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ORDERS, IN NON-EICHLER (R)-ALGEBRAS OVER
GLOBAL FUNCTION FIELDS, HAVING THE
CANCELLATION PROPERTY

MARLEEN DENERT*

Abstract.

We study R-orders 0 in central simple algebras 4 over global function fields K. In studying the
locally free left O-ideals, one has to deal with the following difficulty: the set of isomorphism classes of
locally free left 0-ideals, LF, (0) is in general not a group; but one can consider the group %/(0) of stable
isomorphism classes of these ideals. We say that § has the cancellation property if LF, (0) = ¢/(0),i.e.
if all stably free O-ideals are free.

A theorem of Jacobinski and Swan states that if A satisfies the Eichler condition with respect to R,
then all R-orders in 4 do have the cancellation property.

In[DVG 1] we proved that there only exist R-orders with the cancellation property in a non Eichler
(R)-algebra A if the center K of A is a rational function field.

In this paper we obtain a complete characterization of the non Eichler (R)-algebras which contain
R-orders with the cancellation property. This characterization, although obtained by analytic-
numbertheoretic methods, is of geometrical nature. We also determine all hereditary R-orders in
these algebras which have the cancellation property.

0. Preliminaries.

For a complete discussion of the definitions and methods we refer to [D 1],
[DVG 1] and [DVG 2].

Let A be a central simple K-algebra of index n(i.e. n> = (4:K))and K = F (%)
the function field of a complete regular curve %, defined over F,. F_ is the finite
field with g elements which we suppose to be algebraically closed in K.

Recall that for €%, the completion A, = M, (D,) with D, a skewfield of
index e, over K ,, k, is called the capacity and e, {'he ramlﬁcatlomndex of A at
# and e,,x/, =n. We denote S,,, = {£e€ |1 $ .}, St = {£€€ |, = n} and
ty = ﬁ Sram

We fix a Dedekind ring R in K by choosing a finite non-empty subset 7 of
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% and R = ( 07 R,,) () K where R, is the completion of the valuation ring
p

corresponding to 4. We denote » = #7 and for 4 €% the absolute norm of 4 is
M= q°% = %(R,/4).

In this paper we always restrict to non Eichler (R)-algebras, which means that
T < 8,502 <2, cf [DVG 1].

Fix a genus % of R-ordersin A(0,,0,e% then 0, , =0,  forevery /¢7), then
both ¢7(0) and LF,(6) do not depend on the choice of f € 4, so the cancellation
property (C.P.) is a property of the genus ¥, cf. [V].

Forfe ¥ wechooseaset {0x;|i < i < ry} of representatives for the isomorphism-
classes of stably free left 0-ideals (x; are idéles of 4). Remark that 6 has the C.P. iff
re, = 1 for some 6, € 9.

Denote 6, = x; ' 0 x;€ %, the right order of 0x;, and W; = #0;, where X' =
kernel (nr/) is the kernel of the reducec norm map nr.

The measure of stably free 0-ideals is given by (cf. [V]):

o. *

wy)=sse0) Y LD

1=isr

where R°® = R*ﬂ(ﬂ nr( 6*) fe%.

#eT
For hereditary orders 6 one has R° = R*, cf. [R], [D 1]. By using analytic

methods, M.F. Vigneras was able to calculate .#,(%) for Z-orders 6 in totally
definite quaternion algebras over number fields, cf. [V]. These methods can be
extended to calculate .# 4(¥) for R-orders in non Eichler (R)-algebras over global
function fields of any index n = 2:

9 ]

(F1) Mo(S) = 56 (0) g™ VOV (). L) [T T,
#e€

where g, is the genus of K, {x(s) = [] (1 — A% )~ 'is the zetafunction of K and
#eE
the factors T, are given by:

- )
R R A

with A4, a maximal R ,-order containing 6, and v, a bi-invariant Haarmeasure on
A/

P

Remark that T, = 1 for almost every €.

In the function field case (F1) can also be deduced using the relation between
‘0-divisors’ and the genus zetafunction, cf. [D 1].
From all this we obtain the following ‘cancellation formula’: All R-orders in
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% have the C.P. iff there exists 0 € ¢4 such that:

(F2) q(nl- 19k~ Uck(z)‘ Lxln) n T é) (R®:nr 0*)

#e€

Remark that if (F2) holds with the inequality sign ‘ <’ then the equality follows.
To calculate the right-hand side of (F2) we introduce: F,(6) = 0 ﬂ( 4 ﬁ>

red
where A, is the unique maximal R -order in the division algebra A,. One can

think of F,(6) as being the algebraic closure of F, in 6, cf. [DVG 2]; so
F,(0) = F, with 7| n. For hereditary R-orders 6 we obtain:

(R*:nr6%) (F* nr(F %))
w
with x, = (R*/F¥:nr(0*/F%)|n' " 1.

A non Eichler (R)-algebra which contains R-orders with the cancellation
property is called an NEC(R)-algebra.

—1
((R*/F%: nr(6*/F%) = Z, —

Xg

1. Characterization of the NEC(R)-algebras.

From [DVG 1] theorem 2.1, the center K of NEC (R)-algebras is a rational
function field, so K = F,(t), gx = 0 and the zetafunction of K is

1
(1—g (1 —-q")
If we put 7 = {4,,..., £,} and denote ¢, the degree of 4, (F2) yields:

{kl(s) =

[T @-D...@"" " -1 (<)

(C.F.) Lsise _ T -1
(g—1%...(¢" ' —1) ,,I;Iy # q —1

with F_(0) = F,, and x,|n* ™.

By a result of Frohlich, cf. [F, p. 117], all maximal R-orders in NEC (R)-alge-
bras have the C.P., so A is an NEC (R)-algebra iff (C.F.) holds for some A€ %, ,,
(% nax 18 the genus of maximal R-orders in A).

Before passing to the main theorem we prove two lemmas about ?;(71) and x4,
Aeg

max*

LEMMA 1. Let A be a central simple algebra of index n over F,(t) such that
Seam = Slum = then F (A) ~ Fon for some A€ %, if and only if ¢, $ 0 mod n for
every €S am.

ProOF. The proof in [DVG 2], where we assumed n to be prime extends
directly since S,,,, = S,

ram*
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LEMMA 2: Let A be a non Eichler (R)-algebra of index n over F(t) with q = 2,
n=23and S, ={t ', t,t + 1} such that » =% =2 then x, 2 3 for every
R-order 6 in A.

PrOOF. Remark that 7 < §,,,, so ¢ £ 3. Let 2 =3 (2 =2 can be treated
similarly) then R*/F* = {t*(t + 1)! | k,leZ}.

It is sufficient to show that for ¢ = ¢, t2, (t + 1)? we have c ¢ nr 0*.

Assume that nr(«) = c for some a € 0 then L = F_(t) () defines a splitting field
in A and £, (Y), the minimal polynomial of «, has coefficients in R. Moreover ¢t !,
t,t + 1 may not decompose in L, cf. [R, p. 238-239], from which we easily obtain
a contradiction.

In central simple algebras over function fields of curves there exists a notion of
“genus of the algebra” g 4, and one also has a Riemann-Roch Theorem (due to E.
Witt), cf. [Wi].

Using this “geometric” invariant we can characterize NEC(R)-algebras as
follows:

THEOREM 3. A non Eichler (R)-algebra A over a global function field K is an
NEC(R)-algebra if and only if g, < ¢, with ¢,€ N such that all primes in K of
degree < @, are totally ramified in A. Moreover if @, % 0 then the choice of R is
restricted by 1 = q — @,

It turns out that, at least partially, our results can be extended to central simple
algebras over function fields of curves, defined over some infinite field (Q, Q,, . . .).
This is done by P. Salberger cf. [V — Sa, appendix]. Salberger’s proof is geometri-
cal in the sense that it describes the problem in terms of the Brauer-Severi scheme
of an order; it also relies on Witt’s Riemann-Roch.

Before proving theorem 3 we determine the non Eichler(R)-algebras with
94 < ¢, using the Hasse-invariants of the algebra. Recall that the Hasse-
invariants of a central simple algebra A determine (A), the class of 4 in Br(K),
completely. Since non Eichler (R)-algebras are division algebras, we can charac-
terize them by giving their Hasse-invariants, cf. [R, p. 266-277].

ﬁe‘g} one has (s,, e,) =1and Sk =

) ) s
For the Hasse-invariants {—L
#€Sram e/’

€s
Omod Z.

We will see that if n, g, 7 < S,,, and {e,| £ € S..m) satisfy certain conditions
A will be an NEC(R)-algebra. This means that for every choice of {s,| z€S

ram}

for which (s,, e,) = 1 and Y —ZZ'— = Omod Z; the corresponding class (A4) in
#€Sram ~ £
Br(K) contains an NEC (R)-algebra.

We reformulate the condition g, < ¢, in terms of the Hasse-invariants, using
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the generalization of the Hurwitz formula, cf. [V -V, Theorem 0.3], [D 1, lemma
IIL.5]:

(H.F.) ga=14+n*gx—1+4Y nk,0,(,—1)
#re¥b
If ¢, + 0 then all primes of degree < ¢, are contained in S, s0 g, =1+
-1
n?(gg — 1) + _ni%__l (g** + 1). For ¢, = 3 this yields g, > ¢,. For ¢, <

2(#S,0m = 2,2, 2 1) g4 < 2 yields gx = 0. We deduce further conditions on the
Hasse-invariants for the particular values of ¢, = 0, 1, 2, (for 2, = 1 we also use

that ¥ £ =0modZ with (s, e,) = 1)
#€Sram e/‘
We can reformulate Theorem 3 as follows:

THEOREM 3 (bis): A non Eichler (R)-algebra A over a global function field K is an
NEC(R)-algebra if and only if K is a rational function field F(t) and one of the
following conditions is satisfied.

l) Sram = {ﬁl’/’l} with Py =@ = 1
ll) n=2andsram={/zl’/¢2} with ‘/’1'(/’2=2
i) n=2,q=2and S,y = {t ', t,t + 1,2+t + 1}
vy n=2,9=3,Sm={t" t,t+1L,t—1}and %7 23

V) n=3,9q=2Sam={t"t,t +1}and$7 22

Proor. If gx # O the statement follows from [DVG 1, theorem 2.1.]. So we
can assume that K = F ().

We only prove the theorem for n > 2. For n = 2 the proofiis similar and is done
in [DVG 3], remark that for n = 2 the result is slightly different.

We must show that (C.F.) is only satisfied for maximal orders in non Eichler
(R)-algebras corresponding to i) or v).

We introduce the following notation:
L, (resp. R,,) is the left-hand (resp. right-hand) side of (C.F.)

T,= [l (W-D=@*-1./...[.@q"" V=1

15isn-1

i Omodey
First we check that if 4 corresponds to i) or v) then L,; < R, for a good choice of
AEY hax'

. q"—1
) th=1§xA7:_T=Rhs

v) L, = 3 and the lemmas 1 and 2 provide that £ =n and x, = 3 for some
A€%G pars Lis S Ry follows.
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Now we prove the converse: for all the other non Eichler (R)-algebras A4 over F (t)
(of index n > 2) L, > R, for some A€¥

max*

If A corresponds to v) and z = 1 then L,, = 3 > 1 = R,. The remaining non
Eichler (R)-algebras are split up, using the following scheme (n > 2):

A1) g#*2orn#3and = 3.

A2) q#2orn+3,:=r,=2and at least one prime in S,,, has degree > 1.
A3) gq#F2orn+3,2=1=1,<2andatleast one primeinS,,,, has degree > 1.
Ad) gqF2orn=£3,1,<2#S,,>2and all primes in §,,,, have degree 1.
AS) gq=2,n=3andS§,,, is not as in i) or v).

Al)yg#+2orn#+3and = 3:
Ly2{g—1...(¢" ' =1} ?and R,y En* Y (g" ' +.. + 1)

Forn=z6orn=5,q+20orn=4,9=40rn = 3,q = 11 one can easily show
that(g — 1)...(¢" ' — 1) > n®(¢" "' +... + 1); since 2, = » this implies Ly > R,
in these cases.

For the remaining “small values” of n and g, remark first thatif ¢ , > 1 for some
/€ 8f,m then the corresponding factor T in Ly, satisfies T, > n*(¢" ™' + ... + 1)
and L, > R, follows.

If o, = 1forevery £ € S¢,..., we rewrite (C.F.) as follows:

@-D{g=D...(¢" ' =1} [ T,=x44"-1

1<es<n

Since x4 |n* "' and ¢, = 3 we find in all the remaining cases, a prime which divides
the left-hand side, but does not divide the right-hand side, so (C.F.) cannot hold.

A2) g+2o0rn+#3,42,=12=2and at least one prime 4 in S, has degree
¢, > 1: Let 7 = {4, p,} with respective degrees ¢, ¢,.

* g;>1fori=1o0r2 Ly,=(q+1)...(¢" ' + 1); we calculate this product

n—l n!n*[
a +4q 21.Butq={:20r

and deduce (@ +1)... (" '+ 1)>n—-2)

q—1
"!"_ ) 'l_l
n=%3s0q ! ng N and L,, > R, follows.
q.._
" oi= =1 Lz @ = D" - ) >0t T E 2R,

A3)g+2orn+3,2=1=Z2<2and ¢, > 1forsome €S
¢, > 1 for some /€S

ram*
* ¢ .
ram*

@+ @+

q"—1
> —1)(g"—1
b2~ U )" —1)> g—1

; Rhs'
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*¥* F ={f,} withe, =1land ¢, > 1withl <e, <m
If'z, = 2then L,, > R, follows asin A.2**. So assume that z, = 1 and denote
Siam = {/1s /2, - - - fu}. The conditions on the Hasse-invariants provide that
k =2 3 and l.c.m {e,,..., e} > n. We rewrite (C.F.) as follows:

@ = D@ = 1)././. @ =g = D ) @)
() ) )

=q-D@—=1...(¢" " =@ -1

Forl <=m < n—2wefinde;,i % 1such thate; + mand the factor (¢"* — 1)

is not barred is T, . Moreover (since k = 3 and ¢, > 1):

(g"" " = D" = > (¢ = D@ - D)
so (C.F.) cannot hold.

Ad) gq+2orn=+3,2=<24%S,,>2and ¢, =1 forevery £€S§,

By lemma 1, we can find A€ %,,,, such that £/ = n, so R, < n. If ;, = 2 then
Ly=(q—1)./../.(¢"" ' —1)>n=R,, and if 2, = 1 a similar reduction as in
A.3)** is possible.

A.5) g=2,n=23and ¢, 2 2for some £€S,,n = Srom:
If ¢, 2 3 then th>§(23 DR —1)3“ "1 >73 "1 >R,
If o, < 2forevery f€8,,, then/ = nand L,; > Ry, follows.

This settles theorem 3.

ram

2. The cancellation property for non-maximal orders.

For R-orders 6 in an arbitrary genus ¢ it is not possible to calculate v,(6)
explicitly, therefore using the methods of the preceding paragraphs we are unable
to decide whether a given R-order 6 has the cancellation property.

However, all hereditary R-orders with the cancellation property can be deter-
mined (since v,(6",) can be calculated in this case) and we prove a finiteness
theorem for general R-orders with the cancellation property in non Eichler
(R)-algebras.

THEOREM 4 (Finiteness theorem). Let A be a non Eichler (R)-algebra over
a global function field then there are only finitely many genera of R-orders in
A having the cancellation property. So up to isomorphism there are only finitely
many R-orders in A with the cancellation property

Proor. In [V] this was proved for totally definite quaternion algebras over
number fields. To extend that proof to non Eichler (R)-algebras of any index over
global function fields, we only remark that v ,(4,) is known for maximal orders,
cf. lemma 5, and if an R-order 6 has the C.P. then L,, < xon' "' < n*(q" — 1)
(since 4 is an NEC(R)-algebra).
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For hereditary R-orders 0 the structure theorem of Harada-Brumer, cf. [R,
p. 358], enables us to calculate v (0, explicitly.

Recall that a genus ¢ of hereditary R-orders is determined by giving the local
type r, and local invariants (n;) = (n,,..,n,) for every s ¢ 7 ; furthermorer, = 1
for almost every 4¢7, the local invariants are determined up to a cyclic

permutation and ) n; =, forevery p¢ 7.
12jsr,
LEMMA 5. If 0, is an hereditary R ,-order in A, ~ M, (D) of local typer, and
local invariants (n;), and A, ~ M., (4,) (where A, is the unique maximal R ,-order
in D,) then

[T @-1

valdy) 15jsSky

RGN (O T

15jsrp15jsn,

with g, = #(4,/z4,) = 4** where T is the generator of rad 4.
PROOF. Since v, is bi-invariant we can assume that A, = M, (4,) and

(A)74,)... (74"

0= : Lo
A, . ...,
A n (A
Note that nr(0%) = nr(4%) = R} so —VL(@—L)) = (W”? with w, a bi-invariant
V/- # )

Haarmeasure on A%, cf. [V], [We].

We normalize w, by stating that w, is defined with respect to an R -basis {u;}
of 4,, that is

w(X) = JHxll_ldx with dx = [] dx; for x = ) x;u; and jdxi =1
X

Ry

Then w,(4}) = w,(GL, (4,))= [] (1- q,7), cf. [Wel.

1SjSky

(A)*®4,). .. (74,)]"

A

Furthermore 6% = . :
(4p) - o (A*
with (4)¥; = GL,,j(A 4+); analogue calculations yield:

—Kk2+yn?

w00 =q, 2 [T TII a-4g59

1SjsSrs 1Sisn;

and the assertion follows.
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We fix a genus ¥ = 4, , of hereditary R-orders in 4 with D, = [T A" is
rg#1
the contribution of the non-maximal part of 0 to the discriminant D(6/R) = D,D,,
cf. [DVG 2].
As for maximal orders, we first prove some lemmas concerning x, and F(6),
0e%p p,

LEMMA 6. Let A be a non Eichler (R)-algebra over F (t) such that S,,,, = S

ram

then F(6) ~ F . for some 0€%), p, if and only if ¢, & Omodn for every f€S,,,
and ¢, = Omodnfor every /4ID2

Proor. The proof in [DVG 2] extends since S,,,, = S,

ram*

LEMMA 7. Let A be a non Eichler (R)-algebra over F,(t) with T = §,,,, =
{t,t ). If q=2,n=3 and D, =(t>* +t+ 1)®Y or D, = (¢t + 1)""" then
xg 2 3 forevery0e%,, p ;if q=2,n="5and D, = 4> witho, = 1thenxy = 5
for every 0%, p,.

PROOF. As in lemma 2 it is sufficient to show that for ¢ =t or t2: c ¢ nr 6*.
Assume that o€ 6 and nr () = ¢ then similar arguinents as in lemma 2 yield that
fL(Y)=Y"—c

Ifn=3and D, = (> + t + 1)*" then ae 0¥ (4 = t* + t + 1) implies that
f.(Y) reduces modulo £, a contradiction.

Ifn=3andD, = (¢t + 1)"""Vthenae | "V (4 =t + 1)implies that £,(Y) =
(Y —a )(Y — a,)(Y —a3) mod £, a contradlctlon.

Ifn = 5and D, = 4> with @, = 1 then a e 67+ implies that f,(Y) = g,(Y)-
g-(Y) mod  with degg, = 2, degg, = 3, a contradiction.

Now we determine all non-maximal hereditary R-orders in non Eichler (R)-
algebras, having the cancellation property:

THEOREM 8: There are non-maximal hereditary R-orders having the cancalla-
tion property in the non Eichler (R)-algebra A if and only if g, <0 and the
non-maximal hereditary R-ordersin %, , have the C.P.iff D, (and J") satisfy one
of the following conditions.

i) D,=/"""Vwithe,=1
i) n=3,9q=29 = mmandD2=/z“'2’With(pﬁ=2
or Dy =" Vwithe,=1.

i) n=59=2,7 =S,,,and D, = > witho, = 1.

PrOOF. We only give the proof for n > 2 and refer to [DVG 3] for n = 2. We
can restrict to NEC(R)-algebras which are given by theorem 3. (Remark that
Siam = Stmand (Dy, D,) = 1 for all NEC(R)-algebras.) For 4| D, of local type r 4
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and local invariants (n;) we find that

[T @-1

T, = 1sizn ,50 T, 2

# ) e 1"
I I @ -1 v

1SjsSry 1Sisn,

I. Ais an NEC (R)-algebra with g, < 0:

Remark that A corresponds to i) of theorem 3(bis) and thus L, = [] T,. Using

£1D2
lemmas 6 & 7 it follows directly that L,, < R, for the hereditary R-orders in

%p,p, corresponding to i) ii) or iii).

And if the order corresponds to ii) or iii) except for the restriction on 7 then
clearly Ly > R,.

We now show that, also for all the other non-maximal hereditary R-orders in
A, (C.F.) cannot hold.

. o n_ 1 2 " _ 1
If two or more primes divide D,: L, = <q 1 > >nd 1 2 R,; so we
q —_—
assume now that D, = 4. The proof depends on ¢

A — 1 "y
/ T~ SR, ifqg+t20rn+3

* >1: Ly = >
s MET 1 T =1

or ¢, >2(MZq);
Forq=2,n=3, ¢, =2 we can assume that (n;) = (1,1, 1)
(in view of ii) and L, > R, follows.

** ¢, = 1land (n;) # (n — 1,1) up to a cyclic permutation:

The proof depends on the local type r

* r,>2: We can assume g % 2 or n % 3 in view of ii) and

(@ —-D@ '=1 q"— 1
L. > > R, follows.
e = G- 17 >nq_1_ 1s fOllows
(@ —=D@ '-1

(@ —-1@g-1

*r,=2(nz4); L2

q —1

Ife=1,L, > 0 = R, follows and if » = 2 we can assume q % 2 or

n

1
n+ S in view of iii); Ly, > n— -2 Ry, follows if n + 4 or g 2 4.

For the remaining cases n = 4, g = 2 or 3, (n;) = (2,2) we argue on the
prime decomposition of both sides of (C.F.) to conclude that (C.F.)
cannot hold.
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II. 4 isan NEC(R)-algebra withn =3,q=2,8,,. = {t ', t,t + 1}:
In this algebra L,, =3 [] T, and R,, <9(2° - 1).

#|D>
9

If 2| D, and ¢, = 3 then Ly, 2 3ﬁ > Ry, s0 we assume that ¢ , < 2 for

every 4| D,. Then there is only one prime 4 = t? + t + 1 dividing D, and ¢ = 1.
Let us calculate x4 in this case: f,(Y) = Y3 + t(t + 1)hasarootain Ae %, ;and
since f,(Y)=(Y + 1)(Y +t)(Y +t + 1) mod t* + t + 1, we can choose ae¥,
0e%p p, for both (n;) = (1,1,1) or (2,1) and thus x, < 3.

We conclude that L, = 321 > x,(2° — 1) = R,,.
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