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HAMILTON CIRCUITS WITH MANY COLOURS IN
PROPERLY EDGE-COLOURED COMPLETE GRAPHS

LARS DGVLING ANDERSEN*

Abstract.

We prove that a properly edge-coloured complete graph K, has a Hamilton circuit with edges of at

least n — \/ﬂ distinct colours. This is proved with a method inspired by work on long partial
transversals in latin squares. Another such method is employed in proving a similar result where the
distinct colours all occur on edges not belonging to a given spanning set of edges of K,,.

1. Introduction.

The purpose of this paper is threefold. We consider the complete graph K, with
a proper edge-colouring with any number of colours (as the edge-colouring is
proper, the number of coloursis at least n — 1if nis even, and at least nif nis odd),
and we look for a Hamilton circuit of K, with as many different colours as
possible occurring on its edges. Firstly, we want to give a lower bound on this
number; in Section 3 it is proved that for all nit is possible to get at least n — \/ﬂ
distinct colours occurring in a Hamilton circuit. Secondly, we wish to indicate
how methods from the theory of long partial transversals in latin squares can be
adapted to the present problem; Section 2 briefly introduces such transversals
and mentions some results. Finally, with two applications in mind, we prove
aresult similar to the main theorem, but where some given edges are “forbidden”.

We use standard terminology and state only a few definitions. By a path system
of a graph we mean a subgraph consisting of mutually vertex-disjoint paths; its
length is the sum of the lengths of the paths, i.e. the number of edges. A subgraph
of an edge-coloured K, is called totally multicoloured (TMC) if all its edges have
distinct colours. If K, does not contain a TMC Hamilton circuit, then asking for
the maximum number of distinct colours occurring in a Hamilton circuit is
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equivalent to asking for the maximum length of a TMC path system, and it is in
this form that we shall tackle the problem.

An edge-colouring of a graph with ¢ colours is an assignment to each edge of
a colour from a set of ¢ colours. We shall often use the set of “colours” {1,2,...,c}.
An edge-colouring is proper if no pair of edges incident with the same vertex have
the same colours. We emphasize that this paper is concerned with proper edge-
colourings. If the condition that the edge-colouring be proper is dropped, we
enter the field of anti-Ramsey theory; for example, the problem of findinga TMC
path of maximum length in a K, with a (general) edge-colouring is considered by
M. Simonovits and V. T. Sos in [21]. More anti-Ramsey theorems can be found
in [9]. Another possibility is to replace the properness condition by an upper
bound on the number of occurrences of each colour; this is sub-Ramsey theory.
G. Hahn and C. Thomassen [14] proved that there is a constant ¢ such that the
following holds: If each colour of an edge-colouring of K, occurs on at most cn?
edges, then K, has a TMC Hamilton circuit. Recently, V. Rodl and independent-

ly P. Winkler have improved the bound to c- \/; (private communication with
V. Rodl and G. Hahn). More sub-Ramsey results can be found in [12] and [13].

2. Partial transversals in latin squares.

A partial transversal of a latin square is a set of cells in distinct rows, in distinct
columns and containing distinct entries. The length of a partial transversal is the
number of cellsin it. A transversal of a latin square of side n is a partial transversal
of length n.

A conjecture due to H. J. Ryser [19] and also to R. A. Brualdi (see [7], page
103) states that any latin square of odd side has a transversal, and that any latin
square of even side n has a partial transversal of length at least n — 1. As early as
1779 L. Euler [10] proved that a cyclic latin square of even side has no transver-
sal, and so the statement of the conjecture is the best that could be hoped for.
Later, E. Maillet [17] gave other examples of latin squares of even side with no
transversals.

Work towards a proof of the conjecture has mainly been in the form of lower
bounds on the length p of a longest partial transversal of a latin square of side n. It

.. n .
is trivial that p = B (any partial transversal of length less than —;— can be

extended). K. K. Koksma [15] proved that p = 3n + §for alln = 3,and D. A.
Drake [8] improved thisto p = 2 nfor all n = 8 (he actually proved p = min {3n,
n — 2}foralln = 1). Later, A. E. Brouwer, A. J. de Vries & R. M. A. Wieringa [6]

and independently D. E. Woolbright [22] showed thatp = n — \/; for all n (the

bound can be worked out to give p 2 n + § — /n — 3 for all n = 3, [6]).
The latest improvement is a result by P. W. Shor [20] saying that a latin square
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of side n has a partial transversal of length p = n — c(log n)?, where cis a constant
close to 5.53. This is better than n — /n for n = 2-10°.

If we now consider TMC path systems of edge-coloured complete graphs, we
can see that they have certain similarities with partial transversals of latin
squares. In particular, both properties are hereditary: a subgraph of a TMC path
system is itself a TMC path system, and a subset of a set of cells forming a partial
transversal also form a partial transversal. Further, in both cases we must choose
a structure for which certain symbols must all be distinct, in a larger structure
which is defined by the requirement that some symbols must be different. So
perhaps it is no surprise that methods from the theory of partial transversals
often have close analogues in the theory of TMC path systems.

In this paper we shall present such analogues of the methods of Brouwer, de
Vries and Wieringa (for the proof of our main result in Section 3) and of Drake
(for the application in Section 4). Unfortunately, we have not been able to adapt
the method of Shor to obtain further improvements. So let us stress that there are
also huge differences between partial transversals and TMC path systems: most
notably, the symmetry among all cells of a partial transversal does not exist

among the edges of a path system (some are end-edges, some are not, for
example).

3. Long totally multicoloured path systems.

Hahn [12] conjectured that for any (general) edge-colouring of K, in which
each colour occurs on at most k edges, where n = 2k (and n % 4), K, contains
a TMC Hamilton path. This was disproved by M. Maamoun and H. Meyniel
[16] for all n of the form n = 27, and in fact their counterexample had a proper
edge-colouring: Let the vertices of K ,, be the elements of the group (Z,)?, and let
the set of colours be the same elements, zero excepted; for all vertices x and y the
edge joining them is given the colour x — y. Then, if x;x,...x, were a TMC
Hamilton path we would have

Xp— X1 = (X = Xy 1)+ (Xpoy = Xpoa)+ .o+ (X —=x) =2 x=0
x#0
(where the sum is taken over all elements of (Z,)?), a contradiction.

There are other counterexamples to Hahn’s conjecture. In fact, the unique
proper edge-colouring of K¢ with 5 colours does not even contain a TMC path
system consisting of two disjoint 2-paths.

It may be true, however, that a properly edge-coloured K, always has a TMC
path system of length n — 2, or even of length n — 1if nis odd (see Section 5). It is

. . . n . .
trivial that it contains a TMC path of length at least S8 rather simple counting

argument gives a bound of 3 (n — 2). Methods inspired by Drake’s paper [8] give
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3n—35

(we return to these methods in the next section), but the best result that
we have is based upon the methods of Brouwer, de Vries and Wieringa [6]:

THEOREM 1. Let K, have a proper edge-colouring with any number of colours.
Then it contains a totally multicoloured path system with at least n — \/5); edges.

PRrOOF. Let the colours be {1,2,...,¢},c = n— 1, and let P be a TMC path
system of maximum length p. Let the edges of P be denoted by e, . .., e,, named
consecutively along each path (component) belonging to P; with the same way of
traversing each path, let V; be the last end-vertex of e;, 1 < i < p. We may assume
that e; has colour i, 1 £i < p. Let W = {V,,...,V,}, and let the set of remaining
vertices be U = {V,,,,...,V,}. Note that W 4 V(P). For | Si<n 1 <j<n,
i # j,let c(V;V}) be the colour of the edge joining V; and V. Figure 1 illustrates the
notation. The labelling of the vertices of U is arbitrary.

V) \'Z] \'Z) Vi Vs Ve Vy Vp Vo Vio V?_l Vp

W: 2 3 “ 6 7 [ 9 P

* €2 €3 €4 eg €7 ep ey e

iler Sles 10 Jey " " "7 P} P

U: p=t Qemommeen
\" \' v \' A

ptl pt+2 p+3 q G+l
Figure 1.

Define the following sets (they may be thought of as corresponding to sets of
vertices of K,):

A0=®’
A;j={ie{l,....,ptu{p+j+ 1L....,n}c(VV, )¢ {l,....p}\4;_}

forl1<j<n-—p.

Clearly 4; = {ie{l,...,pju{p+j+1,...,n}[c(ViV,.)€
{p+1,....,c}UA;_}.

We claim:

(*) {p+1,...,nfnA;=forallje{0,...,n — p}.

Proof of (*) Assume that () is false, and let j, be the smallest j for which it fails;
obviously jo = 1. Let goe{p+1,...,n} N A;,. By the definition of A4;,
Go=p+jo+ 1. Then Pu {qu Vot jo} is also a path system, and so by the
maximality of P, c¢(V, V,.; ) belongs to {1,...,p}. As qo€ A;_ this means that
(Voo Vo+io) € Ajo-1- Put g = c(V V,+; ), and let j; be the smallest number so
that g, € A4;. Put P, = (PU{V, V,,; D\ {e,}. Then P, U {V, V,,; } is again
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a path system with the same colours as P, and as g, € 4;, the maximality of P,
implies that g, = ¢(V, V,.; )€ A4; _,. Continuing like this we reach, in a finite
number of steps, a contradiction to the fact that 4, = .

For allj, 1 £j < n — p, we have by () and the definition of 4;:

[Ajlzp+(n—p—)—(p—I4;-1)=n—j—p+I|4;-4

so we get

Aueal = X (4] = 14,4

2 ":Z,l(n—j—p)

=m—p’—tm—ph—-p+1)
=imn—pn—p-1.
As |A,_,| < p by definition, we get 1(n — p)(n — p — 1) < p which implies

pzn+4—/2n+ 1.

This completes the proof of Theorem 1.

The proof of Theorem 1 actually gives p = n + 4 — \/2n + 4, and combining

this with the bound ~"—>

derived by methods inspired by Drake [8] (the
methods are indicated in the next section), we obtain as our best possible result:

COROLLARY 2. Let K, have a proper edge-colouring with any number of colours.
Then t contains a totally multicoloured path system of length at least

3n—-5

ifn <15,

n+4—2n+%ifnz15.

4. TMC path systems avoiding a spanning edge-set and containing a given TMC
path system.

In two forth-coming papers [3] and [4], coauthored with A. J. W. Hilton and E.
Mendelsohn respectively, we prove results about extending proper edge-colou-
rings of some edges of K, to proper edge-colourings of all of K,,. The statements
may be found in [1]. An important tool for both papers is a lemma ascertaining
the existence of a long TMC path system in a properly edge-coloured complete
graph, with the extra condition that all edges of a fixed spanning edge-set must be
avoided by the TMC path system (these edges are the precoloured edges).
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A similar result is needed with yet a further condition, namely that one or two
given edges are mandatory for the TMC path system. In this section we sketch
the proof of alemma applicable to all cases needed in [3] and [4]. As was the case
with Theorem 1, the proof is based on methods:previously used for long partial
transversals in latin squares; again, the methods due to Brouwer, de Vries and
Wieringa, and also to Woolbright, give the best results asymptotically. It turns
out, however, that the results obtainable by Drake’s methods are more suited for
the applications: they are strong enough for large n, and they work for some small
n where the asymptotically best results fail. So we sketch a proof based on
Drake’s ideas, thus presenting the adaptation of these for TMC path systems.
Afterwards we state what can be obtained by other methods.

It can be noted that [1] and [2] contain a result on long partial transversals of
(possibly incomplete) latin squares avoiding certain cells of the latin squares.

LemMMA 3. Let K, have a proper edge-colouring with any number of colours
(n = 2), let F be a spanning edge-set of K, and let M be the edges of some totally
multicoloured path system of K,,, where F "M = (. Put

e(n, F, M) = §(/n* — (22 — 4[M)n + 96|F| + 4(M|*> + [M]) + 9 —
n+2|M| + ).

Then K, contains a totally multicoloured path system, avoiding all edges of F and
including all edges of M, of length at least

3n ¢(n, F, M)}.

i -5
min {n — 5, 2

PrOOF. For the sake of brevity. let us call a TMC path system, avoiding all
edges of F and including all edges of M, an (F, M)-system. Put |F| = f and
[M| = m. The edges of F are called forbidden.

Trivially, K, contains an (F, M)-system. Let P be such a system with the
maximum number p of edges. If p = n — 5 we are finished, so we now assume that

3
p £ n— 6. We must prove that p > Tn — &(n, F, M).

Let the notation be as in the proof of Theorem 1, indicated in Figure 1. We call
the colours 1, ..., p small colours and the colours p + 1,..., ¢ large colours. By
the maximality of P, no non-forbidden edge joining two vertices of U can have
large colour.

Each connected component of P has one vertex in U. We call this the U-vertex
of the path and of its vertices and edges.

For each edge e; of P, let g(e;) denote the number of edges of large colour which
are not in F and which join an end-vertex of ¢; to a vertex of U, excluding the edge
joining V;_ to its U-vertex; note that this exception can only apply if V;_, is an
end-vertex of ¢; (i.e., if ¢; is not the first edge of its component).
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We now partition the edges of P into 4 mutually disjoint sets:

M,

L = {eiEE(P)\Ml gle) = 0}’

K = {e,e E(PA\M| 1 < g(e) < 4}.
J = {e;e E(P)\ M| g(e;) = 5}.

We put |L| =1, |K| = k and |J| = j.
Then the following statements can be proved:

(1) eeEM = gle)=2(n—p) — L
(2 e,€eJ = gle)=n-—p.
(3) e;eJ = the colour i does not occur on any non-forbidden edge

joining two vertices of U.

4) e;e K = the colour i occurs on at most one non-forbidden edge
joining two vertices of U.

We also need an observation regarding the set F. Let f; be the number of
forbidden edges joining a vertex of W to a vertex of U, and let f;, be the number of
forbidden edges joining two vertices from U. From the fact that F is spanning, (5)
can be proved:

(5) fi+222f—p
Let h be the number of non-forbidden edges of large colour joining a vertex of
p
W to a vertex of U. We shall compare 2h to the sum Y, g(e;). A counting

i=1
argument shows:

(6) 2h = ‘il gle) +p—1

Applying (1), (2) and the definition of K we obtain:

(7 2hs(n—pj+4k+Q2n—-—p —1)m+p—1

In addition to this upper bound on h , we can get the following lower bound:
®) hz@m—p)n—p-1)-2f, - f.

With (7), this gives

©) (m—pj+dkz22m—pn—p-1)-Q—p—hm—-—p+1-
4f; — 2f;.
No large colour occurs on a non-forbidden edge joining two vertices of U, and
by (3) no colour from {ile;eJ} is on such an edge. By (4), any colour from
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{ile;e K} occurs on at most one of these edges, and as the edge-colouring is

proper each colour of {i|e;e L U M} occurs on at most " ; 4 such edges.
Therefore
n—p
(10) k + 5 (l+mzm—pmn—p—1)—f
Multiplying (10) by 2 and adding (9) gives
(1) m—-pG+l+m+6kz3n—pn—p—1)—2(n—pm+m—
p+1—6f, —2f.
Applying n — p = 6 and 2f, + 6f, < 6f — 3p (from (5)), we get
6f —2n—m—
pejtk+lemz3n—p—n-—2m—2- n" m—1
4

and

— M —m—

4p;3n—5—2m—6f non 1.
n—p

Looking at this as a second degree inequality in p (or n — p)it can be seen to imply
the statement of the lemma.

The rather detailed expression for the bound in Lemma 3 is necessary for the
applications. Putting M = (¥ gives a result purely on TMC path systems avoid-
ing certain edges. It is not possible to put F = ¢, as F is required to be spanning.
3n—8

Putting |F| = %and M = 0 gives a bound of approximately , close to the

corresponding part of Corollary 2.

As mentioned before, the method of the proof of Theorem 1 can also be
extended to the case of forbidden and mandatory edges, and they give asymptoti-
cally better results. Lemma 3, however, is the more useful for the applications in
[3] and [4]. Including both results, we can state the following theorem.

THEOREM 4. Let K,, F, M and ¢(n, F, M) be as in Lemma 3. Then K, contains
a totally multicoloured path system, avoiding all edges of F and including all edges of
M, of length at least

max {n — M| =} — J4|F| + IM? — [M| + }, min {n -5, 37” — &(n, F, M)}}.

If we put [M| =0 and |F| = % in the first term of the maximum clause, we

obtain a bound one below the second bound of Corollary 2. That s, if nis even the
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bound obtained by the method of the proof of Theorem 1 is just weakened by one
by the additional requirement that a given 1-factor of K, must be avoided by the
TMC path system.

We finally note that the Drake method can be extended so as not to require
n — p = 6. This was done to obtain the Drake part of Corollary 2.

5. Concluding remarks

As mentioned in Section 3, there is room for improvement on the main result of
this paper, Theorem 1. In fact, we believe in the following conjecture.

CONJECTURE. A properly edge-coloured K, has a TMC path of length at least
n—2.

This has been verified by hand for n < 8. Further evidence in favour of the
conjecture is that it holds for the standard (cyclic) 1-factorization of K, called
GK,, (see [18]); for n = 2, it obviously has a TMC circuit of length n — 1. The
conjecture also holds for the edge-colouring of K ,, described in Section 3, which
does not have a TMC path of length n — 1. It follows from the fact that the group
(Z,)? is R-sequenceable (which was proved by R. J. Friedlander, B. Gordon and
M. D. Miller in [11]), that it also contains a TMC circuit of length n — 1.

Maybe new methods developed for finding long partial transversals in latin
squares can be used on the above problem. And, perhaps more intriguing, maybe
new methods developed for finding a long TMC path system in a properly
edge-coloured complete graph can be used on the long standing problem of
finding long transversals in latin squares.

We finally mention two results slightly related to the topics of this paper:

In [5], A. E. Brouwer used methods similar to those of Section 3 for finding
a large partial parallel class in a Steiner triple system. In [23], D. E. Woolbright
showed that in any 1-factorization of K,, there is a 1-factor containing edges
from at least n — 1 distinct 1-factors of the l-factorization. As Woolbright’s
methods apply to any proper edge-colouring, we can actually write the following
corollary:

COROLLARY 5. Let K,, have a proper edge-colouring with any numbers of
colours. Then it contains a set of n — 1 independent edges of distinct colours.

Clearly, we also have

COROLLARY 6. Let K,,,, have a proper edge-colouring with any number of
colours. Then it contains a set of n — | independent edges of distinct colours.

Recently, Woolbright has improved his result to state that in any 1-factor-
ization of K ,, there is a 1-factor all of whose edges belong to different 1-factors
of the 1-factorization (private communication with C. C. Lindner).



14

LARS D@VLING ANDERSEN

ACKNOWLEDGEMENT. A. J. W. Hilton, A. D. Keedwell and P. Landrock are

thanked for very helpful discussions.

1.
2.
3

4.

13.
14.

15.

17.
18.

20.

21.
22

23.

REFERENCES

L. D. Andersen, Completing partial latin squares, Mat. Fys. Medd. Dan. Vid. Selsk. 41:1 (1985).
L. D. Andersen and A. J. W. Hilton, Thank Evans!, London Math. Soc. (3) 47 (1983), 507-522.

. L. D. Andersen and A. J. W. Hilton, Symmetric Latin square and complete graph analogues of the

Evans conjecture, in preparation.

L. D. Andersen & E. Mendelsohn, 1-factorizations of K ,,, with given edges in distinct 1-factors, in
preparation.

A. E. Brouwer, On the size of a maximum transversal in a Steiner triple system, Can. J. Math.
XXXIII (1981), 1202-1204.

A. E. Brouwer, A. J. de Vries, and R. M. A. Wieringa, A lower bound for the length of partial
transversals in a latin square, Nieuw Arch. Wisk. (3), XX VI (1978), 330-332.

J. Dénes and A. D. Keedwell, Latin Squares and their Applications, Akadémiai Kiadémiai Kiado,
Budapest, and English Universities Press, London (1974).

D. A. Drake, Maximal sets of latin squares and partial transversals, J. Stat. Plann. Inference
1(1977), 143-149.

P. Erdos, M. Simonovits, and V. T. Sos, Anti-Ramsey theorems, in Infinite and finite sets, Colloq.
Math. Soc. Janos Bolyai, Keszthely (1973), 633-641.

L. Euler, Recherches sur une nouvelle espéce de quarrés magiques, in Leonardi Euleri Opera
Omnia, Série 1, 7 (1920), 291-392.

. R.J. Friedlander, B. Gordon and M. D. Miller, On a group sequencing problem of Ringel, in Proc.

Ninth South-Eastern Conf. on Combinatorics, Graph Theory and Computing, Boca Raton
1978, Congressus Numerantium XXI, Winnipeg (1978), 307-321.

G. Hahn, Unjeu de coloration, in Regards sur la theorie des graphes, Actes du Colloque de Cérisy
12/18 juin 1980, Presses Polytechniques Romandes (1980), 249-251.

G. Hahn, More star sub-Ramsey numbers, Discrete Math. 34 (1981), 131-139.

G. Hahn and C. Thomassen, Path and cycle sub-ramsey numbers and an edge-colouring conjec-
ture, Discrete Math. 62 (1986), 29-33.

K. K. Koksma, 4 lower bound for the order of a partial transversal in a latin square, J. Combin,
Theory 7 (1969), 94-95.

M. Maamoun and H. Meyniel, On a problem of G. Hahn about coloured Hamiltonian paths in K ,,,,
Discrete Math. 51 (1984), 213-214.

E. Maillet, Sur les carrés latins d’Euler, C. R. Assoc. France Av. Sci. 23, part 2, (1894), 244-252.

E. Mendelsohn & A. Rosa, One-factorizations of the complete graph — a survey, J. Graph Theory
9 (1985), 43-65.

H. J. Ryser, Neuere Probleme der Kombinatorik, in Vortrdge iiber Kombinatorik Oberwolfach
24-29 Juli 1967, Oberwolfach (1968), 69-91.

P. W. Shor, A lower bound for the length of a partial transversal in a latin square, J. Combin.
Theory, (A) 33 (1982), 1-8.

M. Simonovits and V. T. Sés, On restricted colourings of K,, Combinatorica 4 (1984), 101-110.

D. E. Woolbright, Ann x n latin square has a transversal with at least n — \/; distinct symbols, J.
Combin. Theory (A) 24 (1978), 235-237.

D. E. Woolbright, On the size of partial 1-factors of 1-factorizations of the complete k-uniform
hypergraph on k - n vertices, Ars Combinatoria 6 (1978), 185-192.

INSTITUTE OF ELECTRONIC SYSTEMS
AALBORG UNIVERSITY CENTRE
STRANDVEIJEN 19

DK

9000 AALBORG

DENMARK



