} = 3 > 1 = R_{hs}$. The remaining non Eichler (R)-algebras are split up, using the following scheme (n > 2):

- A.1) $q \neq 2$ or $n \neq 3$ and $i_{\ell} \geq 3$.
- A.2) $q \neq 2$ or $n \neq 3$, $i = r_{\ell} = 2$ and at least one prime in S_{ram} has degree > 1.
- A.3) $q \neq 2$ or $n \neq 3$, $i = 1 \leq i \leq 2$ and at least one prime in S_{ram} has degree > 1.
- A.4) $q \neq 2$ or $n \neq 3$, $t_{\ell} \leq 2$, $\sharp S_{ram} > 2$ and all primes in S_{ram} have degree 1.
- A.5) q = 2, n = 3 and S_{ram} is not as in i) or v).

A.1)
$$q \neq 2$$
 or $n \neq 3$ and $i_{\ell} \geq 3$:

$$L_{hs} \ge \{(q-1)\dots(q^{n-1}-1)\}^{i_{\ell}-2}$$
 and $R_{hs} \le n^{i-1}(q^{n-1}+\dots+1)$;

For $n \ge 6$ or $n \ge 5$, $q \ne 2$ or $n \ge 4$, $q \ge 4$ or $n \ge 3$, $q \ge 11$ one can easily show that $(q-1) \dots (q^{n-1}-1) > n^2(q^{n-1}+\dots+1)$; since $i_{\ell} \ge i_{\ell}$ this implies $L_{hs} > R_{hs}$ in these cases.

For the remaining "small values" of n and q, remark first that if $\varphi_{n} > 1$ for some $p \in S'_{ram}$ then the corresponding factor T_{n} in L_{hs} satisfies $T_{n} > n^{2}(q^{n-1} + \ldots + 1)$ and $L_{hs} > R_{hs}$ follows.

If $\phi_{k} = 1$ for every $k \in S'_{ram}$, we rewrite (C.F.) as follows:

$$(q^{\ell}-1)\{(q-1)\dots(q^{n-1}-1)\}^{*_{\ell}-2}\prod_{1\leq e_{\ell}\leq n}T_{\ell}=x_{\Lambda}(q^{n}-1)$$

Since $x_A | n^{t-1}$ and $x_\ell \ge 3$ we find in all the remaining cases, a prime which divides the left-hand side, but does not divide the right-hand side, so (C.F.) cannot hold.

A.2) $q \neq 2$ or $n \neq 3$, $r_{\ell} = r = 2$ and at least one prime p in S_{ram} has degree $\varphi_{\ell} > 1$: Let $\mathcal{F} = \{p_1, p_2\}$ with respective degrees φ_1, φ_2 .

* $\varphi_i > 1$ for i = 1 or 2: $L_{\text{hs}} \ge (q+1) \dots (q^{n-1}+1)$; we calculate this product and deduce $(q+1) \dots (q^{n-1}+1) > (n-2) \frac{q^n-1}{q-1} + q^{\frac{n(n-1)}{2}}$. But $q \ne 2$ or $n \ne 3$ so $q^{\frac{n(n-1)}{2}} \ge 2 \frac{q^n-1}{q-1}$ and $L_{\text{hs}} > R_{\text{hs}}$ follows.

**
$$\varphi_1 = \varphi_2 = 1$$
: $L_{hs} \ge (q^{\varphi_f} - 1)(q^{(n-1)\varphi_f} - 1) > n \frac{q^n - 1}{q - 1} \ge R_{hs}$

A.3) $q \neq 2$ or $n \neq 3$, $i = 1 \leq i_{\ell} \leq 2$ and $\varphi_{/\!\!\!/} > 1$ for some $/\!\!\!/ \in S_{\text{ram}}$:

* $\varphi_{/\!\!\!/} > 1$ for some $/\!\!\!/ \in S_{\text{ram}}^{\ell}$:

$$L_{hs} \ge \frac{(q+1)\dots(q^{n-1}+1)}{(q-1)\dots(q^{n-1}-1)}(q-1)(q^n-1) > \frac{q^n-1}{q-1} \ge R_{hs}.$$

** $\mathcal{F} = \{ \not p_1 \}$ with $\varphi_1 = 1$ and $\varphi_2 > 1$ with $1 < e_2 < n$: If $\imath_\ell = 2$ then $L_{hs} > R_{hs}$ follows as in A.2**. So assume that $\imath_\ell = 1$ and denote $S_{ram} = \{ \not p_1, \not p_2, \dots \not p_k \}$. The conditions on the Hasse-invariants provide that $k \ge 3$ and l.c.m $\{e_2, \dots, e_k\} > n$. We rewrite (C.F.) as follows:

$$(q^{\ell}-1)(q^{\varphi_2}-1)./../.(q^{(n-1)\varphi_2}-1)...(q^{\varphi_k}-1)./../.(q^{(n-1)\varphi_k}-1)$$

$$\stackrel{(\leq)}{=} (q-1)(q^2-1)...(q^{n-1}-1)(q^n-1)$$

For $1 \le m \le n-2$ we find e_i , $i \ne 1$ such that $e_i + m$ and the factor $(q^{m\varphi_i} - 1)$ is not barred is T_{\bullet} . Moreover (since $k \ge 3$ and $\varphi_2 > 1$):

$$(q^{(n-1)\varphi_2}-1)(q^{(n-1)\varphi_3}-1)>(q^n-1)(q^{n-1}-1)$$

so (C.F.) cannot hold.

A.4) $q \neq 2$ or $n \neq 3$, $i_{\ell} \leq 2$, $\# S_{\text{ram}} > 2$ and $\phi_{*} = 1$ for every $n \in S_{\text{ram}}$: By lemma 1, we can find $A \in \mathcal{G}_{\text{max}}$ such that $\ell = n$, so $R_{\text{hs}} \leq n$. If $i_{\ell} = 2$ then $L_{\text{hs}} \geq (q-1)./.../.(q^{n-1}-1) > n \geq R_{\text{hs}}$ and if $i_{\ell} = 1$ a similar reduction as in A.3)** is possible.

A.5)
$$q=2$$
, $n=3$ and $\varphi_{\star} \geq 2$ for some $h \in S_{\text{ram}} = S_{\text{ram}}^{\ell}$:
If $\varphi_{\star} \geq 3$ then $L_{\text{hs}} \geq \frac{1}{9}(2^3-1)(2^6-1)3^{*\ell-1} > 7.3^{*\ell-1} \geq R_{\text{hs}}$
If $\varphi_{\star} \leq 2$ for every $h \in S_{\text{ram}}$ then $\ell=n$ and $L_{\text{hs}} > R_{\text{hs}}$ follows.
This settles theorem 3.

2. The cancellation property for non-maximal orders.

For R-orders θ in an arbitrary genus \mathscr{G} it is not possible to calculate $v_{\not h}(\theta'_{\not h})$ explicitly, therefore using the methods of the preceding paragraphs we are unable to decide whether a given R-order θ has the cancellation property.

However, all hereditary R-orders with the cancellation property can be determined (since $v_{\not =}(\theta'_{\not =})$ can be calculated in this case) and we prove a finiteness theorem for general R-orders with the cancellation property in non Eichler (R)-algebras.

THEOREM 4 (Finiteness theorem). Let A be a non Eichler (R)-algebra over a global function field then there are only finitely many genera of R-orders in A having the cancellation property. So up to isomorphism there are only finitely many R-orders in A with the cancellation property

PROOF. In [V] this was proved for totally definite quaternion algebras over number fields. To extend that proof to non Eichler (R)-algebras of any index over global function fields, we only remark that $v_{\star}(A'_{\star})$ is known for maximal orders, cf. lemma 5, and if an R-order θ has the C.P. then $L_{hs} \leq x_{\theta} n^{s-1} \leq n^3 (q^n - 1)$ (since A is an NEC(R)-algebra).

For hereditary R-orders θ the structure theorem of Harada-Brumer, cf. [R, p. 358], enables us to calculate $v_{*}(\theta'_{*})$ explicitly.

Recall that a genus \mathscr{G} of hereditary R-orders is determined by giving the local type $r_{\not k}$ and local invariants $(n_j) = (n_1, \dots, n_r)$ for every $\not k \notin \mathscr{T}$; furthermore $r_{\not k} = 1$ for almost every $\not k \notin \mathscr{T}$, the local invariants are determined up to a cyclic

permutation and $\sum_{1 \le j \le r_{\rho}} n_j = \kappa_{\rho}$ for every $p \notin \mathcal{F}$.

LEMMA 5. If θ_{\star} is an hereditary R_{\star} -order in $A_{\star} \simeq M_{\kappa_{\star}}(D_{\star})$ of local type r_{\star} and local invariants (n_{j}) , and $A_{\star} \simeq M_{\kappa_{\star}}(A_{\star})$ (where A_{\star} is the unique maximal R_{\star} -order in D_{\star}) then

$$\frac{v_{\not h}(\Lambda'_{\not h})}{v_{\not h}(\theta'_{\not h})} = \frac{\prod\limits_{1 \le j \le \kappa_{\not h}} (q_{\varDelta}^{j} - 1)}{\prod\limits_{1 \le j \le r_{\not h}} \prod\limits_{1 \le j \le n_{J}} (q_{\varDelta}^{i} - 1)}$$

with $q_{\Delta}=\sharp(\Delta_{\cancel{\pi}}/_{\bar{\pi}\Delta_{\cancel{\pi}}})=q^{\varphi_{\cancel{\pi}}e_{\cancel{\pi}}}$ where $\bar{\pi}$ is the generator of rad $\Delta_{\cancel{\pi}}$.

PROOF. Since v_{n} is bi-invariant we can assume that $\Lambda_{n} = M_{\kappa_{n}}(\Delta_{n})$ and

$$\theta_{\not h} = \begin{bmatrix} (\Delta_{\not h})(\bar{\pi} \Delta_{\not h}) \dots (\bar{\pi} \Delta_{\not h}) \\ \vdots & \ddots & \vdots \\ (\Delta_{\not h}) & \dots & (\Delta_{\not h}) \end{bmatrix}^{(n_{\jmath})}$$

Note that $nr(\theta_{\not h}^*) = nr(\Lambda_{\not h}^*) = R_{\not h}^*$ so $\frac{v_{\not h}(\Lambda_{\not h}')}{v_{\not h}(\theta_{\not h}')} = \frac{\omega_{\downarrow}(\Lambda_{\not h}^*)}{\omega_{\downarrow}(\theta_{\not h}')}$ with $\omega_{\not h}$ a bi-invariant Haarmeasure on $A_{\not h}^*$, cf. [V], [We].

We normalize ω_{A} by stating that ω_{A} is defined with respect to an R_{A} -basis $\{u_{i}\}$ of A_{A} , that is

$$\omega_{\star}(X) = \int_{X} ||x||^{-1} dx \text{ with } dx = \prod_{i=1}^{n} dx_{i} \text{ for } x = \sum_{i=1}^{n} x_{i} u_{i} \text{ and } \int_{R_{\star}} dx_{i} = 1.$$

Then
$$\omega_{\not \star}(\Lambda_{\not \star}^*) = \omega_{\not \star}(\mathrm{GL}_{\kappa_{\not \star}}(\Lambda_{\not \star})) = \prod_{1 \le j \le \kappa_{\not \star}} (1 - q_{\Lambda}^{-j}), \text{ cf. [We].}$$

Furthermore
$$\theta_{\neq}^* = \begin{bmatrix} (\Delta_{\neq})^* (\bar{\pi} \Delta_{\neq}) \dots (\bar{\pi} \Delta_{\neq}) \\ \vdots & \ddots & \vdots \\ (\Delta_{\neq}) & \dots & (\Delta_{\neq})^* \end{bmatrix}^{(n_j)}$$

with $(\Delta_*)_{i,i}^* = GL_{n_i}(\Delta_*)$; analogue calculations yield:

$$\omega_{A}(\theta_{A}^{*}) = q_{\underline{A}}^{\frac{-\kappa_{A}^{2} + \sum n_{j}^{2}}{2}} \prod_{1 \leq j \leq r_{A}} \prod_{1 \leq i \leq n_{j}} (1 - q_{\underline{A}}^{-i})$$

and the assertion follows.

We fix a genus $\mathscr{G} = \mathscr{G}_{D_1D_2}$ of hereditary R-orders in A with $D_2 = \prod_{r_{\neq} \neq 1} p^{(n_j)}$ is the contribution of the non-maximal part of θ to the discriminant $D(\theta/R) = D_1D_2$, cf. [DVG 2].

As for maximal orders, we first prove some lemmas concerning x_{θ} and $\overline{\mathsf{F}_q(\theta)}$, $\theta \in \mathscr{G}_{D_1,D_2}$.

LEMMA 6. Let A be a non Eichler (R)-algebra over $F_q(t)$ such that $S_{\text{ram}} = S_{\text{ram}}^{\ell}$ then $\overline{F_q(\theta)} \simeq F_{q^n}$ for some $\theta \in \mathcal{G}_{D_1D_2}$ if and only if $\varphi_{\not =} \equiv 0 \mod n$ for every $\not = S_{\text{ram}}$ and $\varphi_{\not =} \equiv 0 \mod n$ for every $\not = D_2$.

PROOF. The proof in [DVG 2] extends since $S_{\text{ram}} = S'_{\text{ram}}$.

LEMMA 7. Let A be a non Eichler (R)-algebra over $F_q(t)$ with $\mathcal{T}=S_{\text{ram}}=\{t,t^{-1}\}$. If q=2, n=3 and $D_2=(t^2+t+1)^{(2,1)}$ or $D_2=(t+1)^{(1,1,1)}$ then $x_\theta \geq 3$ for every $\theta \in \mathcal{G}_{D_1D_2}$; if q=2, n=5 and $D_2=p^{(2,3)}$ with $\varphi_{\neq}=1$ then $x_\theta \geq 5$ for every $\theta \in \mathcal{G}_{D_1D_2}$.

PROOF. As in lemma 2 it is sufficient to show that for c = t or t^2 : $c \notin nr \theta^*$. Assume that $\alpha \in \theta$ and $nr(\alpha) = c$ then similar arguments as in lemma 2 yield that $f_{\alpha}(Y) = Y^n - c$.

If n = 3 and $D_2 = (t^2 + t + 1)^{(2,1)}$ then $\alpha \in \theta_{/}^{(1,2)}$ ($/p = t^2 + t + 1$) implies that $f_{\alpha}(Y)$ reduces modulo /p, a contradiction.

If n = 3 and $D_2 = (t + 1)^{(1,1,1)}$ then $\alpha \in \theta_{\beta}^{(1,1,1)}$ ($\beta = t + 1$) implies that $f_{\alpha}(Y) \equiv (Y - a_1)(Y - a_2)(Y - a_3) \mod \beta$, a contradiction.

If n = 5 and $D_2 = n^{(2,3)}$ with $\varphi_n = 1$ then $\alpha \in \theta_n^{(2,3)}$ implies that $f_\alpha(Y) \equiv g_1(Y) \cdot g_2(Y) \mod n$ with $\deg g_1 = 2$, $\deg g_2 = 3$, a contradiction.

Now we determine all non-maximal hereditary R-orders in non Eichler (R)-algebras, having the cancellation property:

THEOREM 8: There are non-maximal hereditary R-orders having the cancallation property in the non Eichler (R)-algebra A if and only if $g_A < 0$ and the non-maximal hereditary R-orders in $\mathcal{G}_{D_1D_2}$ have the C.P. iff D_2 (and \mathcal{T}) satisfy one of the following conditions.

i)
$$D_2 = p^{(n-1,1)}$$
 with $\varphi_p = 1$

ii)
$$n = 3, q = 2, \mathcal{F} = \mathcal{S}_{ram}$$
 and $D_2 = p^{(1,2)}$ with $\varphi_p = 2$ or $D_2 = p^{(1,1,1)}$ with $\varphi_p = 1$.

iii)
$$n = 5, q = 2, \mathcal{F} = S_{\text{ram}} \text{ and } D_2 = n^{(2,3)} \text{ with } \varphi_n = 1.$$

PROOF. We only give the proof for n > 2 and refer to [DVG 3] for n = 2. We can restrict to NEC(R)-algebras which are given by theorem 3. (Remark that $S_{\text{ram}} = S_{\text{ram}}^{\ell}$ and $(D_1, D_2) = 1$ for all NEC(R)-algebras.) For $\not | D_2$ of local type $r_{\not |}$

and local invariants (n_i) we find that

$$T_{\not=} = \frac{\prod\limits_{\substack{1 \leq j \leq n \\ 1 \leq j \leq r_{\not=1}}} (q^{\varphi_{\not=j}} - 1)}{\prod\limits_{\substack{1 \leq j \leq r_{\not=1} \\ 1 \leq i \leq n_{j}}} (q^{\varphi_{\not=i}} - 1)}, \text{ so } T_{\not=} \geq \frac{q^{\varphi_{\not=n}} - 1}{q^{\varphi_{\not=n}} - 1}.$$

I. A is an NEC (R)-algebra with $g_{\perp} < 0$:

Remark that A corresponds to i) of theorem 3(bis) and thus $L_{hs} = \prod_{A \mid D_2} T_A$. Using lemmas 6 & 7 it follows directly that $L_{hs} \leq R_{hs}$ for the hereditary R-orders in $\mathcal{G}_{D,D}$, corresponding to i) ii) or iii).

And if the order corresponds to ii) or iii) except for the restriction on \mathcal{T} then clearly $L_{\rm hs} > R_{\rm hs}$.

We now show that, also for all the other non-maximal hereditary R-orders in A, (C.F.) cannot hold.

If two or more primes divide D_2 : $L_{hs} \ge \left(\frac{q^n-1}{q-1}\right)^2 > n\frac{q^n-1}{q-1} \ge R_{hs}$; so we assume now that $D_2 = \mathcal{R}^{(n_j)}$. The proof depends on $\varphi_{\mathbb{A}}$:

*
$$\varphi_{h} > 1$$
: $L_{hs} \ge \frac{\mathcal{N}_{h}^{n} - 1}{\mathcal{N}_{h} - 1} > n \frac{q^{n} - 1}{q - 1} \ge R_{hs} \text{ if } q \ne 2 \text{ or } n \ne 3$
or $\varphi_{+} > 2 (\mathcal{N}_{h} \ge q^{3});$

For q=2, n=3, $\varphi_{n}=2$ we can assume that $(n_{j})=(1,1,1)$ (in view of ii) and $L_{hs}>R_{hs}$ follows.

** $\varphi_{n} = 1$ and $(n_{j}) \neq (n - 1, 1)$ up to a cyclic permutation:

The proof depends on the local type r_* :

* $r_{*} > 2$: We can assume $q \neq 2$ or $n \neq 3$ in view of ii) and

$$L_{\text{hs}} \ge \frac{(q^n - 1)(q^{n-1} - 1)}{(q - 1)^2} > n \frac{q^n - 1}{q - 1} \ge R_{\text{hs}} \text{ follows.}$$

**
$$r_{\star} = 2(n \ge 4)$$
: $L_{\text{hs}} \ge \frac{(q^n - 1)(q^{n-1} - 1)}{(q^2 - 1)(q - 1)}$

If i = 1, $L_{hs} > \frac{q^n - 1}{q - 1} \ge R_{hs}$ follows and if i = 2 we can assume $q \ne 2$ or

$$n \neq 5$$
 in view of iii); $L_{hs} > n \frac{q^n - 1}{q - 1} \ge R_{hs}$ follows if $n \neq 4$ or $q \ge 4$.

For the remaining cases n = 4, q = 2 or 3, $(n_j) = (2, 2)$ we argue on the prime decomposition of both sides of (C.F.) to conclude that (C.F.) cannot hold.

II. A is an NEC(R)-algebra with n = 3, q = 2, $S_{ram} = \{t^{-1}, t, t + 1\}$:

In this algebra
$$L_{hs} = 3 \prod_{\not = |D_2|} T_{\not = 1}$$
 and $R_{hs} \leq 9(2^3 - 1)$.

If
$$p \mid D_2$$
 and $\varphi_{\not h} \ge 3$ then $L_{hs} \ge 3 \frac{2^9 - 1}{2^3 - 1} > R_{hs}$, so we assume that $\varphi_{\not h} \le 2$ for

every $\not h \mid D_2$. Then there is only one prime $\not h = t^2 + t + 1$ dividing D_2 and $\ell = 1$. Let us calculate x_θ in this case: $f_\alpha(Y) = Y^3 + t(t+1)$ has a root α in $\Lambda \in \mathscr{G}_{\max}$; and since $f_\alpha(Y) \equiv (Y+1)(Y+t)(Y+t+1) \mod t^2 + t + 1$, we can choose $\alpha \in \theta$, $\theta \in \mathscr{G}_{D_1D_2}$ for both $(n_j) = (1,1,1)$ or (2,1) and thus $x_\theta \leq 3$.

We conclude that $L_{hs} \ge 3 \cdot 21 > x_{\theta}(2^3 - 1) = R_{hs}$.

REFERENCES

- [DVG 1]. M. Denert J. Van Geel, Cancellation property for orders in Non Eichler division algebras over global function fields, J. reine angew. Math. 368 (1986), 165–171.
- [DVG 2]. M. Denert J. Van Geel, The Class number of hereditary orders in non Eichler (R)-algebras over global function fields, Math. Ann. 282 (1988).
- [DVG 3]. M. Denert J. Van Geel, Orders, in quaternion algebras over global function fields, having the cancellation property, Journal of Number Theory 30 (1988), 321–333.
- [D 1]. M. Denert, Affine and Projective order in Central Simple Algebras over Global Function Fields (an analytic approach to the ideal theory), Thesis, Genth 1987.
- [F] A. Fröhlich, Locally free modules over arithmetic orders, J. reine angew. Math. 274/275 (1975) 112-138.
- [R] I. Reiner, Maximal Orders, Academic Press, New York 1975.
- [V-Sa] J. Van Geel, Maximal orders over curves, with an appendix by P. Salberger, to appear in Séminaire Dubreil-Malliavin 1986.
- [V-V] M. Van den Bergh J. Van Geel, Algebraic elements in Division Algebras over function fields of curves, Israel J. Math. 52, (1985), 33–45.
- [V] M. F. Vigneras, Simplification pour les orders des corps de quaternions totalement définis, J. reine angew. Math. 286/287 (1975), 257-277.
- [We] A. Weil, Adèles and Algebraic Groups, Princeton, 1961.
- [Wi] E. Witt, Riemann-Rochser Satz and Z-functionen in Hypercomplexen, Math. Ann. 110 (1934), 12-28.

MARLEEN DENERT SEMINAR OF ALGEBRA AND FUNCTIONAL ANALYSIS GALGLAAN 2 B-9000 GENTH BELGIUM